
3 Rademacher Complexity and VC-

Dimension

The hypothesis sets typically used in machine learning are infinite. But the sample
complexity bounds of the previous chapter are uninformative when dealing with
infinite hypothesis sets. One could ask whether efficient learning from a finite sample
is even possible when the hypothesis set H is infinite. Our analysis of the family of
axis-aligned rectangles (Example 2.1) indicates that this is indeed possible at least
in some cases, since we proved that that infinite concept class was PAC-learnable.
Our goal in this chapter will be to generalize that result and derive general learning
guarantees for infinite hypothesis sets.

A general idea for doing so consists of reducing the infinite case to the analysis
of finite sets of hypotheses and then proceed as in the previous chapter. There
are different techniques for that reduction, each relying on a different notion of
complexity for the family of hypotheses. The first complexity notion we will use
is that of Rademacher complexity . This will help us derive learning guarantees
using relatively simple proofs based on McDiarmid’s inequality, while obtaining
high-quality bounds, including data-dependent ones, which we will frequently make
use of in future chapters. However, the computation of the empirical Rademacher
complexity is NP-hard for some hypothesis sets. Thus, we subsequently introduce
two other purely combinatorial notions, the growth function and the VC-dimension.
We first relate the Rademacher complexity to the growth function and then bound
the growth function in terms of the VC-dimension. The VC-dimension is often easier
to bound or estimate. We will review a series of examples showing how to compute
or bound it, then relate the growth function and the VC-dimensions. This leads to
generalization bounds based on the VC-dimension. Finally, we present lower bounds
based on the VC-dimension both in the realizable and non-realizable cases, which
will demonstrate the critical role of this notion in learning.
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3.1 Rademacher complexity

We will continue to use H to denote a hypothesis set as in the previous chapters,
and h an element of H. Many of the results of this section are general and hold for
an arbitrary loss function L : Y × Y → R. To each h : X → Y, we can associate a
function g that maps (x, y) ∈ X ×Y to L(h(x), y) without explicitly describing the
specific loss L used. In what follows G will generally be interpreted as the family of
loss functions associated to H.

The Rademacher complexity captures the richness of a family of functions by
measuring the degree to which a hypothesis set can fit random noise. The following
states the formal definitions of the empirical and average Rademacher complexity.

Definition 3.1 Empirical Rademacher complexity
Let G be a family of functions mapping from Z to [a, b] and S = (z1, . . . , zm) a fixed
sample of size m with elements in Z. Then, the empirical Rademacher complexity
of G with respect to the sample S is defined as:

R̂S(G) = E
σ

[
sup
g∈G

1
m

m∑
i=1

σig(zi)

]
, (3.1)

where σ = (σ1, . . . , σm)�, with σis independent uniform random variables taking
values in {−1, +1}.1 The random variables σi are called Rademacher variables.

Let gS denote the vector of values taken by function g over the sample S: gS =
(g(z1), . . . , g(zm))�. Then, the empirical Rademacher complexity can be rewritten
as

R̂S(G) = E
σ

[
sup
g∈G

σ · gS

m

]
.

The inner product σ · gS measures the correlation of gS with the vector of random
noise σ. The supremum supg∈G

σ·gS

m is a measure of how well the function class G

correlates with σ over the sample S. Thus, the empirical Rademacher complexity
measures on average how well the function class G correlates with random noise
on S. This describes the richness of the family G: richer or more complex families
G can generate more vectors gS and thus better correlate with random noise, on
average.

1. We assume implicitly that the supremum over the family G in this definition is
measurable and in general will adopt the same assumption throughout this book for other
suprema over a class of functions. This assumption does not hold for arbitrary function
classes but it is valid for the hypotheses sets typically considered in practice in machine
learning, and the instances discussed in this book.
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Definition 3.2 Rademacher complexity
Let D denote the distribution according to which samples are drawn. For any
integer m ≥ 1, the Rademacher complexity of G is the expectation of the empirical
Rademacher complexity over all samples of size m drawn according to D:

Rm(G) = E
S∼Dm

[R̂S(G)]. (3.2)

We are now ready to present our first generalization bounds based on Rademacher
complexity.

Theorem 3.1

Let G be a family of functions mapping from Z to [0, 1]. Then, for any δ > 0, with
probability at least 1 − δ, each of the following holds for all g ∈ G:

E[g(z)] ≤ 1
m

m∑
i=1

g(zi) + 2Rm(G) +

√
log 1

δ

2m
(3.3)

and E[g(z)] ≤ 1
m

m∑
i=1

g(zi) + 2R̂S(G) + 3

√
log 2

δ

2m
. (3.4)

Proof For any sample S = (z1, . . . , zm) and any g ∈ G, we denote by ÊS [g] the
empirical average of g over S: ÊS [g] = 1

m

∑m
i=1 g(zi). The proof consists of applying

McDiarmid’s inequality to function Φ defined for any sample S by

Φ(S) = sup
g∈G

E[g] − ÊS [g]. (3.5)

Let S and S′ be two samples differing by exactly one point, say zm in S and z′m
in S′. Then, since the difference of suprema does not exceed the supremum of the
difference, we have

Φ(S′) − Φ(S) ≤ sup
g∈G

ÊS [g] − ÊS′ [g] = sup
g∈G

g(zm) − g(z′m)
m

≤ 1
m

. (3.6)

Similarly, we can obtain Φ(S) − Φ(S′) ≤ 1/m, thus |Φ(S) − Φ(S′)| ≤ 1/m. Then,
by McDiarmid’s inequality, for any δ > 0, with probability at least 1 − δ/2, the
following holds:

Φ(S) ≤ E
S
[Φ(S)] +

√
log 2

δ

2m
. (3.7)



36 Rademacher Complexity and VC-Dimension

We next bound the expectation of the right-hand side as follows:

E
S
[Φ(S)] = E

S

[
sup
g∈H

E[g] − ÊS(g)
]

= E
S

[
sup
g∈H

E
S′

[
ÊS′(g) − ÊS(g)

]]
(3.8)

≤ E
S,S′

[
sup
g∈H

ÊS′(g) − ÊS(g)
]

(3.9)

= E
S,S′

[
sup
g∈H

1
m

m∑
i=1

(g(z′i) − g(zi))
]

(3.10)

= E
σ,S,S′

[
sup
g∈H

1
m

m∑
i=1

σi(g(z′i) − g(zi))
]

(3.11)

≤ E
σ,S′

[
sup
g∈H

1
m

m∑
i=1

σig(z′i)
]

