
Long-tailed Partial Label Learning by Head Classifier and
Tail Classifier Cooperation

Yuheng Jia1,2, Xiaorui Peng1,2, Ran Wang3,4*, Min-Ling Zhang1,5*
1School of Computer Science and Engineering, Southeast University

2Key Laboratory of New Generation Artificial Intelligence Technology and Its
Interdisciplinary Applications (Southeast University), Ministry of Education, China

3Shenzhen Key Laboratory of Advanced Machine Learning and Applications,
School of Mathematical Science, Shenzhen University, Shenzhen, China

4Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen University, Shenzhen, China
5Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, China

{yhjia, xiaorui, zhangml}@seu.edu.cn; wangran@szu.edu.cn

Abstract

In partial label learning (PLL), each instance is associated
with a set of candidate labels, among which only one is cor-
rect. The traditional PLL almost all implicitly assume that the
distribution of the classes is balanced. However, in real-world
applications, the distribution of the classes is imbalanced or
long-tailed, leading to the long-tailed partial label learning
problem. The previous methods solve this problem mainly by
ameliorating the ability to learn in the tail classes, which will
sacrifice the performance of the head classes. While keeping
the performance of the head classes may degrade the perfor-
mance of the tail classes. Therefore, in this paper, we con-
struct two classifiers, i.e., a head classifier for keeping the
performance of dominant classes and a tail classifier for im-
proving the performance of the tail classes. Then, we propose
a classifier weight estimation module to automatically esti-
mate the shot belongingness (head class or tail class) of the
samples and allocate the weights for the head classifier and
tail classifier when making prediction. This cooperation im-
proves the prediction ability for both the head classes and the
tail classes. The experiments on the benchmarks demonstrate
the proposed approach improves the accuracy of the SOTA
methods by a substantial margin. Code and data are available
at : https://github.com/pruirui/HTC-LTPLL.

Introduction
Labeling ambiguity occurs in many real-world scenarios.
For example, as shown in Figure 1(a), a non-expert anno-
tator usually cannot accurately judge whether it is a Persian
cat, a Chinchilla cat, or a Ragdoll cat. A common-used strat-
egy is to treat all the possible labels as the candidate labels,
which leads to the partial label learning (PLL) problems
(Cour, Sapp, and Taskar 2011). Formally speaking, PLL is a
weakly supervised learning paradigm that allows samples to
be associated with a set of candidate labels, of which only
one is the ground truth label. PLL is more friendly to non-
expert annotators and can greatly reduce the cost of anno-
tation, which has been applied to many applications, such
as automatic face annotation (Chen, Patel, and Chellappa

*Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) Sample of PLL (b) Class distribution of “VOC”

Figure 1: (a) An image with three candidate labels
S={Persian, Chinchilla, Ragdoll}, where the ground truth
label is Ragdoll. (b) The class distribution of the real-world
PLL dataset PASCAL VOC is a long-tailed distribution.

2018), web mining (Luo and Orabona 2010), and face age
estimation (Panis and Lanitis 2014). The key to PLL is label
disambiguation, i.e., finding the correct label from the can-
didate label set. For instance, (Wang, Zhang, and Li 2022;
Jia, Jiang, and Wang 2023; Jia, Si, and Zhang 2023) used
the similarity of features for disambiguation i.e., if two sam-
ples are similar to each other in the features, they are likely
to share the same ground-truth label. (Lv et al. 2020; Jia,
Yang, and Dong 2023) perform disambiguation by dynami-
cally adjusting the confidence of the candidate labels. PiCO
(Wang et al. 2022b) introduces contrastive learning (He et al.
2020) to keep prototypes for disambiguation.

Despite the promise, these PLL methods all explicitly or
implicitly assume that the training samples follow an ap-
proximate class-balanced distribution, i.e., each class has
a roughly similar numbers of training samples. However,
the class distribution collected from the real-world applica-
tions usually obeys a long-tailed distribution (Zhang et al.
2023; Kang et al. 2020; Menon et al. 2021) i.e., the lead-
ing classes have much more samples than the non-leading
classes. As shown in Figure 1(b), the class distribution of the
real-world PLL dataset PASCAL VOC (Hong et al. 2023)
follows a long-tailed distribution. Therefore, the long-tailed
partial label learning (LT-PLL) is a more practical setting.
The long-tailed class distribution makes the current PLL bi-

ases towards the dominant classes, and performs poorly on
the tail classes, which further increase the difficulty for la-
bel disambiguation. Moreover, most methods designed for
long-tailed distribution learning cannot be used directly for
LT-PLL because they need the class distribution of the train-
ing set, which is unavailable in PLL due to label ambiguities.

So far, only few works were proposed to solve the under-
explored LT-PTT problem. For example, SoLar (Wang et al.
2022a) performs long-tailed label disambiguation by op-
timal transport based on an estimated class distribution.
RECORDS (Hong et al. 2023) first dynamically maintains
a prototype feature for estimation of class distribution, and
then uses logit-adjustment (Menon et al. 2021) to remedy
the bias stemed from long tail effect. Although the above
methods achieve great performance, they tend to fall into
a dilemma of trade-offs: focusing more on the tail classes
would degrade the performance of the head classes, while
focusing more on the head classes would neglect the learn-
ing of the tail classes.

