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Abstract

Multi-instance partial-label learning (MIPL) is a paradigm
where each training example is encapsulated as a multi-
instance bag associated with the candidate label set, which
includes one true label and several false positives. Current
MIPL algorithms typically assume that all instances are in-
dependent, thereby neglecting the dependencies and hetero-
geneity inherent in MIPL data. Moreover, these algorithms
often prove to be excessively time-consuming when dealing
with complex datasets, significantly limiting the practical ap-
plication of MIPL. In this paper, we propose FASTMIPL, a
framework that employs mixed-effects model to explicitly
capture the dependencies and heterogeneity among instances
and bags. FASTMIPL is able to learn from MIPL data both
effectively and efficiently by utilizing the predefined depen-
dencies modeling module and leveraging the posterior predic-
tive probability disambiguation strategy. Experiments show
that the performance of FASTMIPL is highly competitive to
state-of-the-art methods, while significantly reducing compu-
tational time in benchmark and the real-world datasets.

Introduction
Weakly supervised learning has emerged as a potent strat-
egy in scenarios characterized by a scarcity of annotated
data. Based on label quality and quantity, weak supervi-
sion can be systematically classified into three primary cate-
gories, namely, inexact, inaccurate, and incomplete super-
vision (Zhou 2018). Furthermore, the inexact supervision
indicates a coarse alignment between instances and labels,
which is ubiquitous and challenging in real-world tasks. The
two predominant learning paradigms for addressing issues
related to the inexact supervision are multi-instance learning
(MIL) (Ilse, Tomczak, and Welling 2018; Cui et al. 2023)
and partial-label learning (PLL) (Tian, Yu, and Fu 2023;
Hüllermeier and Beringer 2006).

In many real world applications, the inexact supervision
can exist simultaneously in the instance space and the la-
bel space (Tang, Zhang, and Zhang 2024b). For example,
in medical image analysis, each image (bag) may contain
multiple regions of instances, with labels provided by doc-
tors. To reduce labeling costs, each image can be assigned
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Figure 1: The hierarchical and nested data structure presents
in the multi-instance bags indicate the presence of inher-
ent dependencies and heterogeneous information embedded
within the bag distribution.

a candidate label set rather than an exact diagnosis, mod-
els can learn from partially labeled data, improving classi-
fication efficiency and accuracy. Multi-instance partial-label
learning (MIPL) resolves scenarios where ambiguity exists
in both instance and label spaces, making it a more natural
and convenient approach to tasks involving such complex
situations (Tang, Zhang, and Zhang 2024b).

However, existing predominantly MIPL address the prob-
lem under the assumption of independent samples, without
considering the hierarchical structure between samples. This
assumption simplifies the modeling process but often ne-
glects the inherent dependencies and structural relationships
in MIPL, as illustrated in Figure 1. Such oversight can hinder
the model’s ability to effectively capture the underlying data
distribution, resulting in suboptimal performance. Further-
more, when extending these methods to more complex real-
world applications, the computational burden becomes par-
ticularly pronounced. The independence assumption neces-
sitates processing each bag with numerous instances individ-
ually, leading to substantial computational overhead. This
challenge is exacerbated by the need to evaluate multiple
potential labels for each bag under the setting partial-label
learning, significantly increasing resource demands and lim-
iting the scalability of MIPL in practical applications.

In this paper, we propose a new framework FASTMIPL
to model dependent MIPL data efficiently. Designed for de-
pendencies and efficiency in MIPL analyses, FASTMIPL ex-
plicitly models the dependencies and heterogeneity among
multi-instance bags by using a hierarchical model extend-



ing the mixed-effects module. Building on the hierarchi-
cal model, FASTMIPL can effectively disentangle the com-
plex interplay between instance-level characteristics and
bag-level attributes, while simultaneously accounting for
the latent structures that permeate the MIPL paradigm. To
enhance computational efficiency, FASTMIPL jointly opti-
mizes the evidence lower bound (ELBO) with respect to
fixed effects covariates, posterior parameters, and prior hy-
perparameters using mini-batch gradient descent. Compared
to prevailing MIPL methods, the proposed FASTMIPL con-
sistently outperforms other implementations and improves
the efficiency for more than 30 times on datasets. This work
makes three contributions:

• We propose the FASTMIPL model, a synthetic model that
integrates instance importance pooling function with sta-
tistical generalized linear hierarchical model to capture
the dependencies and heterogeneity of MIPL data.

