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Abstract

Partial label learning (PLL) refers to the classification task
where each training instance is ambiguously annotated with
a set of candidate labels. Despite substantial advancements
in tackling this challenge, limited attention has been devoted
to a more specific and realistic setting, denoted as instance-
dependent partial label learning (IDPLL). Within this contex,
the assignment of partial labels depends on the distinct fea-
tures of individual instances, rather than being random. In this
paper, we initiate an exploration into a self-distillation frame-
work for this problem, driven by the proven effectiveness and
stability of this framework. Nonetheless, a crucial shortfall is
identified: the foundational assumption central to IDPLL, in-
volving what we term as partial label knowledge stipulating
that candidate labels should exhibit superior confidence com-
pared to non-candidates, is not fully upheld within the distil-
lation process. To address this challenge, we introduce DIRK,
a novel distillation approach that leverages a rectification pro-
cess to DIstill Reliable Knowledge, while concurrently pre-
serves informative fine-grained label confidence. In addition,
to harness the rectified confidence to its fullest potential, we
propose a knowledge-based representation refinement mod-
ule, seamlessly integrated into the DIRK framework. This
module effectively transmits the essence of similarity knowl-
edge from the label space to the feature space, thereby ampli-
fying representation learning and subsequently engendering
marked improvements in model performance. Experiments
and analysis on multiple datasets validate the rationality and
superiority of our proposed approach.

Introduction
Partial label learning (PLL) is a prominent weakly super-
vised learning paradigm, which has been studied a lot in
the past decade (Guillaumin, Verbeek, and Schmid 2010;
Xu, Lv, and Geng 2019; Lv et al. 2020). PLL refers to the
classification task where each training instance is associated
with a set of candidate labels, among which only one is the
ground-truth label. This problem arises naturally in various
real-world scenarios, such as automatic image annotation
(Briggs, Fern, and Raich 2012; Liu and Dietterich 2012),
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web mining (Luo and Orabona 2010; Xu et al. 2022), and
multimedia content analysis (Zeng et al. 2013).

The major difficulty of PLL lies in label ambiguity, which
means the ground-truth label is unknown during training.
Over the past decade, non-deep label disambiguation meth-
ods have been proposed (Hüllermeier and Beringer 2006;
Zhang and Yu 2015; Feng and An 2019; Wang, Li, and
Zhang 2019). However, these methods are inefficient for
large-scale datasets and high-dimensional features. With the
emergence of deep learning, deep PLL methods have been
explosively studied (Lv et al. 2020; Feng et al. 2020; Wen
et al. 2021; Wu, Wang, and Zhang 2022; Wang et al. 2022b;
Qiao, Xu, and Geng 2023; Xu et al. 2023; Jia and Zhang
2022). For example, self-training techniques are utilized in
(Lv et al. 2020; Wen et al. 2021) to progressively identify the
ground-truth label during training. Wu, Wang, and Zhang
(2022) develop a regularized training framework preserv-
ing manifold structure of feature space and label space. Re-
cently, various popular techniques such as contrastive learn-
ing (Wang et al. 2022b; He et al. 2022), graph neural net-
work (Lyu, Wu, and Feng 2022), optimal transport (Wang
et al. 2022a), meta-learning (Xie, Sun, and Huang 2021),
have been exploited in deep PLL. However, these studies as-
sume that each false label has a random or fixed probability
of being the candidate label. Realistically, annotators pre-
fer to select candidate labels related to the true label, mak-
ing candidate labels instance-dependent. To cope with the
instance-dependent partial label learning (IDPLL) problem,
Xu et al. (2021) employ variational inference to estimate
the latent label distribution. Xia et al. (2022) perform con-
trastive learning by utilizing the additional information ac-
quired from the ambiguity. Nevertheless, these methods are
either have high computational complexity and difficulty in
optimization, or rely on ideal assumptions.

In this paper, we attempt to address IDPLL by leveraging
the distillation framework (Allen-Zhu and Li 2020; Mobahi,
Farajtabar, and Bartlett 2020) due to its computational ef-
ficiency (Kim et al. 2021) and training stability (Furlanello
et al. 2018). In this framework, the label confidences pro-
duced by the teacher model are distilled to guide the student
model training, as suggested in (Xu, Lv, and Geng 2019; Jia
et al. 2018). However, we found that the distillation frame-
work faces limitations, as illustrated in “Before rectifica-
tion” in Figure 1, where the label confidence does not com-



Figure 1: For an input instance “cat” with a candidate set
{cat, fox, monkey}, the teacher produces inaccurate label
confidence, wherein the confidence of non-candidate la-
bel “bird” is higher than that of the candidate label “mon-
key”. After rectification, the highest confidence among non-
candidate labels are lower than the lowest confidence among
candidate labels.

ply with to the principles of partial label knowledge. Partial
label knowledge dictates that for each instance, the confi-
dence of each candidate label should be higher than that of
any non-candidate label. This resonates with the empirical
fact that labels prone to confusion with the ground-truth la-
bels are more likely to be chosen by annotators.