+ E
σ,S

[
sup
g∈H

1
m

m∑
i=1

−σig(zi)
]

(3.12)

= 2 E
σ,S

[
sup
g∈H

1
m

m∑
i=1

σig(zi)
]

= 2Rm(G). (3.13)

Equation 3.8 uses the fact that points in S′ are sampled in an i.i.d. fashion and thus
E[g] = ES′ [ÊS′(g)], as in (2.3). Inequality 3.9 holds by Jensen’s inequality and the
convexity of the supremum function. In equation 3.11, we introduce Rademacher
variables σis, that is uniformly distributed independent random variables taking
values in {−1, +1} as in definition 3.2. This does not change the expectation
appearing in (3.10): when σi = 1, the associated summand remains unchanged;
when σi = −1, the associated summand flips signs, which is equivalent to swapping
zi and z′i between S and S′. Since we are taking the expectation over all possible S

and S′, this swap does not affect the overall expectation. We are simply changing the
order of the summands within the expectation. (3.12) holds by the sub-additivity of
the supremum function, that is the identity sup(U +V ) ≤ sup(U)+sup(V ). Finally,
(3.13) stems from the definition of Rademacher complexity and the fact that the
variables σi and −σi are distributed in the same way.

The reduction to Rm(G) in equation 3.13 yields the bound in equation 3.3,
using δ instead of δ/2. To derive a bound in terms of R̂S(G), we observe that,
by definition 3.2, changing one point in S changes R̂S(G) by at most 1/m. Then,
using again McDiarmid’s inequality, with probability 1 − δ/2 the following holds:

Rm(G) ≤ R̂S(G) +

√
log 2

δ

2m
. (3.14)

Finally, we use the union bound to combine inequalities 3.7 and 3.14, which yields
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with probability at least 1 − δ:

Φ(S) ≤ 2R̂S(G) + 3

√
log 2

δ

2m
, (3.15)

which matches (3.4).

The following result relates the empirical Rademacher complexities of a hypothe-
sis set H and to the family of loss functions G associated to H in the case of binary
loss (zero-one loss).

Lemma 3.1

Let H be a family of functions taking values in {−1, +1} and let G be the family of
loss functions associated to H for the zero-one loss: G = {(x, y) �→ 1h(x) �=y : h ∈ H

}
.

For any sample S = ((x1, y1), . . . , (xm, ym)) of elements in X × {−1, +1}, let SX
denote its projection over X : SX = (x1, . . . , xm). Then, the following relation holds
between the empirical Rademacher complexities of G and H:

R̂S(G) =
1
2
R̂SX (H). (3.16)

Proof For any sample S = ((x1, y1), . . . , (xm, ym)) of elements in X × {−1, +1},
by definition, the empirical Rademacher complexity of G can be written as:

R̂S(G) = E
σ

[
sup
h∈H

1
m

m∑
i=1

σi1h(xi) �=yi

]
= E

σ

[
sup
h∈H

1
m

m∑
i=1

σi
1−yih(xi)

2

]
=

1
2

E
σ

[
sup
h∈H

1
m

m∑
i=1

−σiyih(xi)
]

=
1
2

E
σ

[
sup
h∈H

1
m

m∑
i=1

σih(xi)
]

=
1
2
RSX (H),

where we used the fact that 1h(xi) �=yi
= (1− yih(xi))/2 and the fact that for a fixed

yi ∈ {−1, +1}, σi and −yiσi are distributed in the same way.

Note that the lemma implies, by taking expectations, that for any m ≥ 1, Rm(G) =
1
2Rm(H). These connections between the empirical and average Rademacher com-
plexities can be used to derive generalization bounds for binary classification in
terms of the Rademacher complexity of the hypothesis set H.

Theorem 3.2 Rademacher complexity bounds – binary classification
Let H be a family of functions taking values in {−1, +1} and let D be the distribution
over the input space X . Then, for any δ > 0, with probability at least 1 − δ over



38 Rademacher Complexity and VC-Dimension

a sample S of size m drawn according to D, each of the following holds for any
h ∈ H:

R(h) ≤ R̂(h) + Rm(H) +

√
log 1

δ

2m
(3.17)

and R(h) ≤ R̂(h) + R̂S(H) + 3

√
log 2

δ

2m
. (3.18)

Proof The result follows immediately by theorem 3.1 and lemma 3.1.

The theorem provides two generalization bounds for binary classification based on
the Rademacher complexity. Note that the second bound, (3.18), is data-dependent:
the empirical Rademacher complexity R̂S(H) is a function of the specific sample
S drawn. Thus, this bound could be particularly informative if we could compute
R̂S(H). But, how can we compute the empirical Rademacher complexity? Using
again the fact that σi and −σi are distributed in the same way, we can write

R̂S(H) = E
σ

[
sup
h∈H

1
m

m∑
i=1

−σih(xi)
]

= −E
σ

[
inf

h∈H

1
m

m∑
i=1

σih(xi)
]
.

Now, for a fixed value of σ, computing infh∈H
1
m

∑m
i=1 σih(xi) is equivalent to

an empirical risk minimization problem, which is known to be computationally
hard for some hypothesis sets. Thus, in some cases, computing R̂S(H) could
be computationally hard. In the next sections, we will relate the Rademacher
complexity to combinatorial measures that are easier to compute.

3.2 Growth function

Here we will show how the Rademacher complexity can be bounded in terms of the
growth function.

Definition 3.3 Growth function
The growth function ΠH : N → N for a hypothesis set H is defined by:

∀m ∈ N, ΠH(m) = max
{x1,...,xm}⊆X

∣∣∣{(h(x1), . . . , h(xm)
)
: h ∈ H

}∣∣∣. (3.19)

Thus, ΠH(m) is the maximum number of distinct ways in which m points can be
classified using hypotheses in H. This provides another measure of the richness of
the hypothesis set H. However, unlike the Rademacher complexity, this measure
does not depend on the distribution, it is purely combinatorial.
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To relate the Rademacher complexity to the growth function, we will use Mas-
sart’s lemma.

Theorem 3.3 Massart’s lemma
Let A ⊆ R

m be a finite set, with r = maxx∈A ‖x‖2, then the following holds:

E
σ

[
1
m

sup
x∈A

m∑
i=1

σixi

]
≤ r

√
2 log |A|
m

, (3.20)

where σis are independent uniform random variables taking values in {−1, +1} and
x1, . . . , xm are the components of vector x.

