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Abstract

Multi-label metric learning, as an extension of metric learn-
ing to multi-label scenarios, aims to learn better similarity
metrics for objects with rich semantics. Existing multi-label
metric learning approaches employ the common assumption
of equal labeling-importance, i.e., all associated labels are
considered relevant to the training instance, while there is no
differentiation in the relative importance of their semantics.
However, this common assumption does not reflect the fact
that the importance of each relevant label is generally differ-
ent, even though such importance information is not directly
accessible from the training examples. In this paper, we claim
that it is beneficial to leverage the implicit Relative Labeling-
Importance (RLI) information to facilitate multi-label metric
learning. Specifically, the manifold structure within the fea-
ture space is exploited by local linear reconstruction, and then
the RLIs are recovered by transferring such structure to the
label space. Subsequently, a discrimiative multi-label metric
learning framework is introduced to align the predictive mod-
eling outputs with the recovered RLIs, under which instances
with similar RLI are implicitly pulled closer to each other,
while those with dissimilar RLI are pushed further apart. Com-
prehensive experiments on benchmark multi-label datasets
validate the superiority of our proposed approach in learning
effective similarity metrics between multi-label examples.

Introduction
Similarity between objects plays an important role in both
human cognitive processes and the recognition capabilities of
intelligent systems. Appropriately measuring such similarity
for a given task is crucial to the performance of many ma-
chine learning algorithms, such as k-nearest neighbor (KNN),
k-means, etc. Metric learning, as a solution to this problem,
aims to learn task-specific similarity metrics by leveraging
side information such as linkages and comparisons derived
from examples (Xing et al. 2002; Weinberger, Blitzer, and
Saul 2005). The learned similarity metrics align with the
inherent relations between examples, ensuring that similar
instances exhibit proximity while distances between dissimi-
lar instances are sufficiently large. With its powerful ability
to characterize similarities, metric learning has been widely
applied in real-world applications, including face recognition
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Figure 1: Two landscape images both annotated with the
labels ‘horse’, ‘grass’, and ‘sky’ simultaneously. For each
image, the implicit relative labeling-importance (RIL) (a):
‘horse’ > ‘sky’ > ‘grass’ and (b): ‘grass’ > ‘sky’ > ‘horse’.

(Uzun, Cevikalp, and Saribas 2022), person re-identification
(Liao and Shao 2022), information retrieval (Warburg et al.
2023), and recommender systems (Yu et al. 2023).

Despite the tremendous success of metric learning, the
vast majority of research has focused on single-label scenar-
ios where each instance is associated with only one label
(Ye et al. 2020; Yang, Wang, and Zhang 2023; Ren et al.
2024). However, in the face of more prevalent and practical
multi-label scenarios, where each instance is associated with
multiple labels, existing single-label metric learning tech-
niques are not applicable due to the complicated semantics of
multi-label examples. Therefore, multi-label metric learning,
which aims to assess the more intricate semantic similarities
among objects with rich semantics, has emerged as a new
research hotspot in recent years (Liu and Tsang 2015; Gouk,
Pfahringer, and Cree 2016; Sun and Zhang 2021; Mao, Wang,
and Zhang 2023; Mao, Hang, and Zhang 2024).

It is worth noting that the labeling information for multi-
label training examples is categorical, i.e., each label is re-
garded to be either relevant or irrelevant for each multi-label
instance. Therefore, existing multi-label metric learning ap-
proaches learn from multi-label examples by taking the com-
mon assumption of equal labeling-importance, i.e., each rel-
evant label contributes equally in characterizing semantics
of multi-label examples. However, for real-world multi-label
examples, the importance of each associated relevant label is



different by nature. For example, as shown in Figure 1, both
landscape images (a) and (b) are annotated with the labels
‘horse’, ‘grass’, and ‘sky’ simultaneously, while the implicit
Relative Labeling-Importance (RLI) that characterizes their
semantics is different due to varying scenery presence. Nev-
ertheless, such RLI information is not explicitly provided by
annotators under standard multi-label learning setting (Zhang
and Zhou 2014; Liu et al. 2021).

In light of the above observations, we postulate that more
effective similarity metrics between multi-label examples
can be expected if the implicit RLI information is appropri-
ately leveraged within multi-label metric learning procedure.
Accordingly, a novel multi-label metric learning approach
named ILIA, i.e., Implicit relative Labeling-Importance
Aware multi-label metric learning, is proposed. Specifically,
ILIA begins by leveraging local linear reconstruction to ex-
ploit the manifold structure within the feature space, and then
the implicit RLIs are recovered by transferring such structure
to the label space. After that, a discriminative multi-label met-
ric learning framework is introduced to align the predictive
modeling outputs with the recovered RLIs, under which in-
stances with similar RLI are implicitly pulled closer to each
other, while those with dissimilar RLI are pushed further
apart. Comprehensive experiments on benchmark multi-label
datasets validate the superiority of ILIA in learning effective
similarity metrics between multi-label examples.

The rest of this paper is organized as follows. Section 2
briefly reviews related works. Section 3 presents the details of
the proposed ILIA approach. Section 4 reports the experimen-
tal results of comparative studies on benchmark multi-label
datasets. Section 5 concludes the paper.