To address the inherent limitations of the distillation
framework in handling IDPLL, we propose an innovative
self-distillation framework accompanied by a rectification
process to DIstill Reliable Knowledge, termed as DIRK.
Specifically, we disentangle the teacher’s output into two
complementary constituents, subsequently rescaling them
with an adaptive factor. Experiments demonstrate superior-
ity of this proposed method over other approaches. In addi-
tion, to harness the rectified confidence to its fullest poten-
tial, we propose a knowledge-based representation refine-
ment module, seamlessly integrated into the DIRK frame-
work. This module effectively transmits the essence of
similarity knowledge from the label space to the feature
space, thereby amplifying representation learning and sub-
sequently engendering marked improvements in model per-
formance. Our contributions can be summarized as follows:

• We consider the more realistic instance-dependent partial
label learning problem and for the first time exploit the
distillation framework to solve this problem.
• Oberserving the distortion of partial label knowledge

through direct application of distillation, we propose
DIRK with an incorporated rectification process to dis-
till more reliable knowledge.
• Through theoretical analysis, we shed light on the under-

lying rationale of the rectification process, unveiling that
it not only rectifies the knowledge but also in serving as
a mechanism for hard sample mining.
• We further extend the distilled reliable knowledge into

the representation space through the development of
a knowledge-based representation refinement module,
yielding an additional boost to performance.
• Extensive evaluations on seven benchmark and five real-

world datasets demonstrate the superiority of our ap-
proach over state-of-the-art methods.

Related Work
Partial label learning
Partial label learning is also known as ambiguous-label
learning (Chen, Patel, and Chellappa 2017) or superset-label
learning (Gong et al. 2017), has been extensively studied in
the past decade (Wang and Zhang 2020; Wang et al. 2022b;
Yang, Li, and Jiang 2023). PLL methods can be categorized
into non-deep PLL and deep PLL methods, where non-deep
methods often use linear or kernel-based models, while deep
methods adopt stochastic optimization on deep neural net-
works. Non-deep PLL methods usually disambiguate par-
tial labels by averaging (Hüllermeier and Beringer 2006) or
identification strategy (Yu and Zhang 2015; Wang, Li, and
Zhang 2019). These methods are inefficient for large-scale
datasets and high-dimensional features.

With the emergence of deep learning, deep PLL meth-
ods have been explosively studied recently (Lv et al. 2020;
Wen et al. 2021; Wu, Wang, and Zhang 2022; Wang et al.
2022b; Gong, Yuan, and Bao 2022; Qiao, Xu, and Geng
2023; Xu et al. 2023). Lv et al. (2020) use a simple self-
training strategy to progressively identify ground-truth la-
bels during network training. Similarly, Wen et al. (2021) in-
troduce a family of loss functions named leveraged weighted
loss. Feng et al. (2020) propose a risk-consistent method and
a classifier-consistent method under the uniform partial la-
bel generation assumption. Wang et al. (2022b) propose a
prototype-based disambiguation mechanism via contrastive
learning. Wu, Wang, and Zhang (2022) revisit a consistency
regularization in PLL for the first time, and they regard the
method in (Lv et al. 2020) as one of its special cases. Wang
et al. (2022b) propose a prototype-based disambiguation
mechanism by leveraging the contrastively learned embed-
dings. Realistically, instance-dependent partial label learn-
ing (IDPLL) is a more practical setting in many real-world
scenarios. To cope with that, a series of methods like con-
trastive learning, bayesian models and variational inference
have been proposed for IDPLL (Xu et al. 2021; Xia et al.
2022; Qiao, Xu, and Geng 2023; Xu et al. 2023). However,
these existing methods often computationally expensive or
rely on ideal assumptions.

Knowledge Distillation
Self-Distillation is proposed to utilize a model’s own knowl-
edge without extra networks in knowledge distillation (Hin-
ton et al. 2014; Zhou, Jiang, and Chen 2003; Zhou and
Jiang 2004; Ji et al. 2023; Yun et al. 2020). A common
practice in self-distillation is to directly use outputs from a
teacher whose architecture is exactly the same as the stu-
dent. Born-Again Networks(BANs) (Furlanello et al. 2018)
is the initial self-distillation method where a student model
is trained sequentially, with later generations supervised by
earlier ones. The student generations are then assembled into
an aggregate model. Similar to BANs, Yuan et al. (Yuan
et al. 2020) empirically show teacher-free distillation, where
a pretrained student teaches a single new student. Kim et al.
(Kim et al. 2021) progressively distill a model’s own knowl-
edge to soften hard targets during training. Other works like



(Ji et al. 2023; Xu and Liu 2019; Yun et al. 2020) use a sin-
gle network to enforce consistent predictions between aug-
mented data (Xu and Liu 2019) or intra-class samples (Yun
et al. 2020). Despite successes in improving classification
performance by developing advanced architectures, the logit
knowledge does not conform to the partial label knowledge
in IDPLL setting.