Proof For any t > 0, using Jensen’s inequality, rearranging terms, and bounding
the supremum by a sum, we obtain:

exp
(
t E

σ

[
sup
x∈A

m∑
i=1

σixi

]) ≤ E
σ

(
exp

[
t sup

x∈A

m∑
i=1

σixi

])
= E

σ

(
sup
x∈A

exp
[
t

m∑
i=1

σixi

])
≤
∑
x∈A

E
σ

(
exp

[
t

m∑
i=1

σixi

])
.

We next use the independence of the σis, then apply Hoeffding’s lemma (lemma D.1),
and use the definition of r to write:

exp
(
t E

σ

[
sup
x∈A

m∑
i=1

σixi

]) ≤
∑
x∈A

Πm
i=1 E

σi

(exp [tσixi])

≤
∑
x∈A

Πm
i=1 exp

[
t2(2xi)2

8

]

=
∑
x∈A

exp

[
t2

2

m∑
i=1

x2
i

]
≤
∑
x∈A

exp
[
t2r2

2

]
= |A|e t2R2

2 .

Taking the log of both sides and dividing by t gives us:

E
σ

[
sup
x∈A

m∑
i=1

σixi

]
≤ log |A|

t
+

tr2

2
. (3.21)

If we choose t =
√

2 log |A|
r , which minimizes this upper bound, we get:

E
σ

[
sup
x∈A

m∑
i=1

σixi

]
≤ r

√
2 log |A|. (3.22)

Dividing both sides by m leads to the statement of the lemma.
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Using this result, we can now bound the Rademacher complexity in terms of the
growth function.

Corollary 3.1

Let G be a family of functions taking values in {−1, +1}. Then the following holds:

Rm(G) ≤
√

2 log ΠG(m)
m

. (3.23)

Proof For a fixed sample S = (x1, . . . , xm), we denote by G|S the set of vectors
of function values (g(x1), . . . , g(xm))� where g is in G. Since g ∈ G takes values
in {−1, +1}, the norm of these vectors is bounded by

√
m. We can then apply

Massart’s lemma as follows:

Rm(G) = E
S

[
E
σ

[
sup

u∈G|S

1
m

m∑
i=1

σiui

]]
≤ E

S

[√
m
√

2 log |G|S |
m

]
.

By definition, |G|S | is bounded by the growth function, thus,

Rm(G) ≤ E
S

[√
m
√

2 log ΠG(m)
m

]
=

√
2 log ΠG(m)

m
,

which concludes the proof.

Combining the generalization bound (3.17) of theorem 3.2 with corollary 3.1 yields
immediately the following generalization bound in terms of the growth function.

Corollary 3.2 Growth function generalization bound
Let H be a family of functions taking values in {−1, +1}. Then, for any δ > 0, with
probability at least 1 − δ, for any h ∈ H,

R(h) ≤ R̂(h) +

√
2 log ΠH(m)

m
+

√
log 1

δ

2m
. (3.24)

Growth function bounds can be also derived directly (without using Rademacher
complexity bounds first). The resulting bound is then the following:

Pr
[∣∣∣R(h) − R̂(h)

∣∣∣ > ε
]
≤ 4ΠH(2m) exp

(
−mε2

8

)
, (3.25)

which only differs from (3.24) by constants.
The computation of the growth function may not be always convenient since, by

definition, it requires computing ΠH(m) for all m ≥ 1. The next section introduces
an alternative measure of the complexity of a hypothesis set H that is based instead
on a single scalar, which will turn out to be in fact deeply related to the behavior
of the growth function.
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(a) (b)

Figure 3.1 VC-dimension of intervals on the real line. (a) Any two points can be
shattered. (b) No sample of three points can be shattered as the (+,−, +) labeling
cannot be realized.

3.3 VC-dimension

Here, we introduce the notion of VC-dimension (Vapnik-Chervonenkis dimension).
The VC-dimension is also a purely combinatorial notion but it is often easier to
compute than the growth function (or the Rademacher Complexity). As we shall
see, the VC-dimension is a key quantity in learning and is directly related to the
growth function.

To define the VC-dimension of a hypothesis set H, we first introduce the concepts
of dichotomy and that of shattering . Given a hypothesis set H, a dichotomy of a
set S is one of the possible ways of labeling the points of S using a hypothesis in
H. A set S of m ≥ 1 points is said to be shattered by a hypothesis set H when H

realizes all possible dichotomies of S, that is when ΠH(m) = 2m.

Definition 3.4 VC-dimension
The VC-dimension of a hypothesis set H is the size of the largest set that can be
fully shattered by H:

VCdim(H) = max{m : ΠH(m) = 2m}. (3.26)

Note that, by definition, if VCdim(H) = d, there exists a set of size d that can
be fully shattered. But, this does not imply that all sets of size d or less are fully
shattered, in fact, this is typically not the case.

To further illustrate this notion, we will examine a series of examples of hypothesis
sets and will determine the VC-dimension in each case. To compute the VC-
dimension we will typically show a lower bound for its value and then a matching
upper bound. To give a lower bound d for VCdim(H), it suffices to show that a set
S of cardinality d can be shattered by H. To give an upper bound, we need to prove
that no set S of cardinality d + 1 can be shattered by H, which is typically more
difficult.

Example 3.1 Intervals on the real line

Our first example involves the hypothesis class of intervals on the real line.
It is clear that the VC-dimension is at least two, since all four dichotomies
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(a) (b)

Figure 3.2 Unrealizable dichotomies for four points using hyperplanes in R
2. (a)

All four points lie on the convex hull. (b) Three points lie on the convex hull while
the remaining point is interior.

(+, +), (−,−), (+,−), (−, +) can be realized, as illustrated in figure 3.1(a). In con-
trast, by the definition of intervals, no set of three points can be shattered since the
(+,−, +) labeling cannot be realized. Hence, VCdim(intervals in R) = 2.