• We offer a transparent and interpretable framework for
understanding the influence of the individual instance on
the overall bag-level prediction.

• We significantly enhance computational efficiency by
leveraging the computational advantages of linear mod-
els and employing a reparameterized variational infer-
ence framework to jointly optimize the objective function
across benchmark and the real-world datasets.

Related Work
Multi-Instance Learning
Multi-instance learning (MIL) organizes data into bags of
instances, where the bag label is known but the individual in-
stance labels are unknown. Attention-based MIL algorithms
focus on relevant instances within a bag, improving clas-
sification performance (Ilse, Tomczak, and Welling 2018).
Loss-based attention mechanisms extend this paradigm to
multi-class tasks (Shi et al. 2020). Despite their excep-
tional performance, attention-based MIL methods often suf-
fer from high computational complexity, leading to signif-
icant training and inference times (Aminabadi et al. 2022).
Multiple iterations for convergence and additional learnable
parameters in the attention module also contribute to in-
creased time complexity (Wibawa et al. 2022). More related
to our setting, (Cui et al. 2023) used variational inference to
estimate the posterior distribution of instance-level weights,
enhancing model interpretability and uncertainty estima-
tion. Accordingly, this time-consuming nature can hinder the
practicality of attention-based MIL algorithms in real-world
applications requiring efficiency and scalability, approaches
with high efficiency are demanded.

Partial-Label Learning
Recent PLL approaches heavily rely on deep learning tech-
niques. (Yao et al. 2020) employed deep convolutional neu-
ral networks for feature extraction and utilized the expo-
nential moving average technique to uncover latent true la-
bels. Building on the instance-dependent principle, (Xu et al.
2021) propose a novel PLL method that recovers the la-
bel distribution as a label enhancement process and trains

the predictive model iteratively in every epoch. Following
this line of thought, (Qiao, Xu, and Geng 2023) explicitly
model the generation process of candidate labels in instance-
dependent PLL. While these algorithms exhibit considerable
efficacy in tackling instance-dependent partial-label learning
problems, they encounter limitations in directly handling in-
exact supervision within the instance space. Consequently,
they cannot be directly applied to multi-instance partial-
label learning problems.

Multi-Instance Partial-Label Learning
MIPL extends both MIL and PLL. Only three MIPL algo-
rithms have been proposed recently, all assuming instance
independence. MIPLGP (Tang, Zhang, and Zhang 2024b)
learns from MIPL data at the instance level using label aug-
mentation and Dirichlet disambiguation. DEMIPL (Tang,
Zhang, and Zhang 2023) identifies the true label from candi-
date labels, assuming instance independence and using dis-
ambiguation attention. ELIMIPL (Tang, Zhang, and Zhang
2024a) exploits candidate and non-candidate label set infor-
mation by mapping bags to candidate label sets and learn-
ing the candidate label matrix sparsity. These methodologies
have demonstrated commendable performance, corroborat-
ing the significance of the MIPL framework across diverse
applications. Nevertheless, it is imperative to acknowledge
that the multi-instance bags, corresponding to constituent
parts of an object, inherit structural dependencies and het-
erogeneous information from bag distribution.