The Proposed Method
Preliminaries
Let X ⊂ Rq be the q-dimensional feature space and Y =
{1, 2, · · · , c} denote the label space with c distinct labels.
We are given a partial label dataset D = {(xi,Si) |1 ≤ i ≤
n}, where the candidate label set Si ⊂ Y always contains its
ground-truth label yi.

We choose vanilla self-distillation as the basis of our
method, because it can represent the basic model of
most self-distillation methods. In the vanilla self-distillation
framework, T(·) and θT represent the teacher model and
its parameters, while S(·) and θS stand for the student
model and the corresponding parameters. A common self-
distillation strategy is empolyed to update the teacher as
the running average of the student model with momentum:
θT ← mθT +(1−m)θS (Kim et al. 2021; Shen et al. 2022;
Tejankar et al. 2021). The student model is learned by opti-
mizing the following objective:

LKL = CE(αY + (1− α)T(x)),S(x)), (1)

where CE(·, ·) means the commonly used cross-entropy
loss, and α is the trade-off hyperparameter used to balance
the supervision from oracle and teacher model. Here, the or-
acle supervision means the uniform label confidence Y on
partial labels:

Y k =

{
1
|S| if k ∈ S,
0 otherwise.

(2)

The Destruction of Partial Label Knowledge
Figure 2 (left) depicts the illustrative experiments with vari-
ous α on the CIFAR-10-ID dataset. When α = 0, no oracle
supervision is available, and the student learns blindly. In
this case, each class has an equal probability of being the
true label, which leads to the model collapsing issue. When
α > 0, partial label knowledge is induced by the oracle su-
pervision Y , which encourages the model’s confidence of
candidate labels to be higher than that of non-candidate la-
bels. As is also shown, the larger α is, the faster the student
learns in the early stages. It implies that partial label knowl-
edge is essential in the early stage of distillation. However,
we also observe that if Y continues to dominate the learn-
ing in the later stage, the student would overfit this coarse-
grained knowledge, leading to a decrease in accuracy. On the
other hand, although a small α faces the underfitting prob-
lem in the early stage, informative label confidence induced
by the teacher model makes a stable learning procedure in
the later stage, which implies that fine-grained knowledge
is essential for further learning in the later stage.
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Figure 2: With fixed m = 0.99 and various α, (Left) shows
the accuracy curve of the student model, and (Right) shows
the test accuracy of the student model and correct rate of
distilled label confidence.

Figure 2 (right) shows the destruction of partial label
knowledge in the distillation process. Specifically, we de-
fine the correct rate as the proportion of instances whose la-
bel confidence satisfies the partial label knowledge in the
final epoch. The general trend of correct rates is clearly dif-
ferent from that of test accuracy. In particular, a larger α
benefits the reliability of teacher knowledge, but it leads the
student model to overfit partial labels. With small α, partial
label knowledge is not maintained anymore and hence re-
sulting in an underfitting problem. When α = 0.2 yields the
best accuracy among all choices in our experiment, the dis-
tillation process still contains a large amount of misleading
knowledge. Therefore, even with a proper balance factor for
distillation, there is still much room to further improve the
quality of teacher knowledge for IDPLL.

Rectification of Label Confidence
A simple strategy to alleviate the destruction of partial label
knowledge is to force the distilled label confidences of non-
candidate labels to be zero. However, this process will elim-
inate the informative dark knowledge on instance’s comple-
mentary labels, which has been shown important to improve
model performance (Hinton et al. 2014; Chen et al. 2020).
To better utilize the label confidence from the teacher model,
it is crucial to alleviate the destruction of partial label knowl-
edge and preserve the fine-grained information of label con-
fidence on all labels. To this end, we propose to rescale the
sum of label confidences for both candidate labels and non-
candidate labels, thereby rectifying the misleading of partial
label knowledge. We first decouple the teacher outputs into
two complementary components Tc(x) and Tn(x), which
can be calculated as:

Tc
i (x) =

exp (δi)∑
k∈S exp (δk)

if i ∈ S, and 0 otherwise,

Tn
i (x) =

exp (δi)∑
k/∈S exp (δk)

if i /∈ S, and 0 otherwise,
(3)

where δi represents the logit output of the teacher model
on the i-th class. Tc(x) denotes the teacher’s output confi-
dence on candidate labels and Tn(x) stands for the output
confidence on all non-candidate labels. Then, we utilize a
scaling process on these two terms to rectify the teacher’s
label confidence:

T̃(x) = γ · Tc(x) + (1− γ) · Tn(x), (4)



The following proposition states how to determine the scal-
ing factor γ to make T̃(x) comply with the above discussed
partial label knowledge assumption.

Proposition 1 With the rescaling in (4) and γ =
ηmaxj Tn

j (x)

ηmaxj Tn
j (x)+mini Tc

i (x)
, for η > 1, the rescaled la-

bel confidence satisfeis mini T̃i(x) = ηmaxj T̃j(x) >

maxj T̃j(x), where i ∈ S and j /∈ S.

