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Abstract

In multi-dimensional classification (MDC), the classifier
chain approach is based on a chain structure to model de-
pendencies between class spaces. However, current research
on constructing a chain order is usually based on a greedy
criterion or random generation, which is highly likely to lead
to an incorrect chain order and fit incorrect class dependen-
cies. Moreover, existing classifier chain-based approaches do
not consider the misleading effects of irrelevant input features
on the classifiers. To fill the above gap, a classifier chain-
based approach incorporating evolutionary chain order opti-
mization and feature selection (ECCO) is proposed. Specifi-
cally, this approach designs a meta-heuristic algorithm to op-
timize the chain order of multiple classifiers. Simultaneously,
the approach selects dimension-specific feature combinations
that are more conducive to class prediction of each dimen-
sion. These strategies enhance the class prediction capability
of the constructed MDC model. Comparative experiments on
14 real datasets validate that ECCO outperforms 7 state-of-
the-art MDC approaches.

Introduction
Multi-dimensional Classification (MDC) refers to situations
in data analysis and machine learning where a single sample
may simultaneously be associated with multiple class vari-
ables (Van Der Gaag, De Waal et al. 2006; Zaragoza et al.
2011). Each class variable corresponds to one class space.
This problem is characterized by the fact that these class
spaces characterize the different semantics of the sample
in multiple dimensions (Gil-Begue, Bielza, and Larrañaga
2021). MDC problems are very common in many practi-
cal applications, such as text classification and image an-
notation. In news article classification (Theeramunkong and
Lertnattee 2002), an article about a technology company ex-
panding its business in the global market can be labeled
under the “topic” dimension as “technology”, “politics” or
“business”. In the “sentiment” dimension, it can be labeled
as “negative”, “neutral” or “positive”. Therefore, it needs
to be assigned multiple labels with different dimensions si-
multaneously to reflect its diverse content when classifying
the article. In image recognition (Wang et al. 2024), a street
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scene image can be labeled under the “object” dimension as
“pedestrian”, “building” or “car”. In the “time” dimension,
it can be labeled as “daytime”, “evening” or “late night”.
Consequently, more precise image recognition techniques
need to correctly identify labels in all dimensions of an im-
age. These examples demonstrate the application and impor-
tance of MDC problems in various fields.

In general, the output space of an MDC problem is Y =
C1×C2× ...×Cq , which corresponds to the Cartesian prod-
uct of q class spaces. In the j-th class space (1 ≤ j ≤ q),
the class space Cj containing Kj class labels can be ex-
pressed as Cj = {cj1, c

j
2, ..., c

j
Kj
}. In contrast to tradi-

tional multi-class classification problems (Ou and Murphey
2007; Jia et al. 2023), the difficulty of the MDC problem
lies in modeling the complex dependencies between many
classes to achieve accurate labeling of all labels in multi-
ple class dimensions. Existing approaches for dealing with
multi-dimensional classification problems have been classi-
fied into three main categories: intuitive algorithms, explicit
dependency-modeling algorithms and implicit dependency-
modeling algorithms (Jia and Zhang 2023). Binary Rele-
vance (BR) and Class Powerset (CP) approaches both be-
long to the intuitive algorithms. Their classification results
are usually poor because the former handles class dependen-
cies too simply and the latter overfits the class dependen-
cies. Explicit dependency-modeling algorithms are repre-
sented by the Classifier Chain (CC) approaches (Read et al.
2021). This approach fits class dependencies by establishing
a chaining order of classifiers. However, most of the exist-
ing CC-based approaches (Read, Martino, and Luengo 2014;
Jia and Zhang 2022a) are based on greedy criteria or ran-
domly generated chain ordering, which usually fails to accu-
rately fit class dependencies. Implicit dependency-modeling
algorithms are represented by feature augmentation (Jia and
Zhang 2020) and label encoding (Liu et al. 2024; Jia and
Zhang 2021; Tang et al. 2024). Such approaches mainly try
to manipulate the feature space or transform the label space
to alleviate the challenges posed by heterogeneity between
classes. Nevertheless, these methods fail to give the user an
explicit representation of class dependencies and lead to ad-
ditional computational costs.