The FASTMIPL Approach
Formally, a MIPL training dataset is defined as D =
{(Xi, Si) | 1 ≤ i ≤ m}, where D comprises m bags along
with their associated candidate label sets. Crucially, each Si

includes a single ground-truth label yi, i.e., yi ∈ Si, along-
side one or more false positives, thereby introducing inher-
ent label ambiguity. Furthermore, we delineate the instance
space as X = Rd and the label space as Y = [k] (with k
classes) where [k] := {1, 2, . . . , k}. Both the candidate la-
bel set Si and its complement Si are proper subsets of Y ,
satisfying the condition |Si| +

∣∣Si

∣∣ = |Y|, where |·| de-
notes the set cardinality. In the context of MIPL, each bag
Xi = {xi,j}ni

j=1 is constituted by ni instances, each resid-
ing in a d-dimensional space. It is crucial to emphasize that
the cardinality of instances ni may exhibit variability across
different bags, adding an additional layer of complexity to
the problem. Given this intricate problem structure, the pri-
mary objective of MIPL is to accurately identify the ground-
truth label from the candidate label set corresponding to each
multi-instance bag. There are three main steps in framework
of FASTMIPL illustrated in Figure 2:

• Leveraging predefined instance embeddings and for-
malizing the importance weights through an attention-
inspired pooling function;

• Extending the generalized linear mixed model (GLMM)
by incorporating fixed and random effect parameters to
effectively capture the latent dependencies and hetero-
geneity presented in MIPL;
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Figure 2: The framework of FASTMIPL, which comprises two key components: the Mixed-Effects Dependencies Modeling
Module and the Bayesian Posterior Disambiguation Module.

• Introducing the posterior predictive probability disam-
biguation strategy to identify the true label from the can-
didate label set.

Instance Importance Weighting Function
We begin by utilizing predefined instance embeddings and
proceed to model their importance weights via an attention-
inspired pooling function. Furthermore, we quantify the in-
stance importance weights by employing a single linear
layer followed by a softmax link function across instances.
Under these assumptions, the resulting bag embeddings can
be mathematically represented as follows:

fγ(Xi) = XT
i ωγ(Xi) ∈ Rd, (1)

where ωγ(Xi) is defined as:

ωγ(Xi) = softmax (Xiγ)

= softmax
([
xT
i,1γ,x

T
i,2γ, . . . ,x

T
i,ni

γ
])

∈ Rni ,
(2)

where Xi ∈ Rni×d denotes the predefined bag embeddings
across all instances, and it is crucial to note that both the bag
embeddings fγ(Xi) and the weight function ωγ(Xi) are
parameterized by γ, emphasizing their dependence on the
parameters γ. Building upon our previous discussion, the
formulation provides a clear and interpretable representation
of how instance-level information is aggregated to form bag-
level embeddings (Ilse, Tomczak, and Welling 2018).

Incorporating Fixed and Random Effects in MIPL
To capture the complex dependencies and heterogeneity in-
herent in MIPL problems, we leverage both fixed effects and
random effects from GLMM to model the relationship be-
tween the bag candidate labels, denoted by Si for the i-th
bag, and the corresponding bag embeddings, fγ(Xi), de-
rived from the bag’s instance-level features Xi. The model
also incorporates shared bag-level covariates, denoted by∑m

i=1 X
T
i αi. Specifically, let g(·) represent a suitable link

function. The conditional expectation of the bag candidate
labels, given the instance-level features and bag-level covari-
ates, is modeled as:

g(E[Si | Xi]) =

m∑
i=1

XT
i αi + fγ(Xi)

Tβ, (3)

where αi ∈ R|Si|×k denotes the fixed effect coefficients as-
sociated with the multi-instance bag on the k-dimensional
shared bag-level covariates, while β ∈ Rd×k represents
the random effect coefficients corresponding to the d-
dimensional bag embeddings. Besides, E[Si | Xi] charac-
terizes the conditional mean of the bag’s candidate labels
for the i-th observation, contingent upon both instance-level
descriptors and bag-specific covariates.

The first component fixed effects αi ∈ R|Si|×k were in-
troduced to model the impact of shared, invariant character-
istics within multi-instance bags on their corresponding bag-
level labels. It is grounded in the recognition that instances
may share certain characteristics that exert a consistent influ-
ence on the overall bag label. Besides, these shared features
are typically observable and measurable, aligning with the
definition of fixed effects in GLMM (Cuomo et al. 2022).
Consequently, they can be regarded as fixed effects for the
entire MIPL dataset.

