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Abstract— In multi-label learning, each instance in the training
set is associated with a set of labels, and the task is to output a
label set whose size is unknown a priori for each unseen instance.
In this paper, a multi-label lazy learning approach named ML -
kNN is presented, which is derived from the traditionalk-nearest
neighbor (kNN) algorithm. In detail, for each new instance, its
k nearest neighbors are firstly identified. After that, according
to the label sets of these neighboring instances, maximum a
posteriori (MAP) principle is utilized to determine the label set
for the new instance. Experiments on a real-world multi-label
bioinformatic data show that M L -kNN is highly comparable to
existing multi-label learning algorithms.

I. I NTRODUCTION

Multi-label classification tasks are ubiquitous in real-world
problems. For example, in text categorization, each document
may belong to several predefined topics; in bioinformatics, one
protein may have many effects on a cell when predicting its
functional classes. In either case, instances in the training set
are each associated with a set of labels, and the task is to
output the label set for the unseen instance whose set size is
not availablea priori.

Traditional two-class and multi-class problems can both be
cast into multi-label ones by restricting each instance to have
only one label. However, the generality of multi-label problem
makes it more difficult to learn. An intuitive approach to
solve multi-label problem is to decompose it into multiple
independent binary classification problems (one per category).
But this kind of method does not consider the correlations be-
tween the different labels of each instance. Fortunately, several
approaches specially designed for multi-label classification
have been proposed, such as multi-label text categorization
algorithms [1], [2], [3], multi-label decision trees [4], [5] and
multi-label kernel method [6], etc. However, multi-label lazy
learning approach is still not available. In this paper, this
problem is addressed by a multi-label classification algorithm
namedML-kNN, i.e. Multi-Labelk-Nearest Neighbor, which is
derived from the populark-nearest neighbor (kNN) algorithm
[7]. ML-kNN first identifies thek nearest neighbors of the test
instance where the label sets of its neighboring instances are
obtained. After that, maximum a posteriori (MAP) principle
is employed to predict the set of labels of the test instance.

The rest of this paper is organized as follows. Section 2 re-
views previous works on multi-label learning and summarizes
different evaluation criteria used in this area. Section 3 presents
the ML-kNN algorithm. Section 4 reports experimental results

on a real-world multi-label bioinformatic data. Finally, Section
5 concludes and indicates several issues for future work.

II. M ULTI -LABEL LEARNING

Research of multi-label learning was initially motivated
by the difficulty of concept ambiguity encountered in text
categorization, where each document may belong to several
topics (labels) simultaneously. One famous approach to solv-
ing this problem is BoosTexter proposed by Schapire and
Singer [2] , which is in fact extended from the popular
ensemble learning method AdaBoost [8]. In the training phase,
BoosTexter maintains a set of weights over both training
examples and their labels, where training examples and their
corresponding labels that are hard (easy) to predict correctly
get incrementally higher (lower) weights. Following the work
of BoosTexter, multi-label learning has attracted many atten-
tions from machine learning researchers.

In 1999, McCallum [1] proposed a Bayesian approach to
multi-label document classification, where a mixture proba-
bilistic model is assumed to generate each document and EM
[9] algorithm is utilized to learn the mixture weights and
the word distributions in each mixture component. In 2001,
through defining a special cost function based onRanking
Loss (as shown in Eq.(5)) and the corresponding margin
for multi-label models, Elisseeff and Weston [6] proposed
a kernel method for multi-label classification. In the same
year, Clare and King [4] adapted C4.5 decision tree [10] to
handle multi-label data through modifying the definition of
entropy. One year later, using independent word-basedBag-of-
Words representation [11], Ueda and Saito [3] presented two
types of probabilistic generative models for multi-label text
called parametric mixture models (PMM1, PMM2), where the
basic assumption under PMMs is that multi-label text has a
mixture of characteristic words appearing in single-label text
that belong to each category of the multi-categories. In the
same year, Comité et al. [5] extended alternating decision
tree [12] to handle multi-label data, where the AdaBoost.MH
algorithm proposed by Schapire and Singer [13] is employed
to train the multi-label alternating decision tree. In 2004,
Boutell et al. [14] applied multi-label learning techniques to
scene classification. They decomposed the multi-label learning
problem into multiple independent binary classification prob-
lems (one per category), where each example associated with
label setY will be regarded as positive example when building



classifier for classy ∈ Y while regarded as negative example
when building classifier for classy /∈ Y .