Several recent studies have shown the potential validity of
manipulating the feature space implicitly to model depen-
dencies between classes (Jia and Zhang 2022c). This is be-



cause augmented features related to each class space can be
initially generated based on samples that are close together
in the output space. This useful discriminative information
aids in subsequent label recognition across multiple dimen-
sions. However, existing methods utilize all input features to
model, but ignore the interference of redundant and irrele-
vant features for the identification of labels for each dimen-
sion. Therefore, this paper is conceptualized based on the
following assumption. When dealing with the MDC prob-
lem, it is more reasonable to create a dimension-specific fea-
ture combination for each class space. This better captures
the correlation between the feature space and the semantics
of the heterogeneous labels of class variables.

To address the above problems, we propose a novel MDC
approach named ECCO (i.e., Evolutionary Classifier Chain
Order) that incorporates evolutionary chain order optimiza-
tion and feature selection. This approach considers both the
output class space and the input feature space for depen-
dency modeling. While globally optimizing the prediction
order of class spaces, the dimension-specific feature com-
bination is designed for each class space. In this way, the
classifier based on dimension-specific features can achieve
more accurate label prediction in each dimension. Our con-
tribution can be summarized as follows:
• Completely different from previous CC approaches, the

proposed ECCO introduces evolutionary computation for
the first time. The optimal chain order of the classifiers is
found based on the powerful search capability of popula-
tion evolution in a large search space.

• We are the first to introduce evolutionary feature se-
lection into the MDC algorithm by constructing the
dimension-specific feature combination for each class
space.

• The approach we devised considers modeling in both the
input feature space and the output class space, which pro-
vides a novel paradigm for solving the MDC problem.

• Based on Wilcoxon and Friedman test results, ECCO
ranks first across all three metrics.

The remainder of this paper is organized as follows. The
next section describes the works with two modeling methods
on MDC. After that, a detailed description of our proposed
ECCO is presented. Then, the experimental setup and anal-
ysis of the experimental results are shown. Finally, the paper
is summarized.

Related Work
The key to solving the MDC problem lies in modeling the
class dependencies. Existing research interests focus on two
main categories of explicit and implicit dependency model-
ing (Jia and Zhang 2024; Shi et al. 2025).

Explicit Dependency-Modeling Algorithms
Existing algorithms based on explicit dependency model-
ing aim to explicitly model dependencies by directly ma-
nipulating the category space through some structure (Read
et al. 2011). Jia et al. (2022a) proposed a decomposition-
based CC approach to solve the MDC problem by transform-
ing it into multiple binary classification problems. However,

this integration method can lead to an expensive computa-
tion and does not eliminate the impact of the chain order
with mismatched dependencies. Jia et al. (2022b) also pro-
posed a maximum margin MDC algorithm. The approach
first maximizes the margin between each pair of class la-
bels by one-versus-one decomposition. Then the modeling
of class dependencies is achieved by the covariance regular-
ization technique.

Another popular algorithm is to divide the class space into
multiple super-classes (Read, Bielza, and Larrañaga 2014).
This approach aims to divide the grouping by measuring cer-
tain metric conditions between class variables. However, it
is difficult to include the full combinations of class spaces in
a training set.

Implicit Dependency-Modeling Algorithms
The implicit dependency modeling algorithm aims to trans-
form the MDC problem into a new problem without directly
manipulating the class space. There are three popular re-
search directions for this approach: label space transforma-
tion, sparse label encoding and feature augmentation.

For the first direction, the basic idea of one-hot
multi-dimensional transformation is to convert the multi-
dimensional output space into a binary-valued output space
by one-vs-rest decomposition (Ma and Chen 2018). This
approach makes the transformed problem suitable for so-
lution by well-established multi-label classification meth-
ods. However, this approach tends to result in an inflated la-
bel space and ignores the hierarchical relationships between
class variables.