To address the heterogeneous influence of individual in-
stance on bag-level labels, we introduce instance-specific
variations as random effects fγ(Xi)

Tβ, a formulation
grounded in several robust theoretical and empirical foun-
dations. First, the contribution of each instance to the over-
all bag-level label can vary significantly, and random effects
are particularly well-suited to capture this variability (Moore
et al. 2019). Moreover, random effects adeptly model the
correlations between instances nested within bags, which
is crucial for improving the generalization performance of
MIPL models. To further enhance the robustness of our re-
gression framework, especially in scenarios characterized by
limited sample sizes or high-dimensional instance embed-



dings, we impose Bayesian priors on the regression coeffi-
cients. Specifically, we assume that the parameters β and γ
adhere to multivariate normal distributions:

β ∼ N (0, σ2
βId), γ ∼ N (0, σ2

γId), (4)

where Id represents the d × d identity matrix, and σ2
β and

σ2
γ denote the variances of β and γ, respectively. These pri-

ors encode our epistemic uncertainty by imposing a zero-
centered regularization structure on the coefficient space,
where the magnitude of shrinkage is governed by the associ-
ated variance hyperparameters in a hierarchical framework.

Consequently, the marginal likelihood of observing the
bag candidate labels Si for the i-th bag, given the bag-level
covariates

∑m
i=1 X

T
i αi, the fixed effect coefficients αi and

the instance-level features Xi, can be expressed as:
p(Si |αi,Xi) =∫ ∫

p(Si |
m∑
i=1

XT
i αi + fγ(Xi)

⊤β)p(β)p(γ) dβ dγ.
(5)

Bayesian Inference and Optimization
The optimization objective is to characterize the posterior
distribution of the random effect parameters, denoted by
θ = {β,γ}, given the observed data D. However, due to
the intractability of exact inference in our posterior distri-
bution, we employ variational inference as a strategy that
approximates the true posterior p(θ | D) by introducing a
variational family qϕ(θ) parameterized by ϕ, and optimiz-
ing ϕ to maximize the ELBO:

ELBO
(
ϕ, σ2

β , σ
2
γ

)
=

Eqϕ(θ)[log p(D | θ)]−DKL (qϕ(θ) ∥ p(θ)) .
(6)

Here DKL (qϕ(θ) ∥ p(θ)) denotes the Kullback-Leibler
divergence between the variational approximation qϕ(θ)
and the prior distribution of the parameters p(θ). We here
consider the variational family of multivariate Gaussian dis-
tributions with full rank covariance parameterized by mean
parameters µϕ and covariance parameters Σϕ:

qϕ(θ) = N
(
θ | µϕ,Σϕ

)
. (7)

We jointly optimize the ELBO with respect to fixed ef-
fects αi, variational parameters ϕ, and prior hyperparame-
ters σ2

β and σ2
γ using mini-batch gradient descent (Pirš and

Štrumbelj 2019). To enable backpropagation through the ex-
pectation term in the ELBO, we refine the prior distribu-
tion and draw samples from the variational posterior distri-
butions, conditioned on the observed data.

Posterior Predictive Probability Disambiguation
Considering the fundamental linear characteristics inherent
to the instance importance weighting function, the cumula-
tive impact of bag representations on the label manifold can
be rigorously expressed through the following formalism:

fγ(Xi)
⊤β =

(
XT

i ωγ(Xi)
)⊤

β = ωγ(Xi)
⊤(Xiβ)

= ωγ(Xi)
⊤hβ(Xi),

(8)

where hβ(Xi) = Xiβ ∈ Rni represents a vector-valued
mapping that generates instance-specific latent represen-
tations for the constituent elements within bag Xi. The
attention-inspired pooling, parameterized by ωγ(Xi), as-
signs probabilistic importance scores to individual instances,
thereby facilitating a differentiable instance-level contribu-
tion aggregation scheme for the composite bag-level predic-
tion.