The proof is presented in Appendix A.1. Now, the reactifi-
cated label confidence T̃(x) with proper parameter η com-
plies the above assumption, then we can discard Y that is
used to preserve partial label knowledge as in Eq. (1). There-
fore, the new distilled label confidence would not induce the
overfitting problem caused by the uniform label confidence
Y . The rectificated distillation loss function could be sim-
plified as:

LDIRK(x) = CE
(

T̃(x),S(x)
)
, (5)

In this way, the parameter η presents the margin between
the output confidence of candidate labels and non-candidate
labels. The pseudo-code of our complete algorithm DIRK is
shown in Appendix A.3. We next show that η can be chosen
in an instance-dependent manner during training.
The choice of η. A simple principle to choose η is mak-
ing the student model focus more on instances that are not
yet properly classified in the current training iteration. De-
note pc =

∑
i∈S exp(δi)∑
j∈Y exp(δj)

as the probability that the model’s
prediction lies in candidate labels. We achieve this princi-
ple with η = 1/pc. By this, the rectification strength applied
to the teacher’s raw outputs could be determined adaptively
during training. For instances that tend to be misclassified by
the teacher model, a large η can be assigned to increase the
margin as shown in Figure 1. In contrast, a relatively small η
is assigned to smooth the label confidence for instances that
the model has properly learned. This principle can be for-
mally explained from the gradient perspective, as is shown
in Proposition 2.

Proposition 2 Under the assumption that the recitificated
label confidence of non-candidate labels of the teacher
model is lower than that of the student model, i.e., Si(x) −
T̃i(x) > 0, for i /∈ S , there exists a subset S ′ of candidate
labels that satisfies Si(x)− T̃i(x) < 0, for i ∈ S ′. Then L1

norm of the gradient of LDIRK w.r.t. the logit is given by:∑
i

∣∣∣∣∂LDIRK∂δi

∣∣∣∣ = 2
∑
i∈S′

(γTc
i (x)− Si(x)) . (6)

The proof can be found in Appendix A.2. In practice, the
assumption in Proposition 2 is generally well satisfied as the
teacher model tends to produce more discriminative outputs
than the student model. As demonstrated, a larger gradient
norm can be derived with a greater γ. By the relationship
between γ and η, we have γ ∝ 1/pc. Therefore, Eq. (6) de-
duces that instances with smaller pc would contribute more
gradient in each update process.

Representation Refinement Module
To fully leverage the high-quality rectificated label confi-
dence, we further introduce a knowledge-based represen-
tation refinement module to enhance the learning of latent
features. Following the architecture and pepeline in (Xia
et al. 2022), an instance is fed into the encoder network f(·)
which maps to a latent representation v = f(x) ∈ Rde , Af-
terwards we utilize the projection network g(·) to map v to
a low-dimensional embedding z = g(v) ∈ Rdp . Here, the
representation v is also fed to the last full-connected classi-
fier h(·) to make the final prediction p = h(v) ∈ Rc. For
the teacher model, we maintain an embedding queue E and
label confidence queue I storing the embeddings and rec-
tificated label confidences respectively, which are updated
chronologically. To this end, we have the following embed-
ding pool E and rectificated label confidence pool I:

E = BET ∪ BES ∪E, I = BLT ∪ BLT ∪ I, (7)

where BE· / BL· are vectorial embeddings and rectificated la-
bel confidences of the current mini-batch.

Since the rectificated label confidence preserves informa-
tive knowledge, we assume that the similarity between in-
stances in the output space can be converted to the embed-
ding space. Formally, this can be achieved by the following
representation refinement loss:

LREF(x) =
∑

j∈P (x)

wj log
exp (sim (z, Ej) /τ2)∑

k∈E(x) exp (sim (z, Ek)) /τ2)
, (8)

where

wj =
exp(sim(T̃(x), Ij)/τ1)∑

k∈P (x) exp(sim(T̃(x), Ik)/τ1)
, (9)

P (x) denotes the index of positive instance in the rectifi-
cated label confidence pool, and E(x) represents the index
of E\{z}. In Eq. (8) and Eq. (9), sim(·, ·) refers to the sim-
ilarity between two vectors, and τ1 and τ2 are temperature
factors used to scale the similarity. In our experiments, we
use cosine similarity which is widely used in most self-
distillation methods (Tung and Mori 2019; Tejankar et al.
2021). Note that we only select positive instances that sat-
isfy the following two requirements for an anchor x: (1) in-
stances that share candidate labels with the anchor instance;
(2) instances with the same label prediction as the anchor.

It is noteworthy that LREF can be considered as a gener-
alized form of recent contrastive loss used in PLL problem
(Wang et al. 2022b; Xia et al. 2022), although this repre-
sentation refinement loss is derived from the perspective of
feature distillation. In their research, the weights of positive
instances are set equally or label-wise, while the weight as-
signed to each positive instance is instance-wise in our work.
Inspired (Tejankar et al. 2021), which argues that not all neg-
ative instances are equally negative in self-supervised learn-
ing, we make the reasonable assumption that not all posi-
tive instances are equally positive. Instance-wise contrastive
learning can provide more discriminative information in rep-
resentation learning.