It is worth noting that in multi-label learning paradigm,
various evaluation criteria have been proposed to measure the
performance of a multi-label learning system. LetX = Rd be
the d-dimensional instance domain and letY = {1, 2, ..., Q}
be a set of labels or classes. Given a learning setS =<
(x1, Y1), ..., (xm, Ym) >∈ (X × 2Y)m i.i.d. drawn from an
unknown distributionD, the goal of the learning system is to
output a multi-label classifierh : X → 2Y which optimizes
some specific evaluation criterion. However, in most cases, the
learning system will produce aranking function of the form
f : X × Y → R with the interpretation that, for a given
instancex, the labels inY should be ordered according to
f(x, ·). That is, a labell1 is considered to be ranked higher
than l2 if f(x, l1) > f(x, l2). If Y is the associated label set
for x, then a successful learning system will tend to rank labels
in Y higher than those not inY . Note that the corresponding
multi-label classifierh(·) can be conveniently derived from the
ranking functionf(·, ·):

h(x) = {l|f(x, l) > t(x), l ∈ Y} (1)

wheret(x) is the threshold function which is usually set to be
the zero constant function.

Based on the above notations, several evaluation criteria can
be defined in multi-label learning as shown in [2]. Given a
set of multi-label instancesS = {(x1, Y1), ..., (xm, Ym)}, a
learned ranking functionf(·, ·) and the corresponding multi-
label classifierh(·), the first evaluation criterion to be intro-
duced is the so-calledHamming Lossdefined as:

HLS(h) =
1
m

m∑

i=1

1
Q
|h(xi)∆Yi| (2)

where∆ stands for the symmetric difference between two sets.
The smaller the value ofHLS(h), the better the classifier’s
performance. When|Yi| = 1 for all instances, a multi-
label system is in fact a multi-class single-label one and the
Hamming Loss is2

Q times the loss of the usual classification
error.

While Hamming Loss is based on the multi-label classifier
h(·), the following measurements will be defined based on the
ranking functionf(·, ·). The first ranking-based measurement
to be considered isOne-error:

One- errS(f) =
1
m

m∑

i=1

H(xi), where

H(xi) =
{

0, if arg maxk∈Y f(xi, k) ∈ Yi

1, otherwise (3)

The smaller the value ofOne−errS(f), the better the perfor-
mance. Note that, for single-label classification problems, the
One-error is identical to ordinary classification error.

The second ranking-based measurement to be introduced is

Coveragedefined as:

CoverageS(f) =
1
m

m∑

i=1

|C(xi)| − 1,where

C(xi) = {l|f(xi, l) ≥ f(xi, l
′
i), l ∈ Y} and

l′i = arg min
k∈Yi

f(xi, k) (4)

It measures how far we need, on the average, to go down the
list of labels in order to cover all the possible labels assigned
to an instance. The smaller the value ofCoverageS(f), the
better the performance.

Let Y denote the complementary set ofY in Y, another
ranking-based measurement namedRanking Lossis defined
as:

RLS(f) =
1
m

m∑

i=1

1
|Yi||Yi|

|R(xi)|, where R(xi) =

{(l1, l0)|f(xi, l1) ≤ f(xi, l0), (l1, l0) ∈ Yi × Y i} (5)

It represents the average fraction of pairs that are not correctly
ordered. The smaller the value ofRLS(f), the better the
performance.

The fourth evaluation criterion for the ranking function is
Average Precision, which is originally used in information
retrieval (IR) systems to evaluate the document ranking per-
formance for query retrieval [15]. Nevertheless, it is used here
to measure the effectiveness of the label rankings:

Ave precS(f) =
1
m

m∑

i=1

1
|Yi|P (xi), where

P (xi) =
∑

k∈Yi

|{l|f(xi, l) ≥ f(xi, k), l ∈ Yi}|
|{l|f(xi, l) ≥ f(xi, k), l ∈ Y}| (6)

In words, this measurement evaluates the average fraction of
labels ranked above a particular labell ∈ Yi which actually
are in Yi. Note that whenAve precS(f) = 1, the learning
system achieves the perfect performance. The bigger the value
of Ave precS(f), the better the performance.