To identify the true label from the candidate label set, we
introduce the posterior predictive probability disambigua-
tion strategy. After optimization, we employ the learned ap-
proximate posterior distribution qϕ(β,γ) to predict the true
label of a new bag X⋆ from its the candidate label set:

y⋆ = argmax
c∈Y

p̂⋆,c = Eqϕ(β,γ)

[
ωγ (X⋆)

T
hβ(X⋆)

]
, (9)

where y⋆ denotes the true label corresponding to the new
bag embedding X⋆, while p̂⋆,c represents the posterior pre-
dictive probability that the c-th class within the candidate
label set is the true label for the new bag X⋆.

Moreover, to retrieve important instances, we lever-
age the expected value of importance weights, namely
Eqϕ(β,γ) [ωγ (X⋆)]. This formulation offers a transparent
and interpretable framework for understanding the influence
of individual instances on the overall bag-level prediction.
The FASTMIPL pseudocode of the optimization procedure
summarizes in the Appendix1, where the candidate labels
and the prediction model are updated simultaneously.

Experiments
We analyze the performance of effectiveness and efficiency
between FASTMIPL and comparative algorithms in MIPL
tasks, and validate the potency of the model parameters in-
troduced in FASTMIPL through ablation studies using mod-
ified variants of FASTMIPL.

Experimental Configuration
Datasets Table 1 provides an overview of the character-
istics of all datasets. There are eight types of character-
istics mentioned. The symbol #bag denotes the count of
multi-instance bags, and #ins represents the number of to-
tal instances. max. #ins, min. #ins, and avg. #ins cor-
respond to the maximum, minimum, and average instance
count across all bags for describing the instance distribu-
tion. The symbol #dim signifies the number of dimensions
associated with each instance-level feature. The length of the
label space and the average length of the label space for can-
didate label sets are denoted by #class and avg. #CLs,
respectively. The number of false positive labels are iden-
tified as r (|Si| = r + 1) on benchmark datasets for evalu-
ating performance comprehensively, where Si represents as
the candidate label set for each bag.

Comparative Algorithms We compare FASTMIPL with
a broad range of baselines, covering MIPL, MIL, and PLL

1FASTMIPL’s code and appendix have been made publicly
available on Github: https://github.com/yangyf22/FastMIPL



Dataset #bag #ins max.#ins min.#ins avg.#ins #dim #class avg.#CLs
MNIST-MIPL (MNIST) 500 20664 48 35 41.33 784 5 2, 3, 4
FMNIST-MIPL (FMNIST) 500 20810 48 36 41.62 784 5 2, 3, 4
Birdsong-MIPL (Birdsong) 1300 48425 76 25 37.25 38 13 2, 3, 4
SIVAL-MIPL (SIVAL) 1500 47414 32 31 31.61 30 25 2, 3, 4
CRC-MIPL-Row (C-Row) 7000 56000 8 8 8 9 7 2.08
CRC-MIPL-SBN (C-SBN) 7000 63000 9 9 9 15 7 2.08
CRC-MIPL-KMeansSeg (C-KMeans) 7000 30178 6 3 4.311 6 7 2.08
CRC-MIPL-SIFT (C-SIFT) 7000 175000 25 25 25 128 7 2.08

Table 1: Characteristics of benchmark and real-world MIPL datasets.

algorithms. Specifically, we reference three MIPL algo-
rithms (Tang, Zhang, and Zhang 2024b, 2023, 2024a): MI-
PLGP , DEMIPL, and ELIMIPL. Furthermore, our compar-
ison encompasses two types of PLL algorithms: the deep-
learning-based approach with linear classifiers, including
PRODEN (Lv et al. 2020), RC (Feng et al. 2020), LWS (Wen
et al. 2021) and CAVL (Zhang et al. 2022), and a feature-
aware disambiguation algorithm named PL-AGGD (Wang,
Li, and Zhang 2019). For MIL algorithms, we incorporate
two types of MIL algorithms that a variational autoencoder-
based model MIVAE (Zhang 2021) and three attention-based
models: ATTEN (Ilse, Tomczak, and Welling 2018), ATTEN-
GATE (Ilse, Tomczak, and Welling 2018) and LOSS-ATTEN
(Shi et al. 2020). Due to spatial limitations, results obtained
from three MIPL algorithms are presented in the main body
of the paper, while those with PLL and MIL algorithms are
detailed in the Appendix. Parameters for all compared base-
lines have been meticulously tuned, drawing from recom-
mendations in the original literature or refined through our
pursuit of improved performance.