The architecture of REpresentation reFinement module is
described in Appendix. After equipping the representation
refinement module into DIRK, the overall loss function can
be formulated as:

LDIRK-REF = LDIRK + λLREF, (10)

where λ is the trade-off parameter between the label distilla-
tion and the representation refinement module. Thoroughly,
the pseudo-code and flowchart of DIRK-REF is shown in Ap-
pendix A.4.

Experiment
Dataset. We evaluated our method on seven commonly
used benchmark image dataset: Fashion-MNIST (Xiao, Ra-
sul, and Vollgraf 2017), Kuzushiji-MNIST (Clanuwat et al.
2018), CIFAR-10 (Krizhevsky, Hinton et al. 2009), CIFAR-
100 (Krizhevsky, Hinton et al. 2009), CUB-200 (Welinder
et al. 2010), Flower (Nilsback and Zisserman 2008) and
Oxford-IIIT Pet (Parkhi et al. 2012). We manually corrupted
these datasets into IDPLL datasets by an instance-dependent
generating process (Xu et al. 2021). Besides, five real-world
PLL datasets collected from different application domains
were used, including Lost (Cour, Sapp, and Taskar 2011),
Soccer Player (Zeng et al. 2013), Yahoo! News (Guillau-
min, Verbeek, and Schmid 2010), MSRCv2 (Liu and Diet-
terich 2012), and BirdSong (Briggs, Fern, and Raich 2012).
Due to the space limitation, the detailed generation process
of corrupted benchmarkd datasets and characteristics of PLL
datasets are introduced in Appendix A.5.
Compared Methods. We compared our method against the
following deep PLL methods: (1) POP (Xu et al. 2023), a
progressive purification approach that iteratively purifies la-
bels and refines the classifier; (2) IDGP (Qiao, Xu, and Geng
2023), an approach that models instance-dependence via de-
composed categorical and Bernoulli distributions, and uses
MAP optimization; (3) ABLE (Xia et al. 2022), a contrastive
learning method that leverages additional information in the
partial labels; (4) VALEN (Xu et al. 2021), an instance-
dependent method that recovers latent label distributions us-
ing variational inference; (5) PICO (Wang et al. 2022b), a
contrastive learning method that identifies true labels using
learned prototypes; (6) CAVL (Zhang et al. 2021), a method
that selects the true label based on the class activation value;
(7) CR-DPLL (Wu, Wang, and Zhang 2022), a regularized
training framework using consistency regularization on can-
didate labels; (8) LWS (Wen et al. 2021), a discriminative
approach balancing losses on candidate and non-candidate
labels; (9) RC (Feng et al. 2020), a risk-consistent method
using importance re-weighting strategy; (10) CC (Feng et al.
2020), a classifier-consistent method applying the cross en-
tropy loss and transition matrix to form an empirical risk
estimator; (11) PRODEN (Lv et al. 2020), a self-training like
method that progressively identifies the true labels.
Implementation details. To make fair comparisons, we
used the same network architecture, learning rate, optimizer,
and augmentation strategy across all compared methods in
various datasets. Our implementation was executed using
PyTorch (Paszke et al. 2019), and all experiments were con-
ducted with NVIDIA Tesla V100 GPU. For the encoder net-

work f(·), we use ResNet-18 (He et al. 2016) on Fashion-
MNIST, Kuzushiji-MNIST, and ResNet-34 (He et al. 2016)
on other datasets. The normalized activations of the final
pooling layer (de=512) were used as the representation.
For the projection network g(·), we instantiated g(·) with
a multi-layer perceptron with a single hidden layer of size
512 (as well as ReLU activation) and output representation
of size dp = 128. For the classifier h(·), we instantiated h(·)
with a single linear layer with the softmax activation. We set
the momentum hyperparameter m as 0.99 and the trade-off
parameter λ as 0 in DIRK. It is worth noting that we only
discuss the performance of DIRK-REF in the last subsection,
where temperature hyperparameters τ1 = 0.01, τ2 = 0.07,
and the sizes of both queues are fixed to be 1024.

For all methods on benchmark datasets, we used SGD as
the optimizer with a momentum of 0.9, a weight decay of 1e-
3, an initial learning rate of 1e-2, and set the epoch number
to 500. We adopted cosine annealing learning rate schedul-
ing and did not use any pre-training models. For large-scale
datasets CUB-200, Flower, and Oxford-IIIT Pet, we set the
mini-batch size as 32, while 256 for other datasets. For
all methods on real-world datasets, we adopted the widely-
used linear model as the backbone. Since data augmentation
cannot be employed on real-world datasets that contain ex-
tracted features from audio and video data. We adopt no data
augmentation strategy for data-augmentation-free methods
(POP, IDGP, VALEN, PRODEN, RC, CC, LWS, and CAVL) to
make fair comparisons. The hyperparameters were selected
so as to maximize the accuracy on a validation set (10% of
the training set). We recorded the mean and standard devia-
tion in each case based on five independent runs with differ-
ent random seeds.