Related Work
Multi-Label Learning. Unlike multi-class classification
that deals with single-label examples (Gong, Demmel, and
You 2024; Jia et al. 2023), the purpose of multi-label learning
is to train a predictive model that can assign a set of proper la-
bels for unseen instances (Zhang and Zhou 2014). To address
the challenge of an exponential-sized output space, modeling
label correlations has become a mainstream strategy to solve
this problem. Generally speaking, these approaches can be
grouped into three categories, differing in the order of label
correlations under consideration. The order of label correla-
tions can be considered in a first-order manner by treating
each label independently (Boutell et al. 2004; Zhang and
Zhou 2007), a second-order manner by exploiting pairwise
interactions between labels (Zhu, Kwok, and Zhou 2017; Yu
and Zhang 2021), and a high-order manner by exploring rela-
tions among a subset or all labels (Zhang et al. 2021; Si et al.
2023). BRKNN (Boutell et al. 2004) and MLKNN (Zhang
and Zhou 2007), as the most classic first-order approaches
in multi-label learning, extend classic KNN to multi-label
scenarios and have achieved certain outcomes in multi-label
learning tasks. However, their performance seriously relies on
the chosen similarity metrics. In the absence of prior knowl-
edge, the commonly used predefined Euclidean metric may
not be sufficiently effective in utilizing the label correlations
among multiple labels, often leading to inferior performance
compared to second-order and high-order approaches.

Metric Learning. To address the limitations of predefined
metrics in characterizing the similarity between objects, met-
ric learning has been proposed to obtain task-specific simi-
larity metrics through a learning process (Xing et al. 2002;
Hadsell, Chopra, and LeCun 2006; Weinberger and Saul
2009). By utilizing various types of supervision, such as
linkages and comparisons derived from examples, metric
learning aims to align the learned similarity metrics with the
intrinsic relations between examples, i.e., similar instances
are close to each other and dissimilar instances are far apart.
In metric learning, the Mahalanobis metric is extensively
employed as a substitute for the Euclidean metric due to its
broad applicability as a general form of the Euclidean metric
and its efficient optimization capabilities (Zhao and Yang
2023; Bansal et al. 2023; Xu et al. 2023). The Mahalanobis
distance between instances is essentially equivalent to the Eu-
clidean distance in the learned metric space. The superiority
of metric learning has been substantiated in improving classic
KNN classifiers (Ye et al. 2019, 2020; Li et al. 2022; Chen
et al. 2023; Ren et al. 2024). With the effective modeling
of semantic similarities among examples accomplished by
metric learning, there is the potential for simple KNN clas-
sifiers to achieve state-of-the-art classification performance.
Nevertheless, although metric learning has achieved great
success, most research has concentrated on single-label sce-
narios. In more prevalent and practical multi-label scenarios,
where each instance is associated with multiple labels, exist-
ing single-label metric learning techniques are not applicable
due to the complicated semantics of multi-label examples.

Multi-Label Metric Learning. To compensate for the
inapplicability of metric learning in multi-label scenarios,
multi-label metric learning has been introduced in recent
years. To the best of our knowledge, there are five available
multi-label metric learning approaches: LM(Liu and Tsang
2015) employs a large margin formulation to establish a
unified metric space, maintaining the correlation between fea-
ture and label spaces; LJE(Gouk, Pfahringer, and Cree 2016)
learns a metric that projects instances into a space where the
Euclidean distance closely mirrors the Jaccard similarity of
multiple labels; COMMU(Sun and Zhang 2021) constructs
a compositional metric by modeling structural interactions
between feature and label spaces, exploring the integrated
semantics of all labels; The core idea of both LIMIC(Mao,
Wang, and Zhang 2023) and LSMM(Mao, Hang, and Zhang
2024) encompasses learning label-specific metrics for each la-
bel, incorporating a global metric to exploit label correlations.
However, the above approaches learn from multi-label exam-
ples by assuming equal labeling-importance, which might be
suboptimal because, in reality, the importance of each associ-
ated relevant label is inherently different. In this paper, we
make the first attempt to recover and leverage such implicit
RLI information in multi-label metric learning. The proposed
ILIA approach will be introduced in the next section.

The ILIA approach
Preliminaries
Let X = Rd be the feature space and Y = {l1, l2, . . . , lq}
denote the label space with q labels. A multi-label example



is denoted as (x, Y ), where x ∈ X is its feature vector and
Y ⊆ Y corresponds to the set of its relevant labels. Here,
a q-dimensional indicator vector y = [y1, y2, . . . , yq]

⊤ ∈
{0, 1}q is utilized to denote Y , where yp = 1 when lp ∈ Y
and yp = 0 otherwise. The task of multi-label metric learning
is to learn a function f : X ×X → R≥0 from the multi-label
training set D = {(xi,yi) | 1 ≤ i ≤ n}, which can reflect
the semantic similarities between multi-label examples.