To relieve this issue, we propose a model comprised of
two classifiers, where the head classifier and the tail clas-
sifier take the responsibility for the samples from the head
classes and the tail classes, respectively, leading to high-
quality prediction on all the class shots. Specifically, we first
disambiguate the candidate label set and estimate the class
distribution by exploring the information from the moving
average of the model’s outputs. Then, we construct the head
classifier and the tail classifier by an imbalanced sampling
strategy and a balanced sampling strategy based on the esti-
mated class distribution. On this basis, we propose a classi-
fier weight estimation (CWE) module, which can perceive
the class belongingness (i.e., head class or tail class) of
a sample and then adaptively weight and fuse the outputs
of the two classifiers to produce more accurate prediction.
We extensively evaluate our method on several benchmarks
and real-world TL-PLL datasets, which demonstrates that
our method largely outperforms SOTA methods, e.g., on the
CIFAR10-LT dataset we method improves the classification
accuracy by 13.46% compared with the best comparison.

Related Work
Partial Label Learning (PLL)
In PLL, each sample is associated with a candidate label set
in which the ground truth label is hidden, and the goal is to
learn a multi-class classifier from the ambiguous candidate
label set (Hüllermeier and Beringer 2006; Nguyen and Caru-
ana 2008). The average-based methods (Hüllermeier and
Beringer 2006; Cour, Sapp, and Taskar 2011) treat all the
candidate labels as true labels equally, while the identifica-
tion based methods (Lv et al. 2020; Zhang et al. 2022; Wen
et al. 2021) aim to find the ground-truth label from the can-
didate labels. Recently, deep learning-based PLL methods
(Feng et al. 2020; Wen et al. 2021) have become popular due
to their excellent performance. For example, PRODEN (Lv
et al. 2020) normalizes the model output over the candidate
label set as the disambiguated pseudo labels. PiCO (Wang
et al. 2022b) introduces contrastive learning into PLL and
performs disambiguation by maintaining class prototypes.

CORR (Wu, Wang, and Zhang 2022) performs consistency
regularization on candidate labels for disambiguation. De-
spite the promise, these methods neglect that in real-world
scenarios data is usually long-tailed distributed.

Long-tailed Partial Label Learning (LT-PLL)
There have been few works done on the LT-PLL problem.
For example, (Wang and Zhang 2018; Liu et al. 2021) ad-
dresses the LT-PLL problem by over-sampling and regular-
ization constraints. SoLar (Wang et al. 2022a) formulates
the LT-PLL as an optimal transport problem and uses the
Sinkhorn-Knopp algorithm to get a fast approximation. The
key idea of SoLar is to alleviate the pseudo label bias to-
wards head classes by constraining the pseudo labels to sat-
isfy the estimated class distribution priors, which are dy-
namically generated by the model. Almost at the same time,
RECORDS (Hong et al. 2023) proposes a dynamic rebalanc-
ing auxiliary strategy for LT-PLL, which dynamically recov-
ers the class distribution priors by maintaining prototypes,
and then performs logit adjustment on the output of model.

Although these methods have achieved some results, they
tend to overemphasize the tail classes (resp. head class) and
neglect the accuracy of the head classes (resp. tail class).
As a single classifier cannot always balance the perfor-
mance on the head and tail classes, we propose to con-
struct two classifiers that pay more attention to the head and
tail classes, respectively. Through the cooperation of these
two classifiers, the proposed model achieve excellent perfor-
mance on both the head classes and the tail classes.

Proposed Method
In this section, we will first introduce how to disambiguate
the candidate label set and estimate the class distribution
of training samples, then we present how to construct the
head classifier and the tail classifier. Furthermore, we pro-
pose the classifier weight estimation (CWE) module to al-
locate weights for the head classifier and the tail classifier,
and finally introduce how to make prediction based on the
cooperation of two classifiers. Before presenting our model,
we briefly introduce the used notations.

Let X = Rd be the d-dimensional input space and
Y = {1, · · · , C} be the label space, and C is the number of
classes. We denote D = {(xi, Si)}ni=1 the training dataset
with n examples, and each tuple in D comprises of a feature
vector xi ∈ X and a candidate label set Si ⊂ Y . In PLL, the
ground truth label yi is concealed in candidate label set i.e.
yi ∈ Si (Wang et al. 2022b). Our goal is to train a multi-class
classification model using the LT-PLL datasetD. Let f(x; θ)
denote a deep feature extractor parameterized by θ, which
transforms x to into an embedding vector. Then the output
logits of x on head classifier and tail classifier are given by
zh(x) = gh(f(x; θ);Wh) and zt(x) = gt(f(x; θ);W t) re-
spectively. We use Ph = [ph1 , · · · , phn]T = [phij]n×C and
P t = [pt1, · · · , ptn]T = [ptij]n×C to denote the probabil-
ity prediction matrix of the head classifier and tail classifier,
where phi = softmax(zh(xi)) and pti = softmax(zt(xi)).
For convenience, a batch of samples B of size nb is

Figure 2: Illustration for our method. The Head Classifier pays more attention to the head classes, while the Tail Classifier
focuses on the tail classes. Classifier Weight Estimation (CWE) Module is a shallow network that learns how to judge whether
a sample belongs to the head or tail classes based on the outputs of the two classifiers, and assigns corresponding weights to the
two classifiers for prediction.

used for the subsequent formula description. H(pi, qi) =∑C
j=1 qij logpij denotes cross-entropy loss.