For the second direction, SLEM (Jia and Zhang 2021)
maps the original output space to a real-valued label space
using a random encoding matrix. Then, a multi-output re-
gression model is trained in the resulting label space to
identify unseen examples. Ahmed et al (2023) proposed an
end-to-end MDC approach. A high-performance deep learn-
ing classifier is realized by building a hypercube classifier
and multiple DSOC neural networks connected to the hy-
percube. Zhang et al. (2022) proposed an end-to-end model
of an adversarial variational autoencoder with regularized
streams, which encodes both features and class variables
into the same probabilistic space. However, the encoding
and mapping methods in the above approaches often need to
be tuned. Otherwise, the robustness and generalization per-
formance of the model may be insufficient.

For the third direction, augmented features are generated
by learning to enrich the discriminative information in the
input space to aid in the classification of subsequent mod-
els. Jia et al. (2020) acquired augmented features by statis-
tical information of each class space based on the K-nearest
neighbor technique. LEFA (Wang et al. 2020) aims to gen-
erate augmented features by the deep learning technique.
However, the above approaches do not fit the dependencies
between class variables such as prediction order well. And
they do not consider the interaction between input features.

The ECCO Approach
Existing CC-based approaches are usually not efficiently op-
timized for the chain order. In addition, current MDC ap-
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Figure 1: The workflow of the proposed ECCO approach when the number of class dimensions is 3.

proaches rarely consider the construction and selection of ef-
fective dimension-specific feature combinations. Therefore,
we design a unified encoding optimization framework based
on evolutionary algorithms to optimize both chain order and
feature combinations. As shown in Figure 1, our framework
is divided into three main parts. First, a hybrid encoding
method is designed for issues to be optimized. Second, in-
spired by DDFS (Liang et al. 2024a), a two-population co-
evolutionary genetic algorithm (GA) is improved based on
the problem characteristics of MDC to avoid falling into lo-
cal optimum. Third, the classification performance is tested
on the chain order and features that have evolved iteratively.
Notably, the notations in Algorithms 1 and 2 are explained
in detail in the Supplementary Material1.

Encoding

In CC-based approaches, the input feature combination of
each classifier has a coupling relationship with the chain
order of the classifiers, both of which affect the classifi-
cation accuracy. Therefore, we propose a hybrid encoding
method to simultaneously perform evolutionary chain order
optimization and dimension-specific feature selection. With-
out loss of generality, we will discuss the proposed approach
when the number of class dimensions q is 3 as shown in Fig-
ure 1. First, three original feature spaces are merged with
the chain order vector into a single individual. The selec-
tion or non-selection of each feature is denoted by 1 or 0.
The chain order is represented using a vector like (3, 1, 2).
ECCO performs evolution by two subpopulations PN and
PM consisting of these encoding vectors. Then, the explo-
ration of dimension-specific feature combinations and chain
order spaces is realized by performing different variation
operations on PN and PM . Finally, each offspring is de-
coded into the dimension-specific features for each space as
well as the chain order. And the classification effect of each
offspring is evaluated by sequentially feeding dimension-
specific features and the predicted labels of previous classi-
fiers into the current classifier according to the chain order.

1Code package and supplementary material are publicly avail-
able at: http://palm.seu.edu.cn/zhangml.

Evolving Stage

In ECCO, genetic operators are crucial for generating new
individuals from the parent population. Algorithm 1 specif-
ically demonstrates swapping, crossover and mutation, re-
spectively. In both subpopulations PN , PM , the swapping
and mutation operations are the same while the crossover
operation is different.

Algorithm 1: Genetic Operators in ECCO

Input: N : overall population size; PN , PM : the subpopula-
tion based on dominance or decomposition; d: original
feature dimension; q: dimension of class spaces.