Example 3.2 Hyperplanes

Consider the set of hyperplanes in R
2. We first observe that any three non-collinear

points in R
2 can be shattered. To obtain the first three dichotomies, we choose a

hyperplane that has two points on one side and the third point on the opposite
side. To obtain the fourth dichotomy we have all three points on the same side of
the hyperplane. The remaining four dichotomies are realized by simply switching
signs. Next, we show that four points cannot be shattered by considering two cases:
(i) the four points lie on the convex hull defined by the four points, and (ii) three
of the four points lie on the convex hull and the remaining point is internal. In
the first case, a positive labeling for one diagonal pair and a negative labeling for
the other diagonal pair cannot be realized, as illustrated in figure 3.2(a). In the
second case, a labeling which is positive for the points on the convex hull and
negative for the interior point cannot be realized, as illustrated in figure 3.2(b).
Hence, VCdim(hyperplanes in R

2) = 3.
More generally in R

d, we derive a lower bound by starting with a set of d + 1
points in R

d, setting x0 to be the origin and defining xi, for i ∈ {1, . . . , d}, as the
point whose ith coordinate is 1 and all others are 0. Let y0, y1, . . . , yd ∈ {−1, +1} be
an arbitrary set of labels for x0, x1, . . . , xd. Let w be the vector whose ith coordinate
is yi. Then the classifier defined by the hyperplane of equation w ·x+ y0

2 = 0 shatters
x0, x1, . . . , xd since for any i ∈ [0, d],

sgn
(
w · xi +

y0

2

)
= sgn

(
yi +

y0

2

)
= yi. (3.27)

To obtain an upper bound, it suffices to show that no set of d + 2 points can be
shattered by halfspaces. To prove this, we will use the following general theorem.
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Figure 3.3 VC-dimension of axis-aligned rectangles. (a) Examples of realizable
dichotomies for four points in a diamond pattern. (b) No sample of five points can
be realized if the interior point and the remaining points have opposite labels.

Theorem 3.4 Radon’s theorem
Any set X of d+2 points in R

d can be partitioned into two subsets X1 and X2 such
that the convex hulls of X1 and X2 intersect.

Proof Let X = {x1, . . . ,xd+2} ⊂ R
d. The following is a system of d + 1 linear

equations in α1, . . . , αd+2:

d+2∑
i=1

αixi = 0 and
d+2∑
i=1

αi = 0, (3.28)

since the first equality leads to d equations, one for each component. The number
of unknowns, d + 2, is larger than the number of equations, d + 1, therefore
the system admits a non-zero solution β1, . . . , βd+2. Since

∑d+2
i=1 βi = 0, both

I1 = {i ∈ [1, d + 2] : βi > 0} and I2 = {i ∈ [1, d + 2] : βi < 0} are non-empty
sets and X1 = {xi : i ∈ I1} and X2 = {xi : i ∈ I2} form a partition of X. By the
last equation of (3.28),

∑
i∈I1

βi = −∑i∈I2
βi. Let β =

∑
i∈I1

βi. Then, the first
part of (3.28) implies ∑

i∈I1

βi

β
xi =

∑
i∈I2

−βi

β
xi,

with
∑

i∈I1

βi

β =
∑

i∈I2

−βi

β = 1, and βi

β ≥ 0 for i ∈ I1 and −βi

β ≥ 0 for i ∈ I2. By
definition of the convex hulls (B.4), this implies that

∑
i∈I1

βi

β xi belongs both to
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(a) (b)

Figure 3.4 Convex d-gons in the plane can shatter 2d + 1 points. (a) d-gon
construction when there are more negative labels. (b) d-gon construction when
there are more positive labels.

the convex hull of X1 and to that of X2.

Now, let X be a set of d + 2 points. By Radon’s theorem, it can be partitioned
into two sets X1 and X2 such that their convex hulls intersect. Observe that when
two sets of points X1 and X2 are separated by a hyperplane, their convex hulls
are also separated by that hyperplane. Thus, X1 and X2 cannot be separated by
a hyperplane and X is not shattered. Combining our lower and upper bounds, we
have proven that VCdim(hyperplanes in R

d) = d + 1.

Example 3.3 Axis-aligned Rectangles

We first show that the VC-dimension is at least four, by considering four points
in a diamond pattern. Then, it is clear that all 16 dichotomies can be realized,
some of which are illustrated in figure 3.2(a). In contrast, for any set of five distinct
points, if we construct the minimal axis-aligned rectangle containing these points,
one of the five points is in the interior of this rectangle. Imagine that we assign a
negative label to this interior point and a positive label to each of the remaining
four points, as illustrated in figure 3.2(b). There is no axis-aligned rectangle that
can realize this labeling. Hence, no set of five distinct points can be shattered and
VCdim(axis-aligned rectangles) = 4.

Example 3.4 Convex Polygons

We focus on the class of convex d-gons in the plane. To get a lower bound, we
show that any set of 2d + 1 points can be fully shattered. To do this, we select
2d + 1 points that lie on a circle, and for a particular labeling, if there are more
negative than positive labels, then the points with the positive labels are used as
the polygon’s vertices, as in figure 3.4(a). Otherwise, the tangents of the negative
points serve as the edges of the polygon, as shown in (3.4)(b). To derive an upper
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Figure 3.5 An example of a sine function (with ω = 50) used for classification.

bound, it can be shown that choosing points on the circle maximizes the number
of possible dichotomies, and thus VCdim(convex d-gons) = 2d + 1. Note also that
VCdim(convex polygons) = +∞.

Example 3.5 Sine Functions

The previous examples could suggest that the VC-dimension of H coincides with
the number of free parameters defining H. For example, the number of parameters
defining hyperplanes matches their VC-dimension. However, this does not hold in
general. Several of the exercises in this chapter illustrate this fact. The following
provides a striking example from this point of view. Consider the following family
of sine functions: {t �→ sin(ωt) : ω ∈ R}. One instance of this function class is shown
in figure 3.5. These sine functions can be used to classify the points on the real line:
a point is labeled positively if it is above the curve, negatively otherwise. Although
this family of sine function is defined via a single parameter, ω, it can be shown
that VCdim(sine functions) = +∞ (exercise 3.12).

The VC-dimension of many other hypothesis sets can be determined or upper-
bounded in a similar way (see this chapter’s exercises). In particular, the VC-
dimension of any vector space of dimension r < ∞ can be shown to be at most
r (exercise 3.11). The next result known as Sauer’s lemma clarifies the connection
between the notions of growth function and VC-dimension.

Theorem 3.5 Sauer’s lemma
Let H be a hypothesis set with VCdim(H) = d. Then, for all m ∈ N, the following
inequality holds:

ΠH(m) ≤
d∑

i=0

(
m

i

)
. (3.29)
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x1 x2 · · · xm−1 xm

· · · · · · · · · · · · · · ·

1 1 0 1 0
1 1 0 1 1
0 1 1 1 1
1 0 0 1 0
1 0 0 0 1

G1 =G|S′ G2 ={g′ ⊆ S′ : (g′ ∈ G) ∧ (g′ ∪ {xm} ∈ G)}.