Candidate Label Set Disambiguation and Class
Distribution Estimation
LT-PLL faces two kinds of challenges, where the first one
is how to find the correct label from the candidate label set
(a.k.a. label disambiguation), and the second one is to esti-
mate the class distribution of the training set that is critical to
handle the long-tailed learning problem. To this end, we pro-
pose to use the output of the model itself to solve those two
challenges simultaneously. Specifically, as the ground-truth
label only exits in the candidate label set, we first correct
the tail classifier’s prediction, making its probability on the
non-candidate label set zero, i.e.,

pcij =
I(j ∈ Si)p

t
ij∑

u∈Si
ptiu

, (1)

where I(·) is the indicator function that outputs 1 if the con-
dition satisfies while 0 otherwise, ptij is probability predic-
tion of tail classifier for the sample xi on the j-th label and
pcij is corrected prediction of tail classifier. As the predic-
tion on one epoch may be not reliable, we propose to use the
moving average of pcij to build the soft-pseudo label, i.e.,

qi ← µqi + (1− µ)pci , (2)

where µ ∈ [0, 1] is a predefined scalar and qi =
[qij , · · · , qiC] denotes the soft-pseudo label vector for xi

and all the soft-pseudo labels constitute the soft-pseudo la-
bel matrix Q = [q1, · · · , qn]T ∈ [0, 1]n×C . We chose the
output of the tail classifier rather than the head classifier to
construct the soft-pseudo label because in the LT-PLL sce-
nario, the pseudo-labeling will be biased toward the head
classes (Hong et al. 2023), especially for the output of the
head classifier, as it does not include any special design to
deal with the long-tailed problem. In contrast, the prediction
of the tail classifier is much more balanced. The soft-pseudo
label vector can be regarded as the disambiguated candidate
label confidence vector to further improve the network. To

initialize the i-th soft-pseudo label, we set qij = 1
|Si| if the

labels belong to the candidate label set, i.e., j ∈ Si, and
qij = 0 otherwise.

Moreover, as qi assesses the label confidence for the i-th
sample, we add that of all the samples together, which could
act as the estimated class distribution, i.e.,

Ptrain(y = j) =
1

n

n∑
i=1

qij , (3)

where Ptrain(y = j) records the sample size ratio for the
j-th class. As a summary, we use the moving average of
model’s output to achieve candidate label disambiguation
and class distribution estimation synchronously.

Head Classifier and Tail Classifier Construction
To handle the long-tailed distribution of the training sam-
ples, as shwon in Figure 2, we propose to construct two clas-
sifiers, where the head classifier (resp. tail classifier) is adept
in predicting samples in the head class shot (resp. tail class
shot). Specifically, we let the head classifier and the tail clas-
sifier share the same feature extractor. Then, we minimize
the cross-entropies between the output probabilities Ph and
P t of the two classifiers and the corresponding soft-pseudo
labels Q, i.e., on a batch of size nb, the preliminary loss func-
tions of the head classifier and the tail classifier are respec-
tively

Lh
pseudo =

1

nb

nb∑
i=1

H(phi , qi), (4)

Lt
pseudo =

1

nb

nb∑
i=1

H(pti, qi). (5)

To enable the head classifier (resp. tail classifier) to be good
at predicting the samples from the head classes (resp. tail
classes), we adopt two different high-confidence sampling
strategies for further training of the two classifiers.

Head Classifier Construction. For the head classifier, we
use a long-tailed sampling strategy (i.e., sampling accord-
ing to the estimated distribution of the training data) to se-
lect high-confidence samples. Specifically, we use rhj =

α(k) · Ptrain(y = j) · nb to represent the sampling num-
ber of the j-th class on a batch, where Ptrain(y = j) is the
estimated sample size ratio by Eq. (3). α(k) = αs + (αe −
αs) ·min(k

E , 1) is the ratio function of the epoch number k.
αs, αe and E are hyper-parameters. As the model training
progresses, the output of the model becomes more reliable
and the ratio α(k) increases. For each class j, we construct
Bh

j = {xi|j = argmaxu∈Si qiu,∀xi ∈ B} to represent the
samples belonging to class j, where qi is the soft-pseudo la-
bel of xi. Then the reliable samples set selected for the head
classifier is

Bh
re =

C⋃
j=1

BottomK(Bh
j , r

h
j), (6)

where BottomK(Bh
j , r

h
j) means selecting the rhj samples

with the smallest loss lhi = H(phi , qi) from Bh
j . For these

reliable samples, we use mixup (Zhang et al. 2018) to en-
hance the model’s memory of the correspondence between
features and labels. Specifically, we construct new training
samples by linearly interpolating a sample xi ∈ Bh

re with
another sample xj ∈ Bh

re randomly: xm
i = ϕxi+(1−ϕ)xj ,

qmi = ϕqi + (1 − ϕ)qj , where ϕ ∼ Beta(ζ, ζ) and ζ is a
hyper-parameter that controls the mixup ratio. Then we de-
fine mixup loss as the cross-entropy of predictions of xm

and qm:

Lh
mixup =

1

|Bh
re|

|Bh
re|∑

i=1

H(pmh
i , qmi), (7)

where pmh
i = softmax(zh(xm

i)) denotes the head classi-
fier predication for xm

i . Putting them together, the overall
training loss for the head classifier becomes

Lh = Lh
pseudo + β(k) · Lh

mixup, (8)

where a dynamic balancing function β(k) = min(k/E, 1)
w.r.t. the epoch number k is employed where E is a preset
epoch number, because the output is not reliable in the early
stages of training .