Output: O: the overall offspring population.
1: Initialize parameters: proC = 1, proM = 1;
2: Swapping in PN or PM :
3: Randomly select two class dimensions q1 and q2 out of

q dimensions;
4: Swap the column q ∗ d+ q1 with the column q ∗ d+ q2

for PN or PM ;
5: Crossover of GA Operators in PN :
6: Split PN (:, 1 : q ∗ d) into P1 and P2 with an equal num-

ber of rows;
7: N1 ← the number of rows in P1;
8: K← a logic matrix of size (N1, q ∗d) with elements set

to 0 when generated random values are less than 0.5;
9: K(repmat(rand(N1, 1) > proC, 1, q ∗ d))← false;

10: O1 = P1; O2 = P2;
11: O1(K) = P2(K); O2(K) = P1(K);
12: ON = [O1;O2];
13: Crossover of GA-half Operators in PM :
14: Split PM (:, 1 : q ∗d) into P1 and P2 with an equal num-

ber of rows;
15: K is obtained according to lines 7-9 of Algorithm 1;
16: OM = P1;
17: OM (K) = P2(K);
18: Mutation in PN or PM :
19: S ← a logic matrix of size (N/2, q ∗ d) with random

values less than proM
q∗d ;

20: ON (S) = ∼ ON (S); OM (S) = ∼ OM (S);
21: O = [ON ;OM ]
22: return O



To fully explore the chain order space, we designed to
randomly pick two dimensions of class spaces to swap in
the parent matrix at each generation. As shown in the second
stage in Figure 1, the original chain order in each solution is
changed. This can be effective in exploring the class space
with higher dimensions in the MDC problem.

For crossover, the parent population PN (PM ) is divided
equally into two groups P1 and P2. This matrix K de-
notes the position vectors of the features that perform the
crossover operation. For the GA crossover, the elements of
O1 are replaced by the corresponding elements of P2 when
the values of the corresponding positions in K are 1. And it
is similar to O2. The final offspring is the combination of O1

and O2. For the GA-half crossover, the elements of P1 are
only replaced by the corresponding elements of P2 where
the elements in K are 1.

For mutation, a binary logic matrix S of size (N/2, q∗d) is
created with values less than proM

q∗d , indicating the positions
to be mutated. The elements at these positions are flipped to
guide the subpopulation to explore new feature areas. This
combination of crossover and mutation operators ensures di-
versity of generated feature combinations and aids in the ef-
fective exploration of the solution space.

Label Prediction and Evaluation
To evaluate the performance of each of the generated so-
lutions on the MDC problem, we design f1 and f2 to be
computed. As shown in Eq. (1), f1 and f2 are simultane-
ously optimized to achieve a win-win situation in terms of
classification performance and cost. Hamming score (HS)
is computed based on Eq. (4) to evaluate the MDC perfor-
mance of each solution.

Minimize
{
f1 : Ratio of selected features

f2 : 1−Hamming Score
(1)

The objective f1 is calculated by the number of selected
features, which is 5, dividing d in the third part of Figure
1. The objective f2 can be calculated as follows. The third
part of Figure 1 shows the classifier chain prediction pro-
cess with q = 3. First, the obtained individual is decoded. In
Figure 1, the optimized chain order is (3, 2, 1). Therefore,
dimensional intervals [1, d] , [d + 1, 2d] and [2d + 1, 3d] of
the encoding are represented as the input features selected
for class spaces C3, C2 and C1, respectively. {F2, F3} is the
input feature combination of C3. According to the linking
rules of the classifier chain, the predicted labels obtained on
C3 with the feature F1 are given as input to the classifier of
C2. The features {F3, Fn} and the predicted labels obtained
on C3 and C2 are given as input to the classifier of C1. Fi-
nally, the performance indicator HS for each solution can be
computed based on the predicted labels and the ground-truth
labels in all class spaces.

Overall Algorithmic Framework
In order to show our designed algorithm in more detail, the
specific flow of ECCO is described in Algorithm 2. First,
we designs two subpopulations PN ,PM to help each other
in the evolutionary process. This allows for a better balance

Algorithm 2: Overall Framework of ECCO

Input: Training set; test set; N : overall population size.
Output: The encoding of solution xBest and its f1 and f2.