Figure 3.6 Illustration of how G1 and G2 are constructed in the proof of Sauer’s
lemma.

Proof The proof is by induction on m+ d. The statement clearly holds for m = 1
and d = 0 or d = 1. Now, assume that it holds for (m − 1, d − 1) and (m − 1, d).
Fix a set S = {x1, . . . , xm} with ΠH(m) dichotomies and let G = H|S be the set of
concepts H induces by restriction to S.

Now consider the following families over S′ = {x1, . . . , xm−1}. We define G1 =
G|S′ as the set of concepts H includes by restriction to S′. Next, by identifying each
concept as the set of points (in S′ or S) for which it is non-zero, we can define G2

as

G2 = {g′ ⊆ S′ : (g′ ∈ G) ∧ (g′ ∪ {xm} ∈ G)}.

Since g′ ⊆ S′, g′ ∈ G means that without adding xm it is a concept of G. Further,
the constraint g′ ∪ {xm} ∈ G means that adding xm to g′ also makes it a concept
of G. The construction of G1 and G2 is illustrated pictorially in figure 3.6. Given
our definitions of G1 and G2, observe that |G1| + |G2| = |G|.

Since VCdim(G1) ≤ VCdim(G) ≤ d, then by definition of the growth function
and using the induction hypothesis,

|G1| ≤ ΠG1(m − 1) ≤
d∑

i=0

(
m − 1

i

)
.

Further, by definition of G2, if a set Z ⊆ S′ is shattered by G2, then the set Z∪{xm}
is shattered by G. Hence,

VCdim(G2) ≤ VCdim(G) − 1 = d − 1,
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and by definition of the growth function and using the induction hypothesis,

|G2| ≤ ΠG2(m − 1) ≤
d−1∑
i=0

(
m − 1

i

)
.

Thus,

|G| = |G1| + |G2| ≤
d∑

i=0

(
m−1

i

)
+

d−1∑
i=0

(
m−1

i

)
=

d∑
i=0

(
m−1

i

)
+
(
m−1
i−1

)
=

d∑
i=0

(
m
i

)
,

which completes the inductive proof.

The significance of Sauer’s lemma can be seen by corollary 3.3, which remarkably
shows that growth function only exhibits two types of behavior: either VCdim(H) =
d < +∞, in which case ΠH(m) = O(md), or VCdim(H) = +∞, in which case
ΠH(m) = 2m.

Corollary 3.3

Let H be a hypothesis set with VCdim(H) = d. Then for all m ≥ d,

ΠH(m) ≤
(em

d

)d

= O(md). (3.30)

Proof The proof begins by using Sauer’s lemma. The first inequality multiplies
each summand by a factor that is greater than or equal to one since m ≥ d, while
the second inequality adds non-negative summands to the summation.

ΠH(m) ≤
d∑

i=0

(
m

i

)

≤
d∑

i=0

(
m

i

)(m

d

)d−i

≤
m∑

i=0

(
m

i

)(m

d

)d−i

=
(m

d

)d m∑
i=0

(
m

i

)(
d

m

)i

=
(m

d

)d
(

1 +
d

m

)m

≤
(m

d

)d

ed.

After simplifying the expression using the binomial theorem, the final inequality
follows using the general identity (1 − x) ≤ e−x.

The explicit relationship just formulated between VC-dimension and the growth
function combined with corollary 3.2 leads immediately to the following generaliza-
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tion bounds based on the VC-dimension.

Corollary 3.4 VC-dimension generalization bounds
Let H be a family of functions taking values in {−1, +1} with VC-dimension d.
Then, for any δ > 0, with probability at least 1 − δ, the following holds for all
h ∈ H:

R(h) ≤ R̂(h) +

√
2d log em

d

m
+

√
log 1

δ

2m
. (3.31)

Thus, the form of this generalization bound is

R(h) ≤ R̂(h) + O

(√
log(m/d)
(m/d)

)
, (3.32)

which emphasizes the importance of the ratio m/d for generalization. The theorem
provides another instance of Occam’s razor principle where simplicity is measured
in terms of smaller VC-dimension.

VC-dimension bounds can be derived directly without using an intermediate
Rademacher complexity bound, as for (3.25): combining Sauer’s lemma with (3.25)
leads to the following high-probability bound

R(h) ≤ R̂(h) +

√
8d log 2em

d + 8 log 4
δ

m
,

which has the general form of (3.32). The log factor plays only a minor role in these
bounds. A finer analysis can be used in fact to eliminate that factor.

3.4 Lower bounds

In the previous section, we presented several upper bounds on the generalization
error. In contrast, this section provides lower bounds on the generalization error of
any learning algorithm in terms of the VC-dimension of the hypothesis set used.

These lower bounds are shown by finding for any algorithm a ‘bad’ distribution.
Since the learning algorithm is arbitrary, it will be difficult to specify that particular
distribution. Instead, it suffices to prove its existence non-constructively. At a high
level, the proof technique used to achieve this is the probabilistic method of Paul
Erdös. In the context of the following proofs, first a lower bound is given on the
expected error over the parameters defining the distributions. From that, the lower
bound is shown to hold for at least one set of parameters, that is one distribution.
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Theorem 3.6 Lower bound, realizable case
Let H be a hypothesis set with VC-dimension d > 1. Then, for any learning
algorithm A, there exist a distribution D over X and a target function f ∈ H

such that

Pr
S∼Dm

[
RD(hS , f) >

d − 1
32m

]
≥ 1/100. (3.33)

Proof Let X = {x0, x1, . . . , xd−1} ⊆ X be a set that is fully shattered by H. For
any ε > 0, we choose D such that its support is reduced to X and so that one
point (x0) has very high probability (1 − ε), with the rest of the probability mass
distributed uniformly among the other points:

Pr
D

[x0] = 1 − 8ε and ∀i ∈ [1, d − 1], Pr
D

[xi] =
8ε

d − 1
. (3.34)

With this definition, most samples would contain x0 and, since X is fully shattered,
A can essentially do no better than tossing a coin when determining the label of a
point xi not falling in the training set.