Implementation FASTMIPL is implemented using Py-
Torch and trained on a single NVIDIA GeForce RTX 4090
GPU. The optimization process employs stochastic gradient
descent (SGD) with a momentum of 0.9 and a weight de-
cay of 0.0001. For instance-level feature extraction, a two-
layer convolutional neural network and a fully connected
network are applied to the MNIST-MIPL and FMNIST-MIPL

datasets, while a fully connected network is employed on the
Birdsong-MIPL and SIVAL-MIPL datasets with preprocessed
features. For the CRC-MIPL dataset, a fully connected net-
work follows one of four image bag generators or ResNet-
34 as the feature extractor. The learning rate is selected from
the predefined set {0.0005, 0.001, 0.002, 0.005}, the train-
ing batch size equals to the count of bags in the training set,
and the value of posterior samples to approximate the expec-
tation is chosen from the set {10, 20, 30, 40, 50}. The num-
ber of epochs is set to 200 for the MNIST-MIPL and FMNIST-
MIPL datasets and 500 for the remaining three datasets. The
data partition follows the strategies of DEMIPL and ELIM-
IPL, dividing the data into training and testing sets with a
ratio of 7:3. The average and the standard deviation of accu-
racy are recorded by conducting the experiments with ran-
dom train/test splits ten times, and the highest accuracy is
highlighted in bold. We report the time consumption of ex-
periments obtained from running the experiments at a time,
with the least time consumption highlighted in bold.

Algorithm r MNIST FMNIST Birdsong SIVAL

FASTMIPL
1 .999±.002 .911±.022 .797±.024 .779±.030
2 .998±.004 .901±.027 .792±.021 .708±.026
3 .975±.074 .816±.071 .772±.022 .615±.031

ELIMIPL
1 .991±.005 .904±.016 .770±.019 .676±.025
2 .989±.013 .843±.026 .745±.017 .615±.023
3 .749±.148 .701±.053 .717±.019 .599±.025

DEMIPL
1 .977±.008 .883±.019 .741±.015 .631±.042
2 .944±.027 .822±.026 .702±.026 .551±.056
3 .711±.088 .656±.027 .694±.024 .502±.017

MIPLGP
1 .951±.019 .846±.031 .714±.026 .669±.020
2 .818±.033 .792±.027 .671±.015 .614±.023
3 .623±.062 .669±.052 .626±.015 .570±.031

Table 2: The classification accuracy (mean±std) of algo-
rithms on benchmark datasets with the varying numbers of
false positive labels (r ∈ {1, 2, 3}).

Effectiveness Comparison
In MIPL tasks, the effectiveness evaluation typically focus
solely on the metric of classification accuracy. The effective-
ness evaluation is considered among four MIPL algorithms,
five PLL algorithms and four MIL algorithms.

Results on Benchmark Datasets Table 2 presents a com-
prehensive comparison of FASTMIPL’s effectiveness against
three MIPL algorithms (MIPLGP, DEMIPL, ELIMIPL). The
corresponding effectiveness results of PLL and MIL algo-
rithms are recorded in the Appendix. Benchmark datasets
used for the algorithm evaluation differentiate among dif-
ferent levels of false positive labels. FASTMIPL demon-
strates statistically significant superiority in predictive per-
formance relative to all baseline methodologies, as evi-
denced by mean accuracy metrics across four standardized
benchmark datasets.