Tail Classifier Construction. Different from the head
classifier, we adopt a uniform sampling strategy for selecting
the high-confidence samples for the tail classifier. Specifi-
cally, the sampling number of the j-th class on a batch is
rtj = α(k) · 1

C · nb. To further increase the ability of the tail
classifier in handling the samples in the tail classes, we per-
form logit adjustment (Menon et al. 2021) on the output of
the head classifier to guide the selection of high-confidence
samples and the training of the tail classifier. The adjusted
prediction of head classifier for the i-th sample on the j-th
class is

padjij =
I(j ∈ Si)exp(z

h
j (xi)− τ logPtrain(y = j))∑

u∈Si
exp(zhu(xi)− τ logPtrain(y = u))

. (9)

To bias the adjusted probabilities towards the tail classes to
some extent, we set τ > 1 as the adjustment coefficient. I(·)
is the indicator function that outputs 1 if the condition sat-
isfies while 0, otherwise, which ensures the probabilities on

the non-candidate label set are zero. Similarly, we construct
the sample set Bt

j = {xi|j = argmaxu∈Si
padjiu ,∀xi ∈ B}

for the j-th class, and select rtj samples with the smallest
loss lti = H(pti, p

adj
i) to construct the reliable sample set

Bt
re =

C⋃
j=1

BottomK(Bt
j , r

t
j). (10)

For the selected reliable samples, we use the cross-entropy
loss

Lt
ce =

1

|Bt
re|

|Bt
re|∑

i=1

H(pti, p
adj
i) (11)

to make the tail classifier pay more attention to the tail
classes. Mixup is also used for reliable samples to en-
sure the classifier to memorize the connection between fea-
tures and labels. By the same way, we obtain new sam-
ples xm

i = ϕxi + (1 − ϕ)xj and corresponding labels
pmadj
i = ϕpadji + (1 − ϕ)padjj . Then the mixup loss for

the tail classifier is

Lt
mixup =

1

|Bt
re|

|Bt
re|∑

i=1

H(pmt
i , pmadj

i), (12)

where pmt = softmax(zt(xm)) denotes the tail classifier
predication of xm. Finally, for the tail classifier, the overall
loss is

Lt = Lt
pseudo + β(k) · (Lt

ce + Lt
mixup), (13)

where β(k) is identical to that of the head classifier.

Classifier Weight Estimation Module
So far, we have constructed two classifiers with different
strengths, so we need to fuse the results of the two classifiers
together to get a reasonable prediction on the test set. An in-
tuitive approach is to use the head classifier (resp. tail classi-
fier) to predict the samples from the head classes, (resp. tail
classes), but unfortunately the shot belongingness of a sam-
ple is agnostic. To solve this problem, we propose a classifier
weight estimation (CWE) module that can automatically es-
timate the shot belongingness (head classes or tail classes) of
the samples and allocate the weights for the head classifier
and tail classifier to achieve cooperation when making pre-
diction. Specifically, the CWE module takes the predictions
of the two classifiers on each sample as input, and computes
the corresponding weights of the two classifiers. Since the
head classifier is too biased towards the head classes, we
calibrate the output of it by

p̂hij =
exp(zhj (xi)− logPtrain(y = j))∑C
k=1 exp(z

h
k (xi)− logPtrain(y = k))

, (14)

where p̂hi denotes calibrated prediction. We concatenate the
predications of the two classifier to get [p̂hi ||pti] ∈ R1×2C ,
and the parameters of the CWE module are represented by
W f ∈ R2C×2. Through an activation function LeakyReLU

Algorithm 1: Training Process the Proposed Method
Input: Training dataset D, hyper-parameters τ , ζ and µ.
Output: Feature extractor f , head classifier gh, tail classifier gt,
and parameters of CWE module W f .
1: Initialize the parameters of f , gh, gt, and parameters of CWE

module W f randomly;
2: for epoch = 1, 2, · · · do
3: for batch = 1, 2, · · · do
4: Get head classifier prediction Ph and tail classifier pre-

diction P t on a batch of data B of size nb;
5: Calculate pseudo loss by (4) and (5);
6: Select reliable samples for head classifier by (6);
7: Calculate loss of head classifier by (8);
8: Select reliable samples for tail classifier by (10);
9: Calculate loss of tail classifier by (13);

10: Calculate weights of the two classifiers for each sample
by (15);

11: Calculate loss of CWE module by (16);
12: Obtain the overall loss by summing up the three losses

by (17);
13: Update network parameter via gradient descent;
14: Update soft-pseudo labels by (2);
15: end for
16: Calculate class distribution by (3);
17: end for

(Maas, Hannun, and Ng 2013), the weights of two classifiers
are denoted as

[wh
i ||wt

i] = softmax(LeakyReLU([p̂hi ||pti]W f)), (15)

where wh
i and wt

i are the weights of head classifier and tail
classifier on sample xi respectively, and softmax is used to
normalize the weights. We then minimize the cross-entropy
of the fused prediction and the soft pseudo-labels

Lf =
1

nb

nb∑
i=1

H(pfi , qi), (16)

to infer the learnable parameters of the CEW module, where
pfi = wh

i · p̂hi + wt
i · pti denotes the fused prediction.

Joint Optimization
By adding these losses together, the final loss becomes:

L = Lh + Lt + Lf . (17)

Figure 2 shows the overall framework of our model with gra-
dient forward and backpropagation processes. The pseudo-
code is shown in Algorithm 1.

Prediction
For a new test sample x, we first compute the calibrated pre-
diction p̂h of head classifier with (14). Then, through p̂h and
the prediction of the tail classifier pt = softmax(zt(x)),
we compute the corresponding weights wh and wt by the
proposed CWE module in (15), and we have p = wh ·
p̂h + wt · pt. Finally, the prediction for x is obtained by
ypred = argmax p.