We assume without loss of generality that A makes no error on x0. For a sample
S, we let S denote the set of its elements falling in {x1, . . . , xd−1}, and let S be the
set of samples S of size m such that |S| ≤ (d − 1)/2. Now, fix a sample S ∈ S, and
consider the uniform distribution U over all labelings f : X → {0, 1}, which are all
in H since the set is shattered. Then, the following lower bound holds:

E
f∼U

[RD(hS , f)] =
∑

f

∑
x∈X

1h(x) �=f(x) Pr[x] Pr[f ]

≥
∑

f

∑
x�∈S

1h(x) �=f(x) Pr[x] Pr[f ]

=
∑
x�∈S

(∑
f

1h(x) �=f(x) Pr[f ]
)

Pr[x]

=
1
2

∑
x�∈S

Pr[x] ≥ 1
2

d − 1
2

8ε

d − 1
= 2ε. (3.35)

The first lower bound holds because we remove non-negative terms from the
summation when we only consider x �∈ S instead of all x in X. After rearranging
terms, the subsequent equality holds since we are taking an expectation over f ∈ H

with uniform weight on each f and H shatters X. The final lower bound holds due
to the definitions of D and S, the latter which implies that |X − S| ≥ (d − 1)/2.

Since (3.35) holds for all S ∈ S, it also holds in expectation over all S ∈ S:
ES∈S

[
Ef∼U [RD(hS , f)]

] ≥ 2ε. By Fubini’s theorem, the expectations can be
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permuted, thus,

E
f∼U

[
E

S∈S
[RD(hS , f)]

]
≥ 2ε. (3.36)

This implies that ES∈S [RD(hS , f0)] ≥ 2ε for at least one labeling f0 ∈ H. Decom-
posing this expectation into two parts and using RD(hS , f0) ≤ PrD[X − {x0}], we
obtain:

E
S∈S

[RD(hS , f0)] =
∑

S :RD(hS ,f0)≥ε

RD(hS , f0) Pr[RD(hS , f0)] +
∑

S :RD(hS ,f0)<ε

RD(hS , f0) Pr[RD(hS , f0)]

≤ Pr
D

[X − {x0}] Pr
S∈S

[RD(hS , f0) ≥ ε] + ε Pr
S∈S

[RD(hS , f0) < ε]

≤ 8ε Pr
S∈S

[RD(hS , f0) ≥ ε] + ε
(
1 − Pr

S∈S
[RD(hS , f0) ≥ ε]

)
.

Collecting terms in PrS∈S [RD(hS , f0) ≥ ε] yields

Pr
S∈S

[RD(hS , f0) ≥ ε] ≥ 1
7ε

(2ε − ε) =
1
7
. (3.37)

Thus, the probability over all samples S (not necessarily in S) can be lower bounded
as

Pr
S

[RD(hS , f0) ≥ ε] ≥ Pr
S∈S

[RD(hS , f0) ≥ ε] Pr[S] ≥ 1
7

Pr[S]. (3.38)

This leads us to find a lower bound for Pr[S]. The probability that more than
(d−1)/2 points are drawn in a sample of size m verifies the Chernoff bound for any
γ > 0:

1 − Pr[S] = Pr[Sm ≥ 8εm(1 + γ)] ≤ e−8εm γ2

3 . (3.39)

Therefore, for ε = (d − 1)/(32m) and γ = 1,

Pr[Sm ≥ d−1
2 ] ≤ e−(d−1)/12 ≤ e−1/12 ≤ 1 − 7δ, (3.40)

for δ ≤ .01. Thus Pr[S] ≥ 7δ and PrS [RD(hS , f0) ≥ ε] ≥ δ.

The theorem shows that for any algorithm A, there exists a ‘bad’ distribution over
X and a target function f for which the error of the hypothesis returned by A is
Ω( d

m ) with some constant probability. This further demonstrates the key role played
by the VC-dimension in learning. The result implies in particular that PAC-learning
in the non-realizable case is not possible when the VC-dimension is infinite.

Note that the proof shows a stronger result than the statement of the theorem:
the distribution D is selected independently of the algorithm A. We now present a
theorem giving a lower bound in the non-realizable case. The following two lemmas
will be needed for the proof.
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Lemma 3.2

Let α be a uniformly distributed random variable taking values in {α−, α+}, where
α− = 1

2 − ε
2 and α+ = 1

2 + ε
2 , and let S be a sample of m ≥ 1 random variables

X1, . . . , Xm taking values in {0, 1} and drawn i.i.d. according to the distribution Dα

defined by PrDα
[X = 1] = α. Let h be a function from Xm to {α−, α+}, then the

following holds:

E
α

[
Pr

S∼Dm
α

[h(S) �= α]
]
≥ Φ(2�m/2�, ε), (3.41)

where Φ(m, ε) = 1
4

(
1 −

√
1 − exp

(− mε2

1−ε2

))
for all m and ε.

Proof The lemma can be interpreted in terms of an experiment with two coins
with biases α− and α+. It implies that for a discriminant rule h(S) based on a
sample S drawn from Dα− or Dα+ , to determine which coin was tossed, the sample
size m must be at least Ω(1/ε2). The proof is left as an exercise (exercise 3.19).

We will make use of the fact that for any fixed ε the function m �→ Φ(m,x) is
convex, which is not hard to establish.

Lemma 3.3

Let Z be a random variable taking values in [0, 1]. Then, for any γ ∈ [0, 1),

Pr[z > γ] ≥ E[Z] − γ

1 − γ
> E[Z] − γ. (3.42)

Proof Since the values taken by Z are in [0, 1],

E[Z] =
∑
z≤γ

Pr[Z = z]z +
∑
z>γ

Pr[Z = z]z

≤
∑
z≤γ

Pr[Z = z]γ +
∑
z>γ

Pr[Z = z]

= γ Pr[Z ≤ γ] + Pr[Z > γ]

= γ(1 − Pr[Z > γ]) + Pr[Z > γ]

= (1 − γ) Pr[Z > γ] + γ,

which concludes the proof.

Theorem 3.7 Lower bound, non-realizable case
Let H be a hypothesis set with VC-dimension d > 1. Then, for any learning
algorithm A, there exists a distribution D over X × {0, 1} such that:

Pr
S∼Dm

[
RD(hS) − inf

h∈H
RD(h) >

√
d

320m

]
≥ 1/64. (3.43)
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Equivalently, for any learning algorithm, the sample complexity verifies

m ≥ d

320ε2
. (3.44)

Proof Let X = {x1, x1, . . . , xd} ⊆ X be a set fully shattered by H. For any
α ∈ [0, 1] and any vector σ = (σ1, . . . , σd)� ∈ {−1, +1}d, we define a distribution
Dσ with support X × {0, 1} as follows:

∀i ∈ [1, d], Pr
Dσ

[(xi, 1)] =
1
d

(1
2

+
σiα

2

)
. (3.45)

Thus, the label of each point xi, i ∈ [1, d], follows the distribution PrDσ [·|xi], that
of a biased coin where the bias is determined by the sign of σi and the magnitude
of α. To determine the most likely label of each point xi, the learning algorithm
will therefore need to estimate PrDσ

[1|xi] with an accuracy better than α. To make
this further difficult, α and σ will be selected based on the algorithm, requiring, as
in lemma 3.2, Ω(1/α2) instances of each point xi in the training sample.