In metric learning, the Mahalanobis metric is extensively
employed as an instantiation of the similarity metrics to be
learned (Xu and Davenport 2020; Bellet, Habrard, and Seb-
ban 2015). Let Sd+ denotes the cone of positive semi-definite
d × d matrices. Given a Mahalanobis metric M ∈ Sd+, the
(squared) Mahalanobis distance between a pair (xi,xj) is

Dis2M(xi,xj) = (xi − xj)
⊤M(xi − xj)

= ||xi − xj ||2M. (1)

In this manner, examples exhibiting shorter Mahalanobis
distances indicate higher similarity, while those with longer
distances suggest lower similarity.

Implicit RLI Recovery
Following the ideas of locally linear embedding (Roweis
and Saul 2000; Wang and Zhang 2006), each instance x
can be reconstructed via linear combination of its k nearest
neighbors, and this manifold structure also holds in the label
space. For each training multi-label instance xi(1 ≤ i ≤ m),
the combination coefficients for its k nearest neighbors can be
determined by solving the following optimization problem:

min
sii1 ,sii2 ,...,siik

∥∥∥∥∥∥xi −
∑

j∈Nk(xi)

sijxj

∥∥∥∥∥∥
2

2

s.t.
∑

j∈Nk(xi)

sij = 1.

(2)

Here, Nk(xi) = {ir|1 ≤ r ≤ k} denotes the set of indices
for xi’s k nearest neighbors. Let ŝi = [sii1 , sii2 , . . . , siik ]

⊤

be the neighborhood coefficient vector of xi, then Eq.(2) can
be easily reformulated as the following matrix form:

min
ŝi

ŝ⊤i Giŝi

s.t. 1⊤
k ŝi = 1,

(3)

where Gi = D⊤
i Di ∈ Rk×k is the Gram matrix, Di =

[xi − xi1 ,xi − xi2 , . . . ,xi − xik ] ∈ Rd×k, and 1k is an all
1 column vector with size k.

To solve the above problem Eq.(3), we construct a La-
grange function:

L(ŝi, λ) = ŝ⊤i Giŝi + λ(1⊤
n ŝi − 1). (4)

Then setting the first-order derivatives of L(ŝi, λ) w.r.t ŝi
and λ to 0, respectively, we have

∂L
∂ŝi

= 2Giŝi + λ1k
set
= 0 =⇒ ŝi = −λ

2
G−1

i 1k, (5)

∂L
∂λ

= 1⊤
k ŝi − 1

set
= 0 =⇒ 1⊤

k ŝi = 1. (6)

Substituting Eq.(5) into Eq.(6), we have

−λ

2
1⊤
k G

−1
i 1k = 1 =⇒ λ = − 2

1⊤
k G

−1
i 1k

. (7)

Using Eq.(5) and Eq.(7), we can achieve the closed-form
solution of the optimization problem Eq.(2):

ŝi =
G−1

i 1k

1⊤
k G

−1
i 1k

. (8)

Let Y = [y1,y2, . . . ,yn]
⊤ ∈ Rn×q denotes the label

matrix and F = [f1,f2, . . . ,fn]
⊤ ∈ Rn×q represents the re-

covered RLI matrix of Y. After all ŝi(1 ≤ i ≤ n) have been
determined by Eq.(8), F can be generated by transferring the
exploited manifold structure of the feature space to the label
space, which is formalized as follows:

min
F

1

n

n∑
i=1

∥∥∥∥∥∥fi −
∑

j∈Nk(xi)

sijfj

∥∥∥∥∥∥
2

2

+ µ ∥F−Y∥2F , (9)

where µ is a trade-off parameter. The first term ensures that
the similar manifold structure to the feature space is main-
tained in the label space, and the second term ensures that the
recovered RLI matrix F should also be similar to the original
logical label matrix Y. For ease of solution, Eq.(9) can be
equivalently reformulated as follows:

min
F

1

n
tr(F⊤(In − S)(In − S)⊤F) + µ ∥F−Y∥2F .

(10)
Here, tr(·) computes the trace of a matrix, In represents an
n × n identity matrix, S = [s1, s2, . . . , sn] ∈ Rn×n, and
si = [si1, si2, . . . , sin]

⊤, where sij is determined by Eq.(2)
if j ∈ Nk(xi) and sij = 0 otherwise.

Let G(F) denotes the objective function of Eq.(10), the
first-order derivative of G(F) w.r.t F is

∂G
∂F

=
2

n
(In − S)(In − S)⊤F+ 2µF− 2µY. (11)

Then we can achieve a closed-form solution of Eq.(10)
through setting Eq.(11) to 0:

F =

(
1

n
(In − S)(In − S)⊤ + µIn

)−1

(µY). (12)

In this way, the implicit RLIs F of multi-label examples
can be recovered through the above procedure. Then, F will
be leveraged as more comprehensive and complete supervi-
sion information to guide the following discriminative multi-
label metric learning procedure.