Experiment Results
DIRK achieves SOTA results. We report the classifica-
tion accuracy of all methods on benchmark and real-world
datasets in Table 1 and Table 2, respectively. Table 1 shows
that DIRK consistently outperforms all compared meth-
ods, demonstrating its superiority in handling instance-
dependent partial labels. Notably, as dataset size increases,
DIRK’s performance advantage becomes more pronounced,
with consistent and stable improvements over other meth-
ods. Since the linear model provides limited information,
we simply set γ to 1 in solving PLL real-world datasets.
In Table 2, DIRK significantly outperforms all compared
approaches in Lost, BirdSong, and Yahoo! News. Even on
MSRCv2 and Soccer Player, DIRK exhibits stronger perfor-
mance than other methods. We conjecture DIRK’s insignif-
icant improvements arise from semantic sparsity and lim-
ited training data. Constructing large-scale semantically rich
real-world datasets remains future work.
Analysis of the gradient norm. Proposition 2 suggests
adopting an adaptive η in the rectification process can enable
hard samples to contribute larger gradients during each itera-
tion, thereby facilitating hard sample mining. To investigate
this, we conducted an analysis of the gradient norm evolu-
tion over training for both simple and hard samples. Specifi-
cally, simple samples are defined as those where the student



Method Fashion-MNIST Kuzushiji-MNIST CIFAR10 CIFAR100 CUB-200 Flower Oxford-IIIT Pet

DIRK 91.48 ± 0.21%91.48 ± 0.21%91.48 ± 0.21% 96.80 ± 0.52%96.80 ± 0.52%96.80 ± 0.52% 90.87 ± 0.25%90.87 ± 0.25%90.87 ± 0.25% 68.77 ± 0.49%68.77 ± 0.49%68.77 ± 0.49% 49.29 ± 1.00%49.29 ± 1.00%49.29 ± 1.00% 44.03 ± 0.02%44.03 ± 0.02%44.03 ± 0.02% 64.95 ± 2.11%64.95 ± 2.11%64.95 ± 2.11%
POP 81.91 ± 0.37% 94.99 ± 1.18% 89.55 ± 0.36% 64.57 ± 0.37% 39.13 ± 0.14% 33.02 ± 2.62% 53.83 ± 1.55%
IDGP 85.14 ± 0.39% 93.88 ± 0.72% 84.12 ± 0.99% 62.27 ± 1.89% 46.71 ± 0.64% 41.26 ± 1.33% 59.74 ± 0.71%
ABLE 89.81 ± 0.08% 94.67 ± 0.02% 83.92 ± 0.67% 63.92 ± 0.39% 45.82 ± 0.27% 43.51 ± 0.93% 54.19 ± 1.01%

VALEN 82.91 ± 0.12% 90.09 ± 0.28% 81.29 ± 0.39% 60.19 ± 0.82% 31.94 ± 0.49% 32.89 ± 0.88% 50.74 ± 0.91%
CR-DPLL 79.67 ± 6.95% 92.78 ± 4.04% 80.29 ± 0.18% 56.93 ± 1.47% 42.15 ± 1.70% 42.42 ± 0.12% 49.13 ± 2.49%

CAVL 78.06 ± 3.10% 91.08 ± 6.06% 79.89 ± 0.07% 59.76 ± 0.49% 41.67 ± 0.82% 40.69 ± 1.93% 50.64 ± 0.11%
PICO 85.92 ± 0.38% 92.12 ± 0.42% 82.91 ± 1.43% 58.56 ± 0.13% 40.21 ± 0.84% 33.76 ± 1.30% 62.64 ± 0.45%

PRODEN 83.77 ± 0.58% 92.51 ± 0.67% 83.18 ± 0.29% 67.77 ± 0.38% 41.85 ± 0.26% 41.28 ± 0.57% 52.77 ± 0.66%
LWS 75.52 ± 0.29% 83.61 ± 2.11% 78.32 ± 2.11% 65.74 ± 0.60% 15.99 ± 0.60% 21.24 ± 0.63% 31.21 ± 0.47%
RC 84.87 ± 1.48% 93.21 ± 0.78% 87.53 ± 0.94% 65.26 ± 0.40% 42.04 ± 0.24% 41.20 ± 0.23% 54.01 ± 0.05%
CC 79.98 ± 0.01% 92.08 ± 0.02% 82.14 ± 0.01% 62.28 ± 0.01% 40.87 ± 0.28% 40.92 ± 0.40% 52.99 ± 1.20%

Table 1: Accuracy comparison (mean± std) on benchmark dataset, with the best result among each column highlighted in bold
and the second best result in each column underlined.
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(d) Impact of hyperparameter m
Figure 3: (a-c) show the change of gradient norm for simple and hard samples over increasing epochs. (d) demonstrates the
performance of DIRK with varing values of momentum hyperparameter.