Clearly, the Bayes classifier h∗
Dσ

is defined by h∗
Dσ

(xi) = argmaxy∈{0,1} Pr[y|xi] =
1σi>0 for all i ∈ [1, d]. h∗

Dσ
is in H since X is fully shattered. For all h ∈ H,

RDσ (h) − RDσ (h∗
Dσ

) =
1
d

∑
x∈X

(α

2
+

α

2

)
1h(x) �=h∗

Dσ
(x) =

α

d

∑
x∈X

1h(x) �=h∗
Dσ

(x). (3.46)

Let hS denote the hypothesis returned by the learning algorithm A after receiving
a labeled sample S drawn according to Dσ. We will denote by |S|x the number of
occurrences of a point x in S. Let U denote the uniform distribution over {−1, +1}d.
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Then, in view of (3.46), the following holds:

E
σ∼U
S∼Dm

σ

[
1
α

[
RDσ

(hS) − RDσ
(h∗

Dσ
)
]]

=
1
d

∑
x∈X

E
σ∼U
S∼Dm

σ

[
1hS(x) �=h∗

Dσ
(x)

]
=

1
d

∑
x∈X

E
σ∼U

[
Pr

S∼Dm
σ

[
hS(x) �= h∗

Dσ
(x)
]]

=
1
d

∑
x∈X

m∑
n=0

E
σ∼U

[
Pr

S∼Dm
σ

[
hS(x) �= h∗

Dσ
(x)

∣∣ |S|x = n
]
Pr[|S|x = n]

]
≥ 1

d

∑
x∈X

m∑
n=0

Φ(n + 1, α) Pr[|S|x = n] (lemma 3.2)

≥ 1
d

∑
x∈X

Φ(m/d + 1, α) (convexity of Φ(·, α) and Jensen’s ineq.)

= Φ(m/d + 1, α).

Since the expectation over σ is lower-bounded by Φ(m/d + 1, α), there must exist
some σ ∈ {−1, +1}d for which

E
S∼Dm

σ

[
1
α

[
RDσ

(hS) − RDσ
(h∗

Dσ
)
]]

> Φ(m/d + 1, α). (3.47)

Then, by lemma 3.3, for that σ, for any γ ∈ [0, 1],

Pr
S∼Dm

σ

[
1
α

[
RDσ

(hS) − RDσ
(h∗

Dσ
)
]

> γu

]
> (1 − γ)u, (3.48)

where u = Φ(m/d + 1, α). Selecting δ and ε such that δ ≤ (1 − γ)u and ε ≤ γαu

gives

Pr
S∼Dm

σ

[
RDσ

(hS) − RDσ
(h∗

Dσ
) > ε

]
> δ. (3.49)
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To satisfy the inequalities defining ε and δ, let γ = 1 − 8δ. Then,

δ ≤ (1 − γ)u ⇐⇒ u ≥ 1
8

(3.50)

⇐⇒ 1
4

(
1 −

√
1 − exp

(
− (m/d + 1)α2

1 − α2

))
≥ 1

8
(3.51)

⇐⇒ (m/d + 1)α2

1 − α2
≤ log

4
3

(3.52)

⇐⇒ m

d
≤ (

1
α2

− 1) log
4
3

− 1. (3.53)

Selecting α = 8ε/(1 − 8δ) gives ε = γα/8 and the condition

m

d
≤
(

(1 − 8δ)2

64ε2
− 1

)
log

4
3

− 1. (3.54)

Let f(1/ε2) denote the right-hand side. We are seeking a sufficient condition of the
form m/d ≤ ω/ε2. Since ε ≤ 1/64, to ensure that ω/ε2 ≤ f(1/ε2), it suffices to
impose ω/(1/64)2 = f(1/(1/64)2). This condition gives

ω = (7/64)2 log(4/3) − (1/64)2(log(4/3) + 1) ≈ .003127 ≥ 1/320 = .003125.

Thus, ε2 ≤ 1
320(m/d) is sufficient to ensure the inequalities.

The theorem shows that for any algorithm A, in the non-realizable case, there exists
a ‘bad’ distribution over X × {0, 1} such that the error of the hypothesis returned
by A is Ω

(√
d
m

)
with some constant probability. The VC-dimension appears as a

critical quantity in learning in this general setting as well. In particular, with an
infinite VC-dimension, agnostic PAC-learning is not possible.

3.5 Chapter notes

The use of Rademacher complexity for deriving generalization bounds in learning
was first advocated by Koltchinskii [2001], Koltchinskii and Panchenko [2000], and
Bartlett, Boucheron, and Lugosi [2002a], see also [Koltchinskii and Panchenko,
2002, Bartlett and Mendelson, 2002]. Bartlett, Bousquet, and Mendelson [2002b]
introduced the notion of local Rademacher complexity , that is the Rademacher
complexity restricted to a subset of the hypothesis set limited by a bound on
the variance. This can be used to derive better guarantees under some regularity
assumptions about the noise.

Theorem 3.3 is due to Massart [2000]. The notion of VC-dimension was introduced
by Vapnik and Chervonenkis [1971] and has been since extensively studied [Vapnik,
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2006, Vapnik and Chervonenkis, 1974, Blumer et al., 1989, Assouad, 1983, Dudley,
1999]. In addition to the key role it plays in machine learning, the VC-dimension is
also widely used in a variety of other areas of computer science and mathematics
(e.g., see Shelah [1972], Chazelle [2000]). Theorem 3.5 is known as Sauer’s lemma
in the learning community, however the result was first given by Vapnik and
Chervonenkis [1971] (in a somewhat different version) and later independently by
Sauer [1972] and Shelah [1972].

In the realizable case, lower bounds for the expected error in terms of the VC-
dimension were given by Vapnik and Chervonenkis [1974] and Haussler et al. [1988].
Later, a lower bound for the probability of error such as that of theorem 3.6 was
given by Blumer et al. [1989]. Theorem 3.6 and its proof, which improves upon
this previous result, are due to Ehrenfeucht, Haussler, Kearns, and Valiant [1988].
Devroye and Lugosi [1995] gave slightly tighter bounds for the same problem with
a more complex expression. Theorem 3.7 giving a lower bound in the non-realizable
case and the proof presented are due to Anthony and Bartlett [1999]. For other
examples of application of the probabilistic method demonstrating its full power,
consult the reference book of Alon and Spencer [1992].