Discriminative Multi-Label Metric Learning
It is worth noting that the recovered implicit RLI informa-
tion F is numerical rather than logical. Therefore, it is natu-
ral to tackle the resulting multi-label learning problem with
multi-output regression techniques (Borchani et al. 2015) in
a discriminative manner. Specifically, we can assign a sim-
ple ridge regression model to each label space over a new
multi-label training set D̃ = {(xi,fi) | 1 ≤ i ≤ n}:

min
W,b

1

n

n∑
i=1

∥∥W⊤ϕ(xi) + b− fi

∥∥2
2
+ η ∥W∥2F . (13)



Here, η is a trade-off parameter, ϕ(·) is a nonlinear map-
ping implemented by kernel function κ : X × X → R, and
ϕ(xi) ∈ Rd′

. W = [w1,w2, . . . ,wq] ∈ Rd′×q is the predic-
tive modeling coefficients, and b = [b1, b2, . . . , bq]

⊤ ∈ Rq is
the intercept to be determined. Let X = [x1,x2, . . . ,xn]

⊤ ∈
Rn×d represents the instance matrix. The intercept term b in
Eq.(13) can then be omitted by centering the instance matrix
X and the recovered RLI matrix F:

min
W

1

n

n∑
i=1

∥∥∥W⊤ϕ(x̂i)− f̂i

∥∥∥2
2
+ η ∥W∥2F , (14)

where x̂i and f̂i denote the i-th centered instance vector
and RLI vector, respectively. Furthermore, we denote X̂ =
[x̂1, x̂2, . . . , x̂n]

⊤ ∈ Rn×d be the centered instance matrix
and F̂ = [f̂1, f̂2, . . . , f̂n]

⊤ ∈ Rn×q be the centered RLI
matrix. However, the above predictive model Eq.(14) actually
deals with the q labels independently. To exploit the intrinsic
label correlations among multi-label examples, we employ
a Mahalanobis metric M to measure the distance between
W⊤ϕ(x̂i) and f̂i:

min
W

1

n

n∑
i=1

∥∥∥W⊤ϕ(x̂i)− f̂i

∥∥∥2
M

+ η ∥W∥2F . (15)

Here, M can be viewed as a discriminative metric for multi-
label examples, which enforces a shorter distance between
xi’s encoding W⊤ϕ(x̂i) and its corresponding RLI f̂i. To
further enhance the discriminability of M, we penalize en-
codings and RLIs that are not consistent with each other.
Consequently, M can be determined by solving the follow-
ing optimization problem (Zadeh, Hosseini, and Sra 2016):

min
M≻0

1

n

n∑
i=1

∥∥∥W⊤ϕ(x̂i)− f̂i

∥∥∥2
M

+
1

nk

n∑
i=1

∑
j∈Nk(f̂i)

∥∥∥W⊤ϕ(x̂i)− f̂j

∥∥∥2
M−1

+
1

nk

n∑
i=1

∑
j∈Nk(x̂i)

∥∥∥f̂i −W⊤ϕ(x̂j)
∥∥∥2
M−1

+ γD(M, Iq) (16)

where Nk(f̂i) denotes the set of indices for f̂i’s k near-
est neighbors in {f̂1, f̂2, . . . , f̂n} \ f̂i, the definition of
Nk(x̂i) is similar to that of Nk(f̂i), γ is a trade-off param-
eter, D(M, Iq) = tr(MI−1

q ) + tr(M−1Iq)− 2q is the sym-
metrized LogDet divergence, and Iq is a q×q identity matrix.
Here, the first term enforces the distance between W⊤ϕ(x̂i)

and the corresponding f̂i closer. The second term ensures
W⊤ϕ(x̂i) stay away from targets that are not f̂i, but are sim-
ilar to f̂i. The third term pushes f̂i futher away from targets
that are not W⊤ϕ(x̂i), but are similar to the x̂i’s encoding.
The fourth term penalizes the complexity of M to avoid over-
fitting. Consequently, by optimizing Eq.(16), instances with
similar RLI are implicitly pulled closer to each other, while
those with dissimilar RLI are pushed further apart.

Optimization
Obviously, M should be known when solving the optimiza-
tion problem w.r.t W in Eq.(15). Conversely, W should be
known when solving the optimization problem w.r.t M in
Eq.(16). The interaction between W and M prevents them
from being calculated simultaneously. Consequently, in this
paper, we alternately calculate one of them while the remain-
ing one is fixed until convergence.

Calculating W when M is fixed. It is worth noting that,
in the optimization problem Eq.(15), ϕ(·) is a nonlinear map-
ping implemented by kernel function κ. Therefore, we cannot
obtain an explicit solution of W. According to the Repre-
senter Theorem (Schölkopf and Smola 2002), under fairly
general conditions, the predictive model can be expressed
as a linear combination of the training instances. Let Φ =

[ϕ(x̂1), ϕ(x̂2), . . . , ϕ(x̂n)]
⊤ ∈ Rn×d′

be the nonlinear map-
ping centered instance matrix, for the multi-output regression
problem in Eq.(15), we have wi =

∑n
j=1 θijϕ(x̂j) = Φ⊤θi

and then W = Φ⊤Θ, where Θ = [θ1,θ2, . . . ,θq] ∈ Rn×q

is the combination coefficients to be determined. By substitut-
ing W = Φ⊤Θ into the objective function in Eq.(15) which
is denoted as H(W), we have