Experiments and Analysis
Experiment Setup
Datasets. Following the previous works (Wang et al.
2022a; Hong et al. 2023), we evaluated our method on
the long-tailed versions of CIFAR10 and CIFAR100 and
a real-world LT-PLL dataset PASCAL VOC. To generate
the long-tailed training sets, nj samples for the j-th class
in the CIFAR10 and CIFAR100 training sets were ran-
domly selected according to a pre-determined imbalance ra-
tio γ = n1

nC
, where nj = n1 · γ

j−1
C−1 and C is the number

of classes. Specifically, n1 = 5000 and C = 10 for CI-
FAR10, and n1 = 500 and C = 100 for CIFAR100. We
applied different imbalance ratios to evaluate our method,
with γ ∈ {100, 150, 200, 250} for CIFAR10 and γ ∈
{20, 50, 100, 150} for CIFAR100. Following (Wang et al.
2022a,b), we constructed the candidate label set for each
sample by manually flipping negative labels y ̸= y to false-
positive labels with probability η = P (y ∈ Si|y ̸= y). We
considered η ∈ {0.3, 0.5} for CIFAR10 and η ∈ {0.05, 0.1}
for CIFAR100. The real-world LT-PLL dataset PASCAL
VOC is constructed from PASCAL VOC 2007 (Everingham
et al. 2010) by RECORDS (Hong et al. 2023).

Compared methods. We compared our method with five
SOTA PLL methods including LW (Wen et al. 2021), CC
(Feng et al. 2020), PRODEN (Lv et al. 2020), CAVL (Zhang
et al. 2022) and PiCO (Wang et al. 2022b), and two recent
LT-PLL methods including Solar (Wang et al. 2022a) and
RECORDS (Hong et al. 2023). The hyper-parameters of the
compared methods were set according to the original papers.

Implementation details. We used the 18-layer ResNet as
the backbone. For all methods, they were trained for 800
epochs using SGD as the optimizer with momentum of 0.9
and weight decay of 0.001. The initial learning rate was set
to 0.01, and divided by 10 after 700 epochs. We set batch
size to 256 for CIFAR10 and CIFAR100 and 64 for PAS-
CAL VOC. For all methods on PASCAL VOC, we loaded
the pre-trained weights from ImageNet for the feature ex-
tractor to improve the training efficiency. For our method,
we fixed the mixup hyper-parameter ζ = 4, µ = 0.6 and
linearly ramp up reliable sample ratio α from 0.2 to 0.6 in
first 50 epochs, dynamic balancing coefficient β from 0 to
0.9 in first 50 epochs for all experiments. When imbalance
ratio γ ≥ 200, the logit adjustment coefficient τ was set to
1.2, otherwise, τ = 2. RECORDS is an plug-in approach for
PLL to deal with LT-PLL. We used the best setting provided
by the original paper, i.e., CORR+RECORDS+Mixup, for
all RECORDS experiments in this paper. All the experi-
ments were conducted three times under the same random
seed, and the model with the best performance on the vali-
dation dataset is taken as the final model.

Main Results
Our method achieves SOTA classification accuracy. As
shown in Table 1, on the CIFAR10 and CIFAR100 datasets
with different flipping probability η and different imbalance
ratios γ, our method outperforms all the compared methods
by a large margin. For example, on CIFAR10 with η = 0.3,

Method
CIFAR10

η = 0.3 η = 0.5

γ = 100 γ = 150 γ = 200 γ = 250 γ = 100 γ = 150 γ = 200 γ = 250

PLL

LW (ICML 2021) 38.98 ± 3.39 41.00 ± 0.34 38.58 ± 3.63 36.04 ± 3.09 20.22 ± 1.42 20.45 ± 0.93 19.72 ± 0.58 19.99 ± 0.59
CC (NeurIPS 2020) 60.45 ± 1.06 54.96 ± 3.54 51.87 ± 0.57 50.69 ± 0.98 47.64 ± 1.07 44.20 ± 0.89 43.02 ± 0.42 40.22 ± 0.75

PRODEN (ICML 2020) 54.70 ± 1.07 51.00 ± 1.45 48.49 ± 0.41 45.19 ± 1.40 42.90 ± 1.49 39.33 ± 0.97 38.18 ± 0.87 36.77 ± 0.92
CAVL (ICLR 2022) 39.51 ± 0.27 39.09 ± 0.61 39.16 ± 0.75 38.27 ± 0.12 37.51 ± 1.07 34.61 ± 2.27 34.81 ± 2.02 33.28 ± 1.74
PiCO (ICLR 2022) 72.81 ± 0.37 69.29 ± 0.99 65.05 ± 1.44 64.04 ± 1.45 67.50 ± 2.87 62.95 ± 2.83 57.55 ± 0.73 53.38 ± 3.45

LT-PLL
RECORDS (ICLR 2023) 77.95 ± 0.36 73.63 ± 0.55 71.67 ± 0.57 66.73 ± 0.68 74.05 ± 1.11 67.74 ± 1.30 63.75 ± 0.47 58.61 ± 2.35

SoLar (NeurIPS 2022) 79.49 ± 0.50 74.59 ± 0.63 70.74 ± 0.47 68.24 ± 1.15 75.71 ± 1.26 70.21 ± 2.92 64.25 ± 2.02 60.57 ± 2.75
Ours 85.66 ± 1.44 82.46 ± 1.09 80.57 ± 1.40 78.11 ± 2.28 83.35 ± 2.24 79.79 ± 2.53 77.71 ± 1.12 72.37 ± 1.74