FASTMIPL exhibits a lower accuracy loss in the complex
scenario of datasets characterized by a higher proportion of
false positive labels. Specifically, FASTMIPL demonstrates
a smaller difference in average accuracy compared to other
MIPL algorithms when transitioning from a scenario with a
false positive labels (r = 1) to one with two false positive
labels (r = 2) on the Birdsong-MIPL dataset.

As shown in Tabel 3, FASTMIPL achieves statistically
better performance against other approaches. The superior
performance of FASTMIPL is consistent across almost all
synthetic data sets and real-world data under the challenging



Algorithm Prediction Performance FastMIPL Improvement
(Kendalltau) (t-test P-value)

FASTMIPL .975 ± .074 –
ELIMIPL .749 ± 148 win[< 1e-3]
DEMIPL .711 ± .088 win[< 7e-9]
MIPLGP .623 ± .062 win[< 6e-6]

Table 3: Summary of the Kendalltau correlation paired t-test
across 5 labels for FASTMIPL against other comparing ap-
proaches on the MNIST-MIPL (r = 3).

Algorithm C-Row C-SBN C-KMeans C-SIFT
FASTMIPL .487±.038 .573±.031 .573±.013 .526±.029
ELIMIPL .434±.008 .510±.008 .545±.013 .539±.010
DEMIPL .410±.011 .484±.013 .523±.012 .531±.013
MIPLGP .435±.006 .335±.008 .331±.014 –

Table 4: The classification accuracy (mean±std) of algo-
rithms on the real-world dataset.

number of false positive labels, which provides a strong evi-
dence for the effectiveness of FASTMIPL to facilitate MIPL.

Results on the Real-World Dataset Table 4 illustrates the
accuracy comparison on the CRC-MIPL dataset for FAST-
MIPL and three MIPL algorithms. The corresponding effec-
tiveness results of PLL algorithms are demonstrated in the
Appendix. The symbol ”−” denotes the algorithm cannot be
applied to C-SIFT dataset, because the computational lim-
itation of memory overflow in our server. FASTMIPL con-
sistently outperforms in 9 out of 11 cases against MIPL al-
gorithms. FASTMIPL achieves better effectiveness than PLL
and MIL algorithms in all cases.

The effectiveness of both ELIMIPL and DEMIPL was en-
hanced by employing more sophisticated image bag gen-
erators on the CRC-MIPL dataset. Conversely, MIPLGP did
not exhibit improved model effectiveness with complex fea-
tures, which can be attributed to their inability to effec-
tively utilize such features. Notably, FASTMIPL incorpo-
rates a random effect component to capture the intricate
heterogeneity between instance bags in complex real-world
datasets. Additionally, features such as bag-level covariates
do not directly influence label prediction but may introduce
confounding effects; thus, we treat them as fixed effects.
This mixed-effects modeling approach aligns with our in-
tuitive understanding of multi-instance partial labeling and
effectively facilitates regression in realistic applications.

Efficiency Comparison
Evaluating the efficiency of the compared MIPL methods is
essential, as our primary objective is to devise a method ca-
pable of efficiently processing complicated MIPL datasets.
Therefore, we also incorporate time consumption as a metric
for all competing algorithms under identical conditions.

In the efficiency analysis, only MIPL algorithms are con-
sidered because PLL and MIL algorithms generally demon-
strate poor effectiveness in complex MIPL problem scenar-
ios, as evident in the aforementioned effectiveness compar-
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Figure 3: Time consumption trending for MIPL algorithms
on data with different number of bags and instances.

ison. All experiments are performed on a machine with an
Intel Core i7-13700K CPU, 64 GB main memory, and a sin-
gle NVIDIA GeForce RTX 4090 GPU. Three MIPL algo-
rithms are considered, including FASTMIPL, ELIMIPL, and
DEMIPL, since MIPLGP could not be deployed with a single
RTX 4090 GPU. Figure 3 illustrates the time consumption
of each algorithm with varying data sizes, which records the
time consumption to conduct an experiment on benchmark
datasets and a real-world dataset. Figure 3 shows the least
time consumption for different numbers of bags for each al-
gorithm, and illustrates the time consumption for different
counts of instances with the same number of bags. FAST-
MIPL, represented by the red line, achieves lower time con-
sumption compared to other MIPL algorithms. FASTMIPL
demonstrates superior computational efficiency, particularly
in high-dimensional scenarios characterized by increasing
multiplicities of bags or instances.