H(W) =
1

n

n∑
i=1

∥∥∥Θ⊤Φϕ(x̂i)− f̂i

∥∥∥2
M

+ η
∥∥Φ⊤Θ

∥∥2
F

=
1

n

∥∥∥ΦΦ⊤Θ− F̂
∥∥∥2
M

+ η
∥∥Φ⊤Θ

∥∥2
F

=
1

n
tr

((
ΦΦ⊤Θ− F̂

)
M

(
ΦΦ⊤Θ− F̂

)⊤
)

+ ηtr
(
Θ⊤ΦΦ⊤Θ

)
≜ H(Θ). (17)

Let K = ΦΦ⊤ ∈ Rn×n represents the kernel matrix
with (i, j)-th element Kij = κ(x̂i, x̂j), then the first-order
derivative of H(Θ) w.r.t Θ is

∂H(Θ)

∂Θ
=

2

n

(
K⊤KΘM−K⊤F̂M

)
+ 2ηKΘ. (18)

Setting the above Eq.(18) to 0, we have

nη
(
K⊤K

)−1
KΘ+ΘM =

(
K⊤K

)−1
K⊤F̂M, (19)

which is a Sylvester equation w.r.t Θ and can be solved by any
off-the-shelf solvers (Wei, Dobigeon, and Tourneret 2015).

Calculating M when W is fixed. The optimization prob-
lem in Eq.(16) can be equivalently reformulated as

min
M≻0

tr (MU) + tr
(
M−1V

)
+ γD(M, Iq). (20)

Here,

U =
1

n

n∑
i=1

(
W⊤ϕ(x̂i)− f̂i

)(
W⊤ϕ(x̂i)− f̂i

)⊤

=
1

n

n∑
i=1

(
Θ⊤Φϕ(x̂i)− f̂i

)(
Θ⊤Φϕ(x̂i)− f̂i

)⊤

=
1

n

(
KΘ− F̂

)⊤ (
KΘ− F̂

)
, (21)



V =
1

nk

n∑
i=1

∑
j∈Nk(f̂i)

(
W⊤ϕ(x̂i)− f̂j

)(
W⊤ϕ(x̂i)− f̂j

)⊤

+
1

nk

n∑
i=1

∑
j∈Nk(x̂i)

(
f̂i −W⊤ϕ(x̂j)

)(
f̂i −W⊤ϕ(x̂j)

)⊤

=
1

nk

n∑
i=1

∑
j∈Nk(f̂i)

(
Θ⊤Φϕ(x̂i)− f̂j

)(
Θ⊤Φϕ(x̂i)− f̂j

)⊤

+
1

nk

n∑
i=1

∑
j∈Nk(x̂i)

(
f̂i −Θ⊤Φϕ(x̂j)

)(
f̂i −Θ⊤Φϕ(x̂j)

)⊤

=
1

nk

k∑
r=1

(
KΘ− F̂r

)⊤ (
KΘ− F̂r

)
+

1

nk

k∑
r=1

(
F̂−KrΘ

)⊤ (
F̂−KrΘ

)
, (22)

where F̂r = [f̂1r , f̂2r , . . . , f̂nr
]⊤ ∈ Rn×q, Kr = ΦrΦ

⊤
r ,

and Φr = [ϕ(x̂1r ), ϕ(x̂2r ), . . . , ϕ(x̂nr
)]⊤ ∈ Rn×d′

. Fol-
lowing (Zadeh, Hosseini, and Sra 2016), the optimization
problem in Eq.(20) is strictly convex, then its global min-
imum can be obtained when the gradient of the objective
function vanishes. Specifically, by calculating the first-order
derivative w.r.t M and setting it to 0, we have

(U+ γIq)−M−1 (V + γIq)M
−1 = 0

=⇒ M (U+ γIq)M = (V + γIq) . (23)

Eq.(23) is a Riccati equation (Bhatia 2009) and its unique
solution corresponds to the midpoint of the geodesic joining
(U+ γIq)

−1 to (V + γIq), i.e.,

M = (U+ γIq)
−1

#1/2 (V + γIq) , (24)

where A#1/2B = A1/2
(
A−1/2BA−1/2

)1/2
A1/2.

The complete procedure of the proposed ILIA approach is
summarized in Appendix A. After the above two alternating
optimization steps converge, we can obtain the predictive
modeling coefficients W and the discriminative metric M.
Subsequently, the semantic similarity between a pair multi-
label instances (xi,xj) can be explicitly formalized in the
form of the following Mahalanobis distance:

Dis(xi,xj) =
∥∥W⊤ϕ(x̂i)−W⊤ϕ(x̂j)

∥∥
M

=
∥∥Θ⊤Φϕ(x̂i)−Θ⊤Φϕ(x̂j)

∥∥
M

=
∥∥Θ⊤Ki −Θ⊤Kj

∥∥
M

, (25)

where Ki ∈ Rn with r-th element Ki
r = κ(x̂r, x̂i)(1 ≤

r ≤ n). A shorter Mahalanobis distance between xi and
xj indicates higher similarity, while a longer Mahalanobis
distance indicates lower similarity.