1: PN ← Initialize N/2 solutions for the dominance-based
subpopulation;

2: PM ← Initialize N/2 solutions for the decomposition-
based subpopulation;

3: Evaluate the objective values of PN ,PM respectively on
the training set according to Eq. (1);

4: while the termination criterion is not met do
5: ON ,OM ←Offspring generation based on parents of

PN ,PM by the GA operator respectively;
6: Decode and evaluate the objective values of PN ,PM

on the training set according to Eq. (1);
7: Update the ideal point Z∗;
8: P′

N ← Perform environmental selection in PN ∪ON ;
9: P′

M ← Perform environmental selection in PM∪OM ;
10: PA = P′

N ∪ P′
M

11: vIndex ← Perform non-dominated sorting on PA

based on their objective values;
12: P′′

M = PA(vIndex(1 : N/2));
13: P′′

N = PA \ P′′
M ;

14: end while
15: P′

A = P′′
N ∪ P′′

M
16: Decode and evaluate the objective values of P′

A on the
test set according to Eq. (1);

17: Perform a non-dominated ordering of the obtained ob-
jective values to find the solution xBest;

18: return The encoding of xBest and its f1 and f2.

between exploration and exploitation. In the initial popula-
tion, the selected features and chain order are randomly gen-
erated. Second, crossover and mutation are performed on the
feature selection part by the GA operator as shown in the
evolving stage in Figure 1. This can quickly find promising
solutions in the huge search space of 2q∗d. A swapping strat-
egy is designed for evolutionary chain order optimization to
ensure that the space of possible chain orders is adequately
searched. Third, two objectives are computed after each so-
lution is decoded into the dimension-specific input features
of each dimension as well as the chain order. Notably, we
consider the tradeoff between the number of selected fea-
tures and the classification effectiveness as shown in Eq. (2)
and Eq. (3).

In the environmental selection phase, ECCO can select
solutions with as few features as possible but better clas-
sification results. After all parent and offspring solutions
have been evaluated on f1 and f2, environmental selection is
performed to obtain the population for the next generation.
Specifically, the Pareto dominance relationship (Deb et al.
2002) is used to select the new population P′

N . If b is not
worse than a in both objective values f1 and f2 defined in
Eq. (1), then b is given a smaller front number than a. The
discriminant condition is shown as:

∀i : fi(b) ≤ fi(a) ∧ ∃j : fj(b) < fj(a)
s.t. a, b ∈ Ω

(2)

The N/2 solutions with smaller front numbers are selected



into P′
N . The Tchebycheff method (Zhang and Li 2007) is

used to select individuals with better convergence in PM and
OM . On i-th weight vector, the values of the aggregation
function of the parent and child are similarly calculated as

min g(u | λ, Z∗) = max {λi (fi(u)− Z∗)}
s.t. u ∈ Ω

(3)

where g is the aggregation function, u is the encoding vec-
tor and λ is the weight vector. Z∗ is the ideal point, whose
two components are the minimum values of the entire popu-
lation on f1 and f2 defined in Eq. (1), respectively. And the
solution with the smaller value of g that is also closer to the
ideal point is retained. The selected P′

N and P′
M are merged

into a single population PA, which combines good diversity
and convergence. Finally, individuals in PA are reclassified
into two subpopulations P′′

N ,P′′
M based on their evolution-

ary status vIndex. The transfer of search experience between
the two evolutionary forms can accelerate the convergence
of the algorithm.

The algorithm iteratively optimizes the population of so-
lutions until the maximum number of evaluations is reached.
The final generation of solutions is output to a test set to ex-
amine their performance metrics on an MDC problem. Fi-
nally, the solution xBest on the Pareto front with the best
performance on f2 is the output of ECCO.

Experiments
In this section, we conduct comparative experiments with 7
comparison algorithms on 14 real datasets. All experiments
are executed with 50 parallel cores invoked on the same
workstation with two Intel(R) Xeon(R) Gold 6230 CPUs.

Datasets
In order to fully validate the effectiveness of the proposed
algorithm, we selected 14 real datasets to examine the classi-
fication performance of our algorithm on the MDC problem.
The number of examples (#Examples), the number of class
dimensions (#Dim.), the number of labels in each class space
(#Labels/Dim.) and the number of features (#Features) for
each dataset are shown in Table 1. It can be seen that some
of the datasets with many class spaces have a high number
of input features (i.e., Oes97, Oes10, WaterQuality, Rf1 and
Pain). Therefore, the experimental datasets can fully validate
the effectiveness of the algorithm on the MDC problem.