III. M L-kNN

As reviewed in the above Section, although there have been
several learning algorithms specially designed for multi-label
learning, developing lazy learning approach for multi-label
problems is still an unsolved issue. In this section, a novel
k-nearest neighbor based method for multi-label classification
namedML-kNN is presented. To begin, several notations are
introduced in addition to those used in Section 2 to simplify
the derivation ofML-kNN.

Given an instancex and its associated label setYx ⊆
Y, supposek nearest neighbors are considered in thekNN
method. Let~yx be the category vector forx, where its l-
th component~yx(l) (l ∈ Y) takes the value of 1 ifl ∈ Yx

and 0 otherwise. In addition, letN(x) denote the index set
of the k nearest neighbors ofx identified in the training set.



[~yt, ~rt]=M L -kNN(S, k, t, s)

%Computing the prior probabilitiesP (H l
i)

(1) for l ∈ Y do

(2) P (H l
1) = (s +

m∑
i=1

~yxi
(l)) /(s× 2 + m) ;

(3) P (H l
0) = 1− P (H l

1);

%Computing the posterior probabilitiesP (El
j |H l

i)
(4) Identify N(xi), i ∈ {1, . . . , m};
(5) for l ∈ Y do

(6) for j ∈ {0, . . . , k} do

(7) c[j] = 0; c′[j] = 0;
(8) for i ∈ {1, . . . , m} do

(9) δ = ~Cxi(l) =
∑

a∈N(xi)

~yxa(l);

(10) if (~yxi(l) == 1) then c[δ] = c[δ] + 1;
(11) elsec′[δ] = c′[δ] + 1;
(12) for j ∈ {0, . . . , k} do

(13) P (El
j |H l

1) = s+c[j]

s×(k+1)+

k∑
p=0

c[p]

;

(14) P (El
j |H l

0) = s+c′[j]

s×(k+1)+
k∑

p=0

c′[p]

;

%Computing~yt and~rt

(15) Identify N(t);
(16) for l ∈ Y do

(17) ~Ct(l) =
∑

a∈N(t)

~yxa
(l);

(18) ~yt(l) = arg max
b∈{0,1}

P (H l
b)P (El

~Ct(l)
|H l

b);

(19) ~rt(l) = P (H l
1|El

~Ct(l)
)

= P (H l
1)P (El

~Ct(l)
|H l

1)/P (El
~Ct(l)

)

=
P (Hl

1)P (El
~Ct(l)

|Hl
1)∑

b∈{0,1}
P (Hl

b
)P (El

~Ct(l)
|Hl

b
)
;

Fig. 1. Pseudo code ofML-kNN.

Thus, based on the label sets of these neighbors, amembership
countingvector can be defined as:

~Cx(l) =
∑

a∈N(x)

~yxa(l), l ∈ Y (7)

where ~Cx(l) counts how many neighbors ofx belong to the
l-th class.

For each test instancet, ML-kNN first identifies itsk nearest
neighborsN(t). Let H l

1 be the event thatt has labell, while
H l

0 be the event thatt has not labell. Furthermore, letEl
j

(j ∈ {0, . . . , k}) denote the event that, among thek nearest
neighbors oft, there are exactlyj instances which have label

l. Therefore, based on the membership counting vector~Ct, the
category vector~yt is determined using the following maximum
a posteriori principle:

~yt(l) = arg max
b∈{0,1}

P (H l
b|El

~Ct(l)
), l ∈ Y (8)

Using the Bayesian rule, Eq.(8) can be rewritten as:

~yt(l) = arg max
b∈{0,1}

P (H l
b)P (El

~Ct(l)
|H l

b)

P (El
~Ct(l)

)

= arg max
b∈{0,1}

P (H l
b)P (El

~Ct(l)
|H l

b) (9)

Note that the prior probabilitiesP (H l
b) (l ∈ Y, b ∈ {0, 1})

and the posterior probabilitiesP (El
j |H l

b) (j ∈ {0, . . . , k}) can
all be estimated from the training setS.