Experiments
Experimental Setup
Datasets. In this paper, ten real-world multi-label datasets
with diversified properties are employed for comparative

Dataset |D| dim(D) L(D) LCard(D) Domain

CAL500 502 68 174 26.044 Music1

emotions 593 72 6 1.869 Music1

medical 978 1449 45 1.245 Text1

image 2000 294 5 1.236 Image2

scene 2407 294 6 1.074 Image1

arts 5000 462 26 1.636 Text1

corel5k 5000 499 374 3.522 Image1

education 5000 550 33 1.461 Text1

health 8116 1483 32 1.649 Text1

entertainment 8166 545 21 1.438 Text1

1 http://mulan.sourceforge.net/datasets.html
2 http://palm.seu.edu.cn/zhangml/Resources.htm#data

Table 1: Characteristics of experimental datasets.

studies. Table 1 summarizes the detailed characteristics of
each benchmark dataset D, including the number of examples
|D|, number of features dim(D), number of labels L(D),
label cardinality LCard(D), and domain of datasets.

Evaluation protocols. To validate the effectiveness of the
proposed ILIA approach in learning similarity metrics be-
tween multi-label examples, following (Mao, Hang, and
Zhang 2024), we employ BRKNN (Boutell et al. 2004) and
MLKNN (Zhang and Zhou 2007) as subsequent multi-label
learning methods after learning metrics. If the learned met-
rics can well characterize the semantic similarities between
multi-label examples, simple KNN-based multi-label learning
algorithms can achieve good classification performance.

Evaluation metrics. Six widely used evaluation metrics for
multi-label learning are utilized for performance evaluation,
including Hamming loss, Ranking loss, Coverage, Average
precision, Macro-F1, and Macro-averaging AUC. Detailed
definitions can be found in (Zhang and Zhou 2014).

Compared methods. We compare ILIA with five state-
of-the-art multi-label metric learning methods, including
LM(Liu and Tsang 2015), LJE(Gouk, Pfahringer, and Cree
2016), COMMU(Sun and Zhang 2021), LIMIC (Mao, Wang,
and Zhang 2023), and LSMM (Mao, Hang, and Zhang
2024). More details about these compared methods can be
found in Appendix B.1. Denote A ∈ {BRKNN, MLKNN}
as a KNN-based multi-label learning algorithm, B ∈
{ILIA, LM, LJE, COMMU, LIMIC, LSMM} as a multi-label
metric learning algorithm, and A-B as the coupling version of
them. The classification performance of A-ILIA is compared
against other state-of-the-art multi-label metric learning algo-
rithms coupled with A to manifest whether ILIA does learn
better similarity metrics between multi-label examples.

Configuration. For the proposed ILIA approach, we use
the Polynomial kernel and set the parameters as follows: the
trade-off parameters µ = 10−3, η = 10−2, γ = 10−2, and
the number of nearest neighbors k = 20. Detailed discussion
about the choice of these parameters can be found in ‘Sen-
sitivity analysis’ paragraph and Appendix D. For KNN and
MLKNN, the number of nearest neighbors is fixed to 10 for



Compared
Algorithms

Datasets
CAL500 emotions medical image scene arts corel5k education health entertainment

Hamming Loss ↓
BRKNN .145±.003 .263±.023• .016±.002• .170±.017• .091±.007• .075±.002• .010±.000 .038±.001 .047±.001• .065±.002
BRKNN-LM .150±.003• .270±.019• .010±.002 .175±.016• .090±.009• .056±.001• .010±.000 .038±.001 .046±.002 .068±.002•
BRKNN-LJE .146±.004• .219±.022• .022±.003• .184±.018• .110±.011• .061±.001• .010±.000 .043±.002• .054±.003• .067±.001•
BRKNN-COMMU .144±.003 .263±.023• .016±.002• .171±.016• .091±.007• .056±.001• .009±.000 .038±.001 .047±.001• .065±.002
BRKNN-LIMIC .145±.005 .212±.008• .012±.002 .161±.016 .081±.007 .058±.002• .010±.000 .039±.001• .046±.001• .065±.002
BRKNN-LSMM .145±.004 .207±.020 .014±.003• .162±.013 .080±.006 .060±.001• .009±.000 .037±.002 .045±.002 .064±.002
BRKNN-ILIA (Ours) .142±.004 .203±.018 .011±.002 .157±.015 .078±.007 .053±.001 .010±.000 .037±.001 .044±.002 .064±.001

MLKNN .139±.005 .262±.022• .015±.002• .174±.013• .085±.009 .060±.001• .009±.000 .038±.001 .047±.001• .064±.002
MLKNN-LM .139±.004◦ .254±.017• .012±.002 .176±.014• .088±.008 .055±.001• .009±.000 .038±.001 .044±.002 .064±.001
MLKNN-LJE .139±.005 .227±.022• .023±.003• .184±.017• .109±.009• .060±.001• .010±.000 .042±.002• .053±.002• .066±.002•
MLKNN-COMMU .139±.004◦ .262±.022• .016±.002• .174±.013• .086±.009 .060±.001• .009±.000 .038±.001 .046±.002 .064±.002
MLKNN-LIMIC .139±.004 .236±.009• .012±.003 .161±.018 .081±.004◦ .057±.001• .009±.000 .038±.001 .048±.001• .064±.002
MLKNN-LSMM .140±.005 .225±.016 .012±.002 .159±.014 .087±.007 .055±.001• .009±.000 .037±.001 .048±.001• .064±.002
MLKNN-ILIA (Ours) .142±.004 .218±.014 .011±.002 .156±.014 .085±.008 .053±.001 .010±.000 .037±.002 .045±.002 .064±.001