Compared Approaches
In this paper, seven state-of-the-art MDC approaches are
used to compare with the proposed ECCO. They are de-
scribed carefully as follows:
• BR (Zhang et al. 2018) solves the MDC problem by in-

dependently training multiple multi-class classifiers.
• CP (Tsoumakas, Katakis, and Vlahavas 2011) transforms

the MDC problem into a single multi-class classification
problem.

• ECC (Read et al. 2011) solves the MDC problem by
training multiple chains of classifiers to integrate and
vote. The chain order of the classifiers is generated based
on random reordering.

Table 1: Basic information of the experimental dataset

DataSet #Examples #Dim. #Labels/Dim. #Features

Edm 154 2 3 16n
Flare1 323 3 3,4,2 10x
Oes97 334 16 3 263n
Jura 359 2 4,5 9n
Oes10 403 16 3 298n
Enb 768 2 2,4 6n
Song 785 3 3 98n
WQplants 1060 7 4 16n
WQanimals 1060 7 4 16n
WaterQuality 1060 14 4 16n
BeLaE 1930 5 5 1n,44x
Voice 3136 2 4,2 19n
Rf1 8987 8 4,4,3,4,4,3,4,3 64n
Pain 9734 10 2,5,4,2,2,5,2,5,2,2 136n

• BCC (Zaragoza et al. 2011) builds multiple classifier
chains based on the Bayesian network for ensemble
learning.

• EDCC (Jia and Zhang 2022a) overcomes the problem
that classifier chains are prone to propagate errors by
one-versus-one decomposition strategy and ensemble
classifier chains.

• gMML (Ma and Chen 2018) is based on a newly de-
signed label transformation method that aims to mini-
mize the Mahalanobis distance between the regression
output and the true label vectors.

• SEEM (Jia and Zhang 2020) models class dependencies
through a two-layer strategy, which is based on CP and
BR respectively.

Specifically, the aforementioned comparison algorithms
can be categorized into three groups. BR and CP are basic
algorithms. ECC, BCC and EDCC are three advanced algo-
rithms based on classifier chains. gMML and SEEM are ad-
vanced algorithms based on implicit and explicit modeling,
respectively.

Parameter Settings
For each of the seven compared algorithms, the parameters
in the code are consistent with the version in the correspond-
ing paper respectively. We use a Support Vector Machine
(SVM) as the base classifier for each comparison algorithm.
For the proposed algorithm ECCO, the population size is
empirically set to 200. And the number of iterations is set to
100 to balance diversity and computational efficiency (Liang
et al. 2024a). For the fairness and validity of the experimen-
tal results, the base classifier of ECCO is SVM.

In the experimental phase, each algorithm is run 30 times
and the results are averaged to rule out randomness. Each
dataset is partitioned into the training set and the test set in
the ratio of 80% and 20%. It is worth noting that this division
is kept constant for different comparison algorithms on the
same dataset. This ensures the fairness of the experiments.
In the training phase, 5-fold cross-validation is performed to



Table 2: Mean results of ECCO and 7 comparison algorithms on HS.

DataSets Hamming Score

ECCO BR CP ECC BCC EDCC gMML SEEM

Edm 0.738 0.672 0.641 0.641 0.734 0.672 0.672 0.625
Flare1 0.904 0.904 0.904 0.889 0.904 0.899 0.904 0.904
Oes97 0.723 0.720 0.640 0.714 0.660 0.717 0.699 0.715
Jura 0.641 0.628 0.608 0.649 0.561 0.642 0.622 0.547
Oes10 0.786 0.786 0.705 0.781 0.742 0.784 0.748 0.790
Enb 0.790 0.750 0.740 0.747 0.779 0.503 0.740 0.711
Song 0.793 0.789 0.732 0.793 0.656 0.776 0.776 0.785
WQplants 0.706 0.702 0.478 0.703 0.606 0.700 0.702 0.703
WQanimals 0.663 0.648 0.456 0.654 0.545 0.655 0.659 0.662
WaterQuality 0.692 0.677 0.535 0.688 0.579 0.687 0.689 0.688
BeLaE 0.481 0.371 0.320 0.416 0.381 0.451 0.425 0.441
Voice 0.940 0.845 0.774 0.787 0.961 0.843 0.687 0.821
Rf1 0.794 0.627 0.600 0.612 0.606 0.736 0.550 0.712
Pain 0.960 0.959 0.960 0.959 0.942 0.960 0.958 0.959

Friedman’s rank 1.679 4.107 6.607 4.500 5.607 4.179 5.071 4.179

Table 3: Mean results of ECCO and 7 comparison algorithms on EM.