Method Lost BirdSong MSRCv2 Soccer Player Yahoo!News

DIRK 79.24±0.63%79.24±0.63%79.24±0.63% 74.52±0.23%74.52±0.23%74.52±0.23% 48.59±0.28% 55.83±0.35% 67.65±0.32%67.65±0.32%67.65±0.32%

POP 78.57±0.45% 74.47±0.36% 45.86±0.28% 54.48±0.10% 66.38±0.07%
IDGP 77.02±0.82% 74.23±0.17% 50.45±0.47%50.45±0.47%50.45±0.47% 55.99±0.28%55.99±0.28%55.99±0.28% 66.62±0.19%

VALEN 76.87±0.86% 73.39±0.26% 49.97±0.43 % 55.81±0.10 % 66.26±0.13%
CAVL 75.89±0.42% 73.47±0.13 % 44.73±0.96% 54.06±0.67% 65.44±0.23%

RC 76.26±0.46% 69.33±0.32% 49.47±0.43 % 56.02±0.59 % 63.51±0.20 %
CC 63.54±0.25 % 69.90±0.58 % 41.50±0.44 % 49.07±0.36 % 54.86±0.48 %

LWS 73.13±0.32 % 51.45±0.26 % 49.85±0.49 % 50.24±0.45 % 48.21±0.29 %
PRODEN 76.47±0.25 % 73.44±0.12 % 45.10±0.16 % 54.05±0.15% 66.14±0.10%

Table 2: Accuracy comparison (mean± std) on real-world
partial label datasets, with the best result among each col-
umn highlighted in bold and the second best result in each
column underlined.

model exhibits high confidence in the true label, while hard
samples are those with low true label confidence. The re-
sults are illustrated in Figure 4 (a-c). As the training epochs
increase, we can observe that more hard samples become
simple ones. However, the remaining hard samples consis-
tently exhibit higher gradient norms than simple samples,
indicating that they still contribute significantly more to the
gradient. Consequently, the adaptive η in rectification pro-
cess is essential for enabling continuous hard sample mining
during training.

Effect of momentum hyperparamter m. We also won-
der how the momentum hyperparameter, which controls
the updation rate of the teacher model, impacts perfor-
mance. Figure 4 (d) shows the accuracy with varied val-
ues {0.1, 0.3, 0.5, 0.7, 0.9, 0.99}. We can observe that our
proposed method DIRK exhibits stability on all benchmark
datasets. This implies the method is insensitive to the mo-
mentum value, ensuring efficient deployment in practice

without requiring extensive hyperparameter tuning. Due to
the space limitation, ablation experiments related to γ can
be found in Appendix A.6.
Uncertainty quantification of DIRK. When deploying ma-
chine learning systems, algorithms must be not only accu-
rate but also trustworthy, aware of potential errors (Guo et al.
2017). Thus, we preliminarily investigated the output uncer-
tainty of different PLL methods, as shown in Figure 4 and
Table 3. DIRK(TEA) and DIRK(STU) refer to the teacher
and student models respectively. The results demonstrate
DIRK improved model output confidence by aligning it with
the expected data distribution, achieving competitive ECE
scores. Specifically, our method obtained the lowest ECE
score among compared methods on CIFAR10. Due to space
limitations, we present corresponding reliability histogram
and further detail analysis in Appendix A.7.

DIRK-REF: Enhancing DIRK with
knowledge-based representation refinement
To fully exploit the knowledge of rectificated label confi-
dences, we equip DIRK with a knowledge-based represen-
tation refinement module, termed DIRK-REF, whose loss
function is Eq. (10). Implementation details are described
before. The comparison results on various datasets with dif-
ferent λ values are reported in Table 4. The empirical results
show that DIRK-REF consistently outperforms DIRK across
all datasets, validating the efficacy of the knowledge-based
representation refinement module. Furthermore, we find that
the performance gains on complex datasets benefit from a
larger λ, reflecting the importance of refinement for diffi-
cult data. Complete results of DIRK-REF on all datasets are
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Figure 4: Reliability diagram and expected calibration error on CIFAR-10. Darker color of bars indicates that more samples are
assigned with the corresponding confidence intervals.

DIRK(TEA) DIRK(STU) PRODEN CC RC CR-DPLL ABLE PICO

Fashion-MNIST 2.47 ± 0.25% 2.55 ± 0.29% 4.32 ± 0.05%↑ 5.41 ± 0.02%↑ 2.33 ± 0.09%↓ 2.08 ± 0.16%↑ 5.92 ± 0.27%↑ 4.18 ± 0.20%↑
Kuzushiji-MNIST 1.31 ± 0.06% 1.30 ± 0.14% 4.65 ± 0.03%↑ 0.99 ± 0.12%↓ 2.63 ± 0.08%↑ 0.73 ± 0.08%↓ 4.08 ± 0.36%↑ 5.39 ± 0.28%↑

CIFAR-10 1.53 ± 0.14% 1.98 ± 0.24% 13.67 ± 0.25%↑ 6.98 ± 0.18%↑ 7.82 ± 0.28%↑ 10.32 ± 0.49%↑ 4.00 ± 0.10%↑ 13.47 ± 0.28%↑

Table 3: Comparison evaluation (mean ± std) of ECE with M = 15 over 5 random runs. ↑ and ↓ indicate that the average
ECE of baseline are higher and lower than DIRK(TEA) / DIRK(STU).
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Figure 5: (left) Accuracy with varing τ1. (right) Accuracy
with varing queue size. The right vertical axis shows CIFAR-
100 accuracies, while the left for other datasets.