We combine the accuracy-runtime performance curves for
FASTMIPL and comparative algorithms on five datasets in
Figure 4. Points represent different methods with various
shapes of markers, and lines denote the accuracy-runtime
performance for FASTMIPL and comparative algorithms on
the same dataset. Clearly, the closer the point of the MIPL
algorithm are to the point (0, 1), the better the performance
obtained. FASTMIPL, which the marker is denoted by the
diamond symbol, consistently outperforms the other algo-
rithm on all datasets. It is worth mentioning that FASTMIPL
can reduce the time cost of model training by up to nearly 20
times compared to ELIMIPL and up to about 30 times com-
pared to DEMIPL while maintaining the prediction accuracy
on the CRC-MIPL dataset.

Variant Comparison
To further elucidate the inner workings of FASTMIPL, we
investigated two variants, FASTMIPL-V1 and FASTMIPL-
V2. FASTMIPL-V1 removes the random effect coefficient β
from Equation 3 and learns a linear model for each bag di-



FASTMIPL(ours)
ELIMIPL
DEMIPL

r = 1
r = 2
r = 3

C-Row
C-SBN

C-KMeans
C-SIFT

M
ea

n
A

cc
ur

ac
y

MNIST-MIPL

0 2 4 6 8 10
0.7

0.8

0.9

1.0

FMNIST-MIPL

0 2 4 6 8 10
0.6

0.7

0.8

0.9

Birdsong-MIPL

2 4 6 8 10 12
0.70

0.75

0.80

SIVAL-MIPL

M
ea

n
A

cc
ur

ac
y

5 10 15 20 25
0.5

0.6

0.7

0.8

CRC-MIPL

0 20 40 60 80 100 120 140
0.4

0.5

0.6

Figure 4: The performance of FASTMIPL and comparative algorithms based on mean accuracy and time consumption, which
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Figure 5: The effectiveness comparison among FASTMIPL and its variant algorithms, subplots’ horizontal axis means the
number of false positives or names of sub-datasets, and their vertical axis denotes average and standard deviation of accuracy.

rectly. This variant is designed to examine the efficacy of
incorporating random effects in addressing the complexities
inherent in MIPL, which exhibits a hierarchical nested struc-
ture. FASTMIPL-V2, on the other hand, removes the param-
eter γ from Equation 3, aiming to assess the effectiveness of
constructing an embeddings space for feature extraction and
instance-level information aggregation.

Figure 5 presents the effectiveness comparisons on real-
world and benchmark datasets, respectively. The results
demonstrate that FASTMIPL-V1 exhibits significantly lower
accuracy across all datasets compared to FASTMIPL. This
underscores the crucial role of leveraging random effects
to capture the individual contributions of instances within
each bag towards the bag-level label, thereby effectively ad-
dressing the inherent heterogeneity in MIPL. FASTMIPL-V2
consistently underperforms FASTMIPL across all datasets,

which highlights the efficacy of retaining the computational
advantages of a linear model while effectively representing
the instance contributions in a probabilistic framework.

Conclusion
Existing MIPL approaches are typically too time-consuming
to handle complicated data. We propose FASTMIPL to learn
from MIPL data both effectively and efficiently. On one
hand, effectiveness is achieved by leveraging mixed effects
to capture the complex dependencies and heterogeneity in-
herent in MIPL. On the other hand, efficiency is significantly
enhanced by maintaining the computational advantages of a
linear model and jointly optimizing the ELBO using mini-
batch SGD. Future studies could explore advanced statistical
conjectures to develop more effective models.
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