DataSets

Exact Match

ECCO BR CP ECC BCC EDCC gMML SEEM

Edm 0.481 0.406 0.438 0.406 0.500 0.406 0.438 0.406
Flare1 0.773 0.773 0.773 0.727 0.773 0.758 0.773 0.773
Oes97 0.013 0.015 0.015 0.015 0.000 0.015 0.015 0.015
Jura 0.411 0.405 0.378 0.378 0.351 0.405 0.378 0.338
Oes10 0.049 0.037 0.049 0.037 0.061 0.049 0.037 0.049
Enb 0.581 0.500 0.481 0.493 0.559 0.513 0.481 0.506
Song 0.501 0.500 0.430 0.525 0.278 0.487 0.500 0.487
WQplants 0.172 0.169 0.019 0.174 0.066 0.164 0.169 0.164
WQanimals 0.096 0.061 0.000 0.079 0.009 0.079 0.093 0.098
WaterQuality 0.031 0.023 0.000 0.028 0.000 0.019 0.028 0.028
BeLaE 0.055 0.013 0.008 0.028 0.018 0.028 0.021 0.028
Voice 0.883 0.706 0.574 0.590 0.922 0.700 0.486 0.653
Rf1 0.190 0.004 0.081 0.043 0.024 0.118 0.000 0.098
Pain 0.798 0.795 0.798 0.795 0.701 0.794 0.796 0.785

Friedman’s rank 2.250 4.821 5.536 4.607 5.214 4.464 4.643 4.464

Table 4: Mean results of ECCO and 7 comparison algorithms on SEM.

DataSets

Sub-Exact Match

ECCO BR CP ECC BCC EDCC gMML SEEM

Edm 0.994 0.938 0.844 0.875 0.969 0.938 0.906 0.844
Flare1 0.939 0.939 0.939 0.939 0.939 0.939 0.939 0.939
Oes97 0.073 0.075 0.045 0.104 0.045 0.104 0.060 0.060
Jura 0.872 0.851 0.838 0.919 0.770 0.878 0.865 0.757
Oes10 0.183 0.171 0.122 0.146 0.134 0.171 0.146 0.195
Enb 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Song 0.886 0.873 0.797 0.861 0.741 0.848 0.835 0.873
WQplants 0.400 0.399 0.066 0.399 0.230 0.390 0.394 0.366
WQanimals 0.281 0.252 0.042 0.262 0.107 0.257 0.262 0.271
WaterQuality 0.110 0.061 0.000 0.103 0.009 0.108 0.113 0.099
BeLaE 0.196 0.106 0.049 0.126 0.085 0.155 0.147 0.144
Voice 0.997 0.984 0.975 0.984 1.000 0.987 0.887 0.989
Rf1 0.442 0.123 0.251 0.186 0.133 0.399 0.037 0.325
Pain 0.896 0.894 0.898 0.893 0.858 0.900 0.894 0.901

Friedman’s rank 2.286 4.643 6.500 4.250 5.964 3.393 4.857 4.107



Table 5: Wilcoxon signed-ranks test results for ECCO and 7 comparison algorithms on 3 metrics

Evaluation
Metric

ECCO against
BR CP ECC BCC EDCC gMML SEEM

HS win[1.12E-03] win[1.23E-03] win[3.85E-03] win[3.07E-03] win[1.51E-03] win[3.07E-03] win[2.90E-03]
EM win[2.11E-03] win[3.73E-03] win[6.95E-03] win[1.44E-02] win[1.66E-03] win[2.11E-02] win[4.87E-03]
SEM win[2.72E-03] win[2.33E-03] win[4.80E-02] win[2.33E-03] win[3.97E-02] win[1.57E-02] win[9.18E-03]

avoid bias in the evaluation of solutions on the validation set
(Liang et al. 2024b).