Method
CIFAR100

η = 0.05 η = 0.1

γ = 20 γ = 50 γ = 100 γ = 150 γ = 20 γ = 50 γ = 100 γ = 150

PLL

LW (ICML 2021) 36.58 ± 0.48 28.93 ± 0.48 25.41 ± 0.53 23.50 ± 0.86 27.14 ± 0.34 22.89 ± 0.72 20.06 ± 1.08 17.72 ± 0.09
CC (NeurIPS 2020) 41.40 ± 1.34 32.92 ± 0.73 27.81 ± 0.76 25.94 ± 0.25 32.50 ± 1.33 26.42 ± 0.84 22.68 ± 0.33 20.37 ± 1.14

PRODEN (ICML 2020) 38.68 ± 0.18 31.80 ± 0.18 27.68 ± 0.03 24.97 ± 0.03 30.99 ± 0.29 24.18 ± 0.07 21.69 ± 0.14 19.81 ± 0.01
CAVL (ICLR 2022) 27.55 ± 0.46 23.49 ± 0.79 19.94 ± 0.20 19.40 ± 0.55 18.29 ± 0.99 15.32 ± 0.26 14.42 ± 0.81 14.36 ± 0.50
PiCO (ICLR 2022) 48.25 ± 1.52 40.12 ± 0.37 35.45 ± 0.85 33.09 ± 0.33 39.64 ± 0.71 33.75 ± 1.77 29.40 ± 0.55 28.15 ± 0.52

LT-PLL
RECORDS (ICLR 2023) 57.60 ± 1.99 49.04 ± 1.57 43.36 ± 1.95 39.83 ± 0.34 54.73 ± 0.80 45.47 ± 0.74 40.48 ± 0.23 37.37 ± 1.21

SoLar (NeurIPS 2022) 57.13 ± 1.46 47.53 ± 1.22 41.94 ± 1.92 39.13 ± 0.30 52.56 ± 1.62 42.49 ± 0.59 36.36 ± 1.48 33.81 ± 0.43
Ours 61.13 ± 1.15 53.26 ± 1.90 47.49 ± 0.63 44.83 ± 1.28 60.53 ± 1.45 51.26 ± 1.31 46.24 ± 1.70 42.63 ± 1.45

Table 1: Accuracy comparisons on CIFAR10 and CIFAR100 under various flipping probability η and imbalance ratio γ. Bold
and underlined indicate the best and second best results, respectively. Accuracies are presented in percentage (%) form.

Method
CIFAR10 (η = 0.5, γ = 150) CIFAR100 (η = 0.1, γ = 50)

Overall Many Medium Few Overall Many Medium Few

PLL

LW (ICML 2021) 20.87 50.95 0.00 0.00 22.17 55.70 11.15 0.00
CC (NeurIPS 2020) 43.56 79.93 37.6 0.43 26.63 57.36 21.53 1.15

PRODEN (ICML 2020) 40.01 79.12 27.87 0.00 24.14 53.64 18.41 0.55
CAVL (ICLR 2022) 36.43 80.25 14.43 0.00 15.47 45.33 1.50 0.00
PiCO (ICLR 2022) 64.75 80.37 71.73 36.93 34.87 62.79 34.24 7.61

LT-PLL
RECORDS (ICLR 2023) 67.10 88.17 71.10 35.00 46.31 76.09 45.65 8.52

SoLar (NeurIPS 2022) 66.85 90.50 68.73 33.43 41.81 68.85 41.53 15.06
Ours 82.22 91.58 80.83 71.13 50.52 76.21 53.21 22.06

Table 2: Fine-grained analysis on CIFAR10 with η = 0.5 and γ = 150 and CIFAR100 with η = 0.1 and γ = 50. Many/Medi-
um/Few corresponds to three partitions on the long-tailed data. Bold and underlined indicate the best and second best results,
respectively. Accuracies are presented in percentage (%) form.

our method improves upon the best compared method by
6.17%, 7.87%, 8.90% and 9.87% on four different imbal-
ance ratios γ = 100, 150, 200 and 250 respectively. Espe-
cially, on CIFAR10 with η = 0.5 and γ = 200, our method
performs 13.46% better than the best compared method.

Our method achieves SOTA performance on different
class shots. To compare the performance of different
methods on classes of different shots, we divide the CI-
FAR10 (η = 0.5, γ = 150) and the CIFAR100 (η = 0.1,
γ = 50) into three groups according to the number of
samples per class: Many/Medium/Few. Many denotes the
classes with the top 1

3 of samples, Few are the classes with
the bottom 1

3 of samples, and the remaining classes belong
to Medium. As shown in Table 2, our method outperforms
the compared methods not only on the overall accuracy but
also on all the class shots. It is worth noting that on CI-
FAR100 (η = 0.1, γ = 50), both SoLar and RECORDS fall
into a trade-off dilemma: SoLar is skilled in the tail classes
and has lower performance on the Many group and Medium
group than RECORDS by 7.24% and 4.12%, respectively,

while RECORDS pays more attention to the head classes
and has lower accuracy than SoLar by 6.54% on the Few
group. However, our method overcomes this difficulty and
maintains high accuracy on both the tail classes (53.21%
on Medium group and 22.06% on Few group) and the head
classes (76.21% on Many group). Similar phenomenon also
occurs on CIFAR10 (η = 0.5, γ = 150). Those observa-
tions explain why our method far exceeds the other com-
pared methods in terms of overall accuracy.