Fashion-MNIST Kuzushiji-MNIST CIFAR-10 CIFAR-100

λ = 0 (DIRK) 91.48 ± 0.21% 96.80 ± 0.52% 90.87 ± 0.25% 68.77 ± 0.49%
λ = 0.1 92.01 ± 0.24% 98.31 ± 0.20%98.31 ± 0.20%98.31 ± 0.20% 93.50 ± 0.16% 70.94 ± 1.17%
λ = 0.3 92.10 ± 0.08%92.10 ± 0.08%92.10 ± 0.08% 98.14 ± 0.20% 94.00 ± 0.13% 70.72 ± 0.54%
λ = 0.5 91.88 ± 0.32% 98.09 ± 0.17% 94.24 ± 0.03% 71.53 ± 1.35%
λ = 0.7 92.03 ± 0.58% 97.84 ± 0.18% 94.25 ± 0.26%94.25 ± 0.26%94.25 ± 0.26% 71.72 ± 0.63%71.72 ± 0.63%71.72 ± 0.63%
λ = 1.0 91.88 ± 0.36% 97.58 ± 0.32% 93.73 ± 0.31% 70.61 ± 0.85%

Table 4: Accuracy comparison (mean ± std) with diffrent λ
of the representation refinement module.

presented in Appendix A.8, demonstrating conclusions con-
sistent with the main results.

Analysis of τ1 and queue size. The above results used
τ1 = 0.01 and τ2 = 0.07, with τ2 = 0.07 being common
in complementations of contrastive learning (He et al. 2020;
Khosla et al. 2020; Xia et al. 2022; Wang et al. 2022b). Thus,
we only analyze the robustness of DIRK-REF to varing τ1.
Figure 5 (left) demonstrates that performance remains stable
across four datasets despite τ1 changes. This implies DIRK-
REF relies more on the representation refinement than the
temperature scaling. We also study the impact of queue size.
Figure 5 (right) shows a positive correlation between size
and performance, especially for CIFAR-100. Larger queue
capacity likely allows sampling more informative positives
and negatives to facilitate representation refinement.

Discriminative weight analysis in contrastive learning.
To reflect the effect of the fine-grained weight Eq. (9),
i.e. instance-wise weight of the representation refinement

Fashion-MNIST Kuzushiji-MNIST CIFAR-10 CIFAR-100

DIRK-REF 91.83 ± 0.19%91.83 ± 0.19%91.83 ± 0.19% 97.54 ± 0.29%97.54 ± 0.29%97.54 ± 0.29% 93.73 ± 0.31%93.73 ± 0.31%93.73 ± 0.31% 70.61 ± 0.85%70.61 ± 0.85%70.61 ± 0.85%
DIRK-ABLE 91.73 ± 0.37% 97.28 ± 0.30% 88.57 ± 5.05% 69.52 ± 1.49%
DIRK-PICO 91.75 ± 0.49% 97.25 ± 0.14% 93.21 ± 0.35% 69.65 ± 0.99%

Table 5: Accuracy comparison (mean ± std) using diffrent
granularity weights in the representation refinement module.

module, we compared DIRK-REF to two variant methods:
DIRK-PICO and DIRK-ABLE. DIRK-PICO refers to setting
the weight of all positive instances to be equal, while DIRK-
ABLE adjusts the weights of positive instances based on their
pseudo labels. Table 5 presents the results under high ambi-
guity level. As observed, our proposed method DIRK-REF
achieves the best performance across all four datasets. The
instance-wise contrastive learning aligns with intuitive ex-
pectations. For example, a Sphynx cat should not be as-
signed the same weight as a Garfield cat, even though they
are both cats. Ablation experiments analyzing the impact of
batch size on DIRK-REF are presented in Appendix A.6.

Conclusion

In this work, we considered a more realistic setting of PLL
problem where the candidate labels are instance-dependent.
We for the first time explored a self-distillation framework
for this problem and pointed out that partial label knowl-
edge should be preserved during distillation. Based on the
observation of the destruction of partial label knowledge
in vanilla self-distillation, we proposed a practical frame-
work named DIRK that utilizes a rectification process to
distill reliable knowledge in training. Furthermore, a rep-
resentation refinement module, which transfers the reactifi-
cated knowledge into the latent embedding space, is pro-
posed to be incorporated into DIRK. Our experiments on
benchmark datasets and real-world PLL datasets demon-
strate the superiority of our proposed method compared with
other state-of-the-art PLL methods. Source code is available
at https://github.com/wu-dd/DIRK.
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