Average precision ↑
BRKNN .463±.009• .700±.049• .778±.027• .788±.023• .850±.012• .400±.025• .151±.013• .573±.014• .605±.013• .491±.013•
BRKNN-LM .451±.007• .711±.038• .848±.029 .789±.020• .847±.013• .576±.016• .272±.012◦ .599±.016• .631±.011• .515±.014•
BRKNN-LJE .453±.013• .773±.041• .782±.041• .769±.021• .812±.022• .536±.020• .188±.008• .561±.013• .580±.014• .488±.013•
BRKNN-COMMU .467±.010• .700±.049• .793±.029• .789±.023• .850±.012• .546±.016• .228±.015• .586±.013• .605±.014• .492±.013•
BRKNN-LIMIC .464±.010• .783±.032 .854±.025 .808±.026 .859±.013 .527±.019• .254±.010◦ .598±.020• .647±.015• .532±.012•
BRKNN-LSMM .463±.010• .788±.039 .867±.036 .810±.023 .857±.012• .583±.020• .248±.013◦ .612±.015• .652±.016• .528±.010•
BRKNN-ILIA (Ours) .482±.012 .790±.022 .856±.022 .819±.021 .868±.016 .616±.012 .239±.010 .631±.012 .661±.013 .554±.008

MLKNN .494±.008◦ .712±.042• .819±.020• .789±.021• .867±.017 .525±.021• .246±.006 .616±.015• .653±.012• .564±.012•
MLKNN-LM .493±.007 .719±.019• .864±.027 .789±.017• .857±.015• .606±.016• .303±.011◦ .630±.013 .671±.010 .570±.015
MLKNN-LJE .491±.006 .767±.043 .778±.041• .765±.022• .819±.024• .557±.020• .229±.006• .588±.008• .626±.012• .547±.010•
MLKNN-COMMU .494±.009◦ .712±.042• .810±.024• .790±.022• .867±.016 .519±.019• .239±.006• .618±.016• .653±.011• .564±.012•
MLKNN-LIMIC .496±.007◦ .773±.023 .862±.022 .813±.027 .874±.011 .580±.015• .257±.009◦ .628±.018 .658±.012• .568±.010•
MLKNN-LSMM .494±.009◦ .777±.036 .860±.038 .812±.019• .869±.016 .597±.013• .250±.010 .632±.015 .659±.011• .570±.012
MLKNN-ILIA (Ours) .485±.009 .780±.026 .862±.020 .821±.017 .871±.011 .620±.014 .248±.008 .634±.012 .673±.015 .573±.008

Table 2: Predictive performance (mean±std) of A ∈ {BRKNN, MLKNN} coupled with ILIA and state-of-the-art multi-label metric
learning approaches in terms of Hamming Loss and Macro-averaging AUC. ↑ (↓) indicates the larger (smaller) the value, the
better the performance. The best and second best results are highlighted in boldface and underline, respectively. In addition,
•/◦ indicates whether A-ILIA achieves significantly superior/inferior to other compared approaches on each dataset in terms of
different evaluation metrics (pairwise t-test at 5% significance level).

fair comparisons. Ten-fold cross-validation is employed to
evaluate the above approaches.

Empirical Results

Table 2 reports detailed empirical results in terms of Ham-
ming loss and Average precision. The results on other eval-
uation metrics can be found in Appendix B.2. Furthermore,
pairwise t-test (Dietterich 1998) at 5% significance level is
conducted to demonstrate whether the performance differ-
ence between A-ILIA and other compared methods is signifi-
cant statistically, where the resulting win/tie/loss counts are
reported in Appendix B.2. The results clearly demonstrate
that our proposed ILIA approach has achieved significant im-
provements in classification performance compared to other
multi-label metric learning methods. For example, in terms
of BRKNN, ILIA is significantly superior (or comparable) to
methods LM, LJE, COMMU, LIMIC, and LSMM in 81.7%
(16.7%), 76.7% (18.3%), 96.7% (3.3%), 56.7% (39.3%), and
41.7% (53.3%) of cases, respectively. The superior perfor-
mance provides persuasive evidence for ILIA in learning
effective similarity metrics between multi-label examples.

Additional Comparison
To underscore the significance of learning similarity metrics
for multi-label examples, in Appendix C, we compare ILIA-
enhanced BRKNN and MLKNN against four well-established
metric-free multi-label learning approaches that consider dif-
ferent orders of label correlations, including LIFT (Zhang
and Wu 2014), RELIAB (Zhang et al. 2021), WRAP (Yu and
Zhang 2021), and HOMI (Si et al. 2023). Detailed empirical
results are reported in Appendix C. The results demonstrate
that although the performance of BRKNN and MLKNN are
inferior to that of second-order and high-order multi-label
learning methods, the ILIA-enhanced versions have the poten-
tial to approach or even surpass state-of-the-art multi-label
learning methods. This outcome not only reaffirms the supe-
riority of ILIA in characterizing the similarity of multi-label
examples, but also emphasizes the significance of learning
similarity metrics for multi-label examples.