Performance Metrics
Following the existing research on the MDC problem, we
chose three metrics to evaluate the performance of all
approaches. Given an MDC problem, the test set S =
{(xi,yi) | 1 ≤ i ≤ p}, where p is the number of test sam-
ples. l is the MDC model to be evaluated. q is the number
of class spaces. yij is the ground-truth labels for the j-th di-
mension of the i-th test sample. ŷij is the predicted labels
for the j-th dimension of the i-th test sample. Their detailed
formulas are shown below:
• Hamming Score (HS) : This metric measures the average

proportion of how many class spaces are predicted cor-
rectly for each test sample. It is calculated as follows:

HSS(l) =
1

p

p∑
i=1

1

q
· r(i) (4)

• Exact Match (EM) : This metric measures the average
proportion of all class spaces predicted correctly for each
test sample. It is calculated as follows:

EMS(l) =
1

p

p∑
i=1

Jr(i) = qK (5)

• Sub-Exact Match (SEM) : This metric is a relaxed ver-
sion of EM designed to measure the average proportion
of test samples with at least q − 1 dimensions correctly
classified. It is computed as follows:

SEMS(l) =
1

p

p∑
i=1

Jr(i) ≥ q − 1K (6)

Here, r(i) =
∑q

j=1Jyij = ŷijK denotes the number of cor-
rectly predicted dimensions.

Experimental Results
In this subsection, we count the average results of 30 runs
of the proposed algorithm ECCO and the seven comparison
algorithms on HS, EM and SEM as shown in Table 2, Table
3 and Table 4, respectively. In addition, the ranking results of
the Friedman test for each algorithm are recorded in the last
row of the tables. In order to explore the significance of the
superiority of our approach, the Wilcoxon signed-ranks test
at 0.05 significance level is performed. The results of the test
are recorded in Table 5. Based on the experimental results
recorded in the above table, the following observations can
be observed:

• By evaluating and testing the three metrics, ECCO out-
performs the seven comparison algorithms in 78.6%,
50% and 64.3% cases across all datasets, respectively.
The results of the Friedman test showed that ECCO
ranked the highest on all three metrics.

• ECCO is significantly better than BR and CP because
of the latter two oversimplified considerations of class
dependencies.

• ECCO significantly outperforms ECC, BCC and EDCC
on most of the datasets. These CC-based approaches ran-
domly or simply generate chain orders that do not cor-
respond to real class dependencies. This can lead to in-
stability in the constructed model. In addition, inputting
all the original features for each classifier can also result
in redundant and irrelevant features interfering with the
classifiers. This indicates that constructing dimension-
specific feature combinations and optimizing the chain
order for each dimension of the classifier in ECCO is ef-
fective.

• ECCO also beats the advanced implicit dependency-
modeling approaches gMML and SEEM on three met-
rics. This suggests that the existing approaches still suf-
fer from the defect of insufficient input information
when implicitly modeling. In contrast, ECCO simultane-
ously considers the optimization of the chain order and
dimension-specific feature selection, which can provide
more accurate and fuller recognition information for the
classifier of each class space.

In addition, it is worth noting that we also conduct further
analyses on the ablation experiments, parameter sensitivity,
and computational complexity. Specific experimental results
and analyses can be found in Section 3, 4, 5 and 6 of the
Supplementary Material.

Conclusion

In this work, we propose for the first time an evolution-
ary optimization framework ECCO for the MDC problem
that incorporates evolutionary chain order optimization and
dimension-specific feature selection. This approach utilizes
a hyper-heuristic algorithm to evolve the best solution by
building a hybrid encoding of the two optimization prob-
lems. The superposition of useful information in the input
and output spaces is realized to enhance the classification
performance of the constructed MDC model. The exper-
imental results demonstrate the effectiveness of ECCO in
solving the MDC problem.
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