Further Analysis
Skilled in real-world LT-PLL. To further verify the supe-
riority of our method, we evaluated different methods on one
real-world LT-PLL dataset PASCAL VOC. As indicated in
Table 3, our method achieves the highest accuracy, outper-
forming the best compared method by 5.62% on the whole
dataset, and by 11.79% on the Few group.

More accurate class distribution estimation. Figure 3
compares the class distribution estimation ability of all the
LT-PLL methods, where we can find that our method gives

Method
Result on PASCAL VOC

Overall Many Medium Few

PLL

LW (ICML 2021) 18.70 50.75 9.93 0.00
CC (NeurIPS 2020) 35.78 68.17 28.00 15.79

PRODEN (ICML 2020) 38.30 63.17 32.93 22.36
CAVL (ICLR 2022) 30.12 57.92 26.79 9.64
PiCO (ICLR 2022) 49.05 70.50 45.79 33.93

LT-PLL
RECORDS (ICLR 2023) 59.70 68.92 68.57 42.93

SoLar (NeurIPS 2022) 61.83 76.33 65.64 45.57
Ours 67.45 75.83 70.36 57.36

Table 3: Classification accuracy of each method on real
world TL-PLL dataset PASCAL VOC. Many/Medium/Few
corresponds to three partitions on the long-tailed data. Bold
and underlined indicate the best and second best results, re-
spectively. Accuracies are presented in percentage (%) form.

Figure 3: The real/estimated class distribution on CIFAR10
dataset (η = 0.3, γ = 200). The class distribution estimated
by our method is very close to the real one, while SoLar and
RECORDS fails to recover real class distribution especially
in tail classes.

a more accurate estimation of the real class distribution, es-
pecially for the tail classes.

CWE correctly estimates the weights for two classifiers.
Figure 4 shows our model allocates more weights for the
head classifier than the tail classifier when predicting sam-
ples from the head classes, and the opposite is true for
tail classes, indicating that the proposed CWE module can
roughly estimates the class group of the samples and assign
the corresponding weights for two classifiers.

Classifiers cooperation is important. We compared our
method with two variants:1) Ours with Only Tail (V1) which
only keeps the tail classifier and 2) Ours with Only Head
(V2) which only keeps the head classifier. As depicted in
Table 4, V1 and V2 are biased towards certain class shot
leading to suboptimal overall performance (V1: 69.31%,
V2: 68.12%). The CWE module assigns appropriate weights
to classifiers based on sample characteristics, achieving
12.66% and 13.85% accuracy improvement on V1 and V2
respectively.

All the components contribute to the proposed model.
We conducted additional experiments to assess the effec-
tiveness of each part. Specifically, we tested Ours w/o Pe-

Method
CIFAR10 (η = 0.3, γ = 200)

Overall Many Medium Few
Ours 81.97 92.43 78.10 76.67

Ours with Only Tail (V1) 69.31 44.00 77.90 83.17
Ours with Only Head (V2) 68.12 96.20 66.85 41.73

Ours w/o Pesudo (V3) 63.49 57.10 76.97 51.90
Ours w/o Mixup (V4) 72.32 93.83 67.50 57.23

Ours w/o Logit Adjustment (V5) 73.79 82.43 74.22 64.57
Ours w/o Sample Selection (V6) 74.25 83.67 73.03 66.47

Table 4: Ablation study of our method on LT-PLL datasets
CIFAR10 (η = 0.3, γ = 200). Accuracies are presented in
percentage (%) form.

Figure 4: The mean weights of head classifier and tail classi-
fier for the testing samples of CIFAR10 (η = 0.3, γ = 200)
estimated by the CWE module in different shots. During the
prediction, the samples belonging to the head classes have
larger weights in the head classifier, while the samples be-
longing to the tail classes have larger weights in the tail clas-
sifier.

sudo by removing the soft-pseudo label losses in Eq. (4) and
Eq. (5); Ours w/o Mixup by eliminating all terms that used
mixup; Ours w/o Logit Adjustment by removing the logit ad-
justment and using the soft-pseudo labels instead; and Ours
w/o Sample Selection by using all samples as reliable sam-
ples without any reliable sample selection for the two classi-
fiers. From Table 4, we can see that all the ingredients of our
method contribute to the performance improvement. Espe-
cially in the ablation experiment Ours w/o Pesudo, the over-
all performance has a severe decline of 18.48%, highlight-
ing the importance of the soft-pseudo labels for guiding the
model training.

Conclusion
In this work, we have present a novel model to solve the per-
formance dilemma of the previous LT-PLL methods. Specif-
ically, we trained two classifiers that excel in different class
shots and combine their predictions automatically by an ef-
fective CWE module. We conducted extensive experiments
on both synthetic and real-world LT-PLL datasets, suggest-
ing the salient performance advantage of our method. More-
over, the class distribution estimated by our method is more
accurate than the SOTA methods, and the classifier weights
estimated by CWE module can reflect the class shot belong-
ingness of samples.

References
Chen, C.; Patel, V. M.; and Chellappa, R. 2018. Learning
from Ambiguously Labeled Face Images. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 40(7):
1653–1667.

Cour, T.; Sapp, B.; and Taskar, B. 2011. Learning from
Partial Labels. Journal of Machine Learning Research, 12:
1501–1536.