Figure 1 illustrates the complete description ofML-kNN.
The meanings of the input argumentsS, k, t and the output
argument~yt are the same as described previously. While the
input arguments is a smoothing parameter controlling the
strength of uniform prior (In this paper,s is set to be 1
which yields the Laplace smoothing).~rt is a real-valued vector
calculated for ranking labels inY, where~rt(l) corresponds to
the posterior probabilityP (H l

1|El
~Ct(l)

). As shown in Figure 1,
based on the training instances, steps from (1) to (3) estimate
the prior probabilitiesP (H l

i). Steps from (4) to (14) estimate
the posterior probabilitiesP (El

j |H l
i), wherec[j] used in each

iteration of l counts the number of training instances with
label l whosek nearest neighbors contain exactlyj instances
with label l. Correspondingly,c′[j] counts how many training
instances without labell whosek nearest neighbors contain
exactly j instances with labell. Finally, using the Bayesian
rule, steps from (15) to (19) compute the algorithm’s outputs
based on the estimated probabilities.

IV. EXPERIMENTS

A real-world Yeast gene functional data which has been
studied in the literatures [6], [16] is used for experiments.
Each gene is associated with a set of functional classes whose
maximum size can be potentially more than 190. In order
to make it easier, Elisseeff and Weston [6] preprocessed
the data set where only the known structure of the func-
tional classes are used. Actually, the whole set of functional
classes is structured into hierarchies up to 4 levels deep
(see http://mips.gsf.de/proj/yeast/catalogues/funcat/ for more
details). In this paper, as what has been done in the literature
[6], only functional classes in the top hierarchy are considered.
For fair comparison, the same kind of data set division used in
the literature [6] is adopted. In detail, there are 1,500 genes in
the training set and 917 in the test set. The input dimension is
103. There are 14 possible class labels and the average number
of labels for all genes in the training set is4.2± 1.6.

Table I presents the performance ofML-kNN on the Yeast
data when different values ofk (number of neighbors) are
considered. It can be found that the value ofk doesn’t



TABLE I

THE PERFORMANCE OFML-kNN ON THE YEAST DATA WITH DIFFERENT

VALUES OF k (NUMBER OF NEIGHBORS).

Evaluation No. of neighbors considered
Criterion k=6 k=7 k=8 k=9
Hamming Loss 0.197 0.197 0.197 0.197
One-error 0.241 0.239 0.248 0.251
Coverage 6.374 6.302 6.357 6.424
Ranking Loss 0.170 0.168 0.171 0.173
Average Precision 0.758 0.761 0.756 0.755

TABLE II

PERFORMANCE ON THEYEAST DATA FOR OTHER MULTI-LABEL

LEARNING ALGORITHMS.

Evaluation Algorithm
Criterion Rank-SVM ADTBoost.MH BoosTexter
Hamming Loss 0.196 0.213 0.237
One-error 0.225 0.245 0.302
Coverage 6.717 6.502 N/A
Ranking Loss 0.179 N/A 0.298
Average Precision 0.763 0.738 0.717

significantly affect the classifier’s Hamming Loss, whileML-
kNN achieves best performance on the other four ranking-based
criteria with k = 7.

Table II shows the experimental results on the Yeast data
of several other multi-label learning algorithms introduced in
Section 2 . It is worth noting that a re-implemented version
of Rank-SVM [6] is used in this paper, where polynomial
kernels with degree 8 are chosen and the cost parameterC
is set to be 1. As for ADTBoost.MH [5], the number of
boosting steps is set to 30 considering that the performance
of the boosting algorithm rarely changes after 30 iterations.
Besides, the results of BoosTexter [2] shown in Table II are
those reported in the literature [6].

As shown in Table I and Table II, the performance ofML-
kNN is comparable to that of Rank-SVM. Moreover, it is
obvious that both algorithms perform significantly better than
ADTBoost.MH and BoosTexter. One possible reason for the
poor results of BoosTexter may be due to the simple decision
function realized by this method [6].

V. CONCLUSION

In this paper, the problem of designing multi-label lazy
learning approach is addressed, where ak-nearest neighbor
based method for multi-label classification namedML-kNN

is proposed. Experiments on a multi-label bioinformatic data
show that the proposed algorithm is highly competitive to other
existing multi-label learners.

Nevertheless, the experimental results reported in this paper
are rather preliminary. Thus, conducting more experiments on
other multi-label data sets to fully evaluate the effectiveness of
ML-kNN will be an important issue to be explored in the near
future. On the other hand, adapting other traditional machine
learning approaches such as neural networks to handle multi-
label data will be another interesting issue to be investigated.
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