Further Analysis
Ablation study. We study the effects of the two critical
algorithmic designs in our ILIA approach: (1) Implicit RLI
recovery; (2) Discriminative multi-label metric learning. Ac-



Evaluation
Metrics

BRKNN-ILIA against
BRKNN-DeV1 BRKNN-DeV2

Hamming Loss 6/3/1 5/5/0
Ranking Loss 7/3/0 6/4/0
Coverage 9/1/0 8/1/1
Average precision 8/2/0 7/3/0
Macro-F1 9/1/0 9/1/0
Macro-averaging AUC 7/3/0 6/3/1

In Total 46/13/1 41/17/2

Evaluation
Metrics

MLKNN-ILIA against
MLKNN-DeV1 MLKNN-DeV2

Hamming Loss 3/7/0 4/5/1
Ranking Loss 7/3/0 6/4/0
Coverage 8/2/0 9/1/0
Average precision 9/1/0 10/0/0
Macro-F1 7/2/1 9/1/0
Macro-averaging AUC 6/3/1 7/2/1

In Total 40/18/2 45/13/2

Table 3: Win/tie/loss counts (pairwise t-test at 5% significant
level) for A-ILIA against A-variants.

cordingly, two degenerate variants named DeV1 and DeV2
are implemented for performance comparison:
• DeV1: DeV1 is implemented by removing the implicit

RLI recovery procedure in ILIA, which corresponds to the
degenerate case considering equal labeling-importance
for multi-label metric learning.

• DeV2: DeV2 employs Eq.(14) instead of Eq.(15) for pre-
dictive model training, which corresponds to the degener-
ate case without introducing the discriminative metric M
for similarity characterization. In this case, M in Eq.(25)
is degenerated to an identity matrix.

Table 3 summarizes the win/tie/loss counts (pairwise t-test
at 5% significant level) for A-ILIA against A-variants on
each evaluation metric. Compared with the two variants, we
can observe ILIA achieves statistically superior performance
against them in terms of each evaluation metric, demonstrat-
ing the usefulness of the two critical algorithmic designs in
ILIA for similarity characterization.

Sensitivity analysis. Figure 2 illustrates how the perfor-
mance of A-ILIA fluctuates with different values of k, i.e,
the number of nearest neighbors mentioned in Eq.(2,9,16).
(Datasets: emotions, image; Evaluation metrics: Hamming
loss, Average precision). The other parameters are fixed as
the same in the ‘Configuration’ paragraph. It is shown that the
performance of A-ILIA gradually improves before k = 20
and then tends to stabilize. Therefore, we take k = 20 as
a fixed parameter in this paper. We also perform sensitivity
analyses on the kernel function κ and the trade-off parameters
µ, η, and γ, which can be found in Appendix D.

Complexity analysis. There are two critical procedures
included in our ILIA approach, i.e., (1) Implicit RLI recovery
and (2) discriminative multi-label metric learning. The train-
ing complexity of the former procedure is O(n · d · logn +
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Figure 2: Performance of A-ILIA changes as the number of
nearest neighbor k varies in the range of {1, 2, . . . , 30}.

n2 · k + n3)). For the latter, the complexity arises from its
alternating optimization process. We denote t as the number
of iterations, and then the training complexity of the latter
procedure is O(t ·(n ·d+n3)). Due to the fact that the former
procedure is executed only once, the overall training com-
plexity of ILIA is approximately equivalent to the complexity
of the latter procedure. To further enhance computational
efficiency, following (Zadeh, Hosseini, and Sra 2016), we
employ the Cholesky-Schur method (Iannazzo 2016) in this
paper to speed up the calculation of Riemannian geodesics
for symmetric positive definite matrices in Eq.(24).

Conclusion
In this paper, the first attempt towards leveraging implicit RLI
information of multi-label examples for similarity characteri-
zation is presented. Different from existing multi-label metric
learning approaches learning from multi-label examples by
taking the common assumption of equal labeling-importance,
we propose a novel approach ILIA, which takes different
labeling-importance into consideration. ILIA encompasses
two critical procedures, i.e., (1) Implicit RLI recovery and (2)
discriminative multi-label metric learning. In (1), the mani-
fold structure within the feature space is exploited by local
linear reconstruction, and then the implicit RLIs are recov-
ered by transferring such structure to the label space. In (2), a
discriminative multi-label metric learning framework is intro-
duced, which implicitly pulls similar instances closer while
pushing dissimilar instances further apart. Comprehensive ex-
periments validate the superiority of ILIA in learning effective
similarity metrics between multi-label examples. In the fu-
ture, it will be interesting to investigate how to recover more
accurate RLIs for multi-label examples and how to enable
multi-label metric learning to utilize such information for bet-
ter similarity characterization. Furthermore, it is promising
to extend our proposed ILIA approach to weakly supervised
scenarios (Xia et al. 2024; Tang, Zhang, and Zhang 2024).
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