Everingham, M.; Gool, L. V.; Williams, C. K. I.; Winn,
J. M.; and Zisserman, A. 2010. The Pascal Visual Object
Classes (VOC) Challenge. International Journal of Com-
puter Vision, 88(2): 303–338.

Feng, L.; Lv, J.; Han, B.; Xu, M.; Niu, G.; Geng, X.; An, B.;
and Sugiyama, M. 2020. Provably Consistent Partial-Label
Learning. In Advances in Neural Information Processing
Systems 33, 10948–10960.

He, K.; Fan, H.; Wu, Y.; Xie, S.; and Girshick, R. B. 2020.
Momentum Contrast for Unsupervised Visual Representa-
tion Learning. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 9726–9735.

Hong, F.; Yao, J.; Zhou, Z.; Zhang, Y.; and Wang, Y. 2023.
Long-Tailed Partial Label Learning via Dynamic Rebalanc-
ing. In The Eleventh International Conference on Learning
Representations.

Hüllermeier, E.; and Beringer, J. 2006. Learning from
ambiguously labeled examples. Intelligent Data Analysis,
10(5): 419–439.

Jia, Y.; Jiang, J.; and Wang, Y. 2023. Semantic Dissimilarity
Guided Locality Preserving Projections for Partial Label Di-
mensionality Reduction. In 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, 964–973.

Jia, Y.; Si, C.; and Zhang, M. 2023. Complementary Classi-
fier Induced Partial Label Learning. In 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining.

Jia, Y.; Yang, F.; and Dong, Y. 2023. Partial Label Learn-
ing with Dissimilarity Propagation guided Candidate Label
Shrinkage. In Thirty-seventh Conference on Neural Infor-
mation Processing Systems.

Kang, B.; Xie, S.; Rohrbach, M.; Yan, Z.; Gordo, A.; Feng,
J.; and Kalantidis, Y. 2020. Decoupling Representation and
Classifier for Long-Tailed Recognition. In 8th International
Conference on Learning Representations.

Liu, W.; Wang, L.; Chen, J.; Zhou, Y.; Zheng, R.; and He, J.
2021. A Partial Label Metric Learning Algorithm for Class
Imbalanced Data. In Asian Conference on Machine Learn-
ing, volume 157, 1413–1428.

Luo, J.; and Orabona, F. 2010. Learning from Candidate La-
beling Sets. In Advances in Neural Information Processing
Systems 23, 1504–1512.

Lv, J.; Xu, M.; Feng, L.; Niu, G.; Geng, X.; and Sugiyama,
M. 2020. Progressive Identification of True Labels for
Partial-Label Learning. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, volume 119, 6500–
6510.

Maas, A. L.; Hannun, A. Y.; and Ng, A. Y. 2013. Recti-
fier nonlinearities improve neural network acoustic models.
In Proceedings of the 30th International Conference on Ma-
chine Learning, volume 30.
Menon, A. K.; Jayasumana, S.; Rawat, A. S.; Jain, H.; Veit,
A.; and Kumar, S. 2021. Long-tail learning via logit adjust-
ment. In 9th International Conference on Learning Repre-
sentations.
Nguyen, N.; and Caruana, R. 2008. Classification with par-
tial labels. In Proceedings of the 14th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, 551–559.
Panis, G.; and Lanitis, A. 2014. An Overview of Research
Activities in Facial Age Estimation Using the FG-NET Ag-
ing Database. In European Conference on Computer Vision
Workshops, 737–750.
Wang, D.; Zhang, M.; and Li, L. 2022. Adaptive Graph
Guided Disambiguation for Partial Label Learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
44(12): 8796–8811.
Wang, H.; Xia, M.; Li, Y.; Mao, Y.; Feng, L.; Chen, G.; and
Zhao, J. 2022a. SoLar: Sinkhorn Label Refinery for Imbal-
anced Partial-Label Learning. In Advances in Neural Infor-
mation Processing Systems 35, volume 35, 8104–8117.
Wang, H.; Xiao, R.; Li, Y.; Feng, L.; Niu, G.; Chen, G.; and
Zhao, J. 2022b. PiCO: Contrastive Label Disambiguation
for Partial Label Learning. In The Tenth International Con-
ference on Learning Representations.
Wang, J.; and Zhang, M. 2018. Towards Mitigating the
Class-Imbalance Problem for Partial Label Learning. In
Proceedings of the 24th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, 2427–
2436.
Wen, H.; Cui, J.; Hang, H.; Liu, J.; Wang, Y.; and Lin, Z.
2021. Leveraged Weighted Loss for Partial Label Learning.
In Proceedings of the 38th International Conference on Ma-
chine Learning, 11091–11100.
Wu, D.; Wang, D.; and Zhang, M. 2022. Revisiting Con-
sistency Regularization for Deep Partial Label Learning.
In International Conference on Machine Learning, 24212–
24225.
Zhang, F.; Feng, L.; Han, B.; Liu, T.; Niu, G.; Qin, T.; and
Sugiyama, M. 2022. Exploiting Class Activation Value for
Partial-Label Learning. In The Tenth International Confer-
ence on Learning Representations.
Zhang, H.; Cissé, M.; Dauphin, Y. N.; and Lopez-Paz, D.
2018. mixup: Beyond Empirical Risk Minimization. In 6th
International Conference on Learning Representations.
Zhang, Y.; Kang, B.; Hooi, B.; Yan, S.; and Feng, J. 2023.
Deep long-tailed learning: A survey. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(9): 10795 –
10816.