There are several other measures of the complexity of a family of functions used
in machine learning, including covering numbers, packing numbers, and some other
complexity measures discussed in chapter 10. A covering number Np(G, ε) is the
minimal number of Lp balls of radius ε > 0 needed to cover a family of loss functions
G. A packing number Mp(G, ε) is the maximum number of non-overlapping Lp

balls of radius ε centered in G. The two notions are closely related, in particular
it can be shown straightfowardly that Mp(G, 2ε) ≤ Np(G, ε) ≤ Mp(G, ε) for G

and ε > 0. Each complexity measure naturally induces a different reduction of
infinite hypothesis sets to finite ones, thereby resulting in generalization bounds
for infinite hypothesis sets. Exercise 3.22 illustrates the use of covering numbers
for deriving generalization bounds using a very simple proof. There are also close
relationships between these complexity measures: for example, by Dudley’s theorem,
the empirical Rademacher complexity can be bounded in terms of N2(G, ε) [Dudley,
1967, 1987] and the covering and packing numbers can be bounded in terms of the
VC-dimension [Haussler, 1995]. See also [Ledoux and Talagrand, 1991, Alon et al.,
1997, Anthony and Bartlett, 1999, Cucker and Smale, 2001, Vidyasagar, 1997] for
a number of upper bounds on the covering number in terms of other complexity
measures.

3.6 Exercises

3.1 Growth function of intervals in R. Let H be the set of intervals in R. The VC-
dimension of H is 2. Compute its shattering coefficient ΠH(m), m ≥ 0. Compare
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your result with the general bound for growth functions.

3.2 Lower bound on growth function. Prove that Sauer’s lemma (theorem 3.5) is
tight, i.e., for any set X of m > d elements, show that there exists a hypothesis
class H of VC-dimension d such that ΠH(m) =

∑d
i=0

(
m
i

)
.

3.3 Singleton hypothesis class. Consider the trivial hypothesis set H = {h0}.

(a) Show that Rm(H) = 0 for any m > 0.

(b) Use a similar construction to show that Massart’s lemma (theorem 3.3) is
tight.

3.4 Rademacher identities. Fix m ≥ 1. Prove the following identities for any α ∈ R

and any two hypothesis sets H and H ′ of functions mapping from X to R:

(a) Rm(αH) = |α|Rm(H).

(b) Rm(H + H ′) = Rm(H) + Rm(H ′).

(c) Rm({max(h, h′) : h ∈ H,h′ ∈ H ′}),
where max(h, h′) denotes the function x �→ maxx∈X (h(x), h′(x)) (Hint : you
could use the identity max(a, b) = 1

2 [a + b + |a − b|] valid for all a, b ∈ R and
Talagrand’s contraction lemma (see lemma 4.2)).

3.5 Rademacher complexity. Professor Jesetoo claims to have found a better bound
on the Rademacher complexity of any hypothesis set H of functions taking values
in {−1, +1}, in terms of its VC-dimension VCdim(H). His bound is of the form
Rm(H) ≤ O

(VCdim(H)
m

)
. Can you show that Professor Jesetoo’s claim cannot be

correct? (Hint : consider a hypothesis set H reduced to just two simple functions.)

3.6 VC-dimension of union of k intervals. What is the VC-dimension of subsets of
the real line formed by the union of k intervals?

3.7 VC-dimension of finite hypothesis sets. Show that the VC-dimension of a finite
hypothesis set H is at most log2 |H|.

3.8 VC-dimension of subsets. What is the VC-dimension of the set of subsets Iα of
the real line parameterized by a single parameter α: Iα = [α, α + 1] ∪ [α + 2, +∞)?

3.9 VC-dimension of closed balls in R
n. Show that the VC-dimension of the set

of all closed balls in R
n, i.e., sets of the form {x ∈ R

n : ‖x − x0‖2 ≤ r} for some
x0 ∈ R

n and r ≥ 0, is less than or equal to n + 2.
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3.10 VC-dimension of ellipsoids. What is the VC-dimension of the set of all ellipsoids
in R

n?

3.11 VC-dimension of a vector space of real functions. Let F be a finite-dimensional
vector space of real functions on R

n, dim(F ) = r < ∞. Let H be the set of
hypotheses:

H = {{x : f(x) ≥ 0} : f ∈ F}.

Show that d, the VC-dimension of H, is finite and that d ≤ r. (Hint : select an
arbitrary set of m = r + 1 points and consider linear mapping u : F → R

m defined
by: u(f) = (f(x1), . . . , f(xm)).)

3.12 VC-dimension of sine functions. Consider the hypothesis family of sine func-
tions (Example 3.5): {x → sin(ωx) : ω ∈ R} .

(a) Show that for any x ∈ R the points x, 2x, 3x and 4x cannot be shattered
by this family of sine functions.

(b) Show that the VC-dimension of the family of sine functions is infinite.
(Hint : show that {2−m : m ∈ N} can be fully shattered for any m > 0.)

3.13 VC-dimension of union of halfspaces. Determine the VC-dimension of the
subsets of the real line formed by the union of k intervals.

3.14 VC-dimension of intersection of halfspaces. Consider the class Ck of convex
intersections of k halfspaces. Give lower and upper bound estimates for VCdim(Ck).

3.15 VC-dimension of intersection concepts.

(a) Let C1 and C2 be two concept classes. Show that for any concept class
C = {c1 ∩ c2 : c1 ∈ C1, c2 ∈ C2},

ΠC(m) ≤ ΠC1(m) ΠC2(m). (3.55)

(b) Let C be a concept class with VC-dimension d and let Cs be the concept
class formed by all intersections of s concepts from C, s ≥ 1. Show that the
VC-dimension of Cs is bounded by 2ds log2(3s). (Hint : show that log2(3x) <

9x/(2e) for any x ≥ 2.)

3.16 VC-dimension of union of concepts. Let A and B be two sets of functions
mapping from X into {0, 1}, and assume that both A and B have finite VC-
dimension, with VCdim(A) = dA and VCdim(B) = dB . Let C = A ∪ B be the
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union of A and B.

(a) Prove that for all m, ΠC(m) ≤ ΠA(m) + ΠB(m).

(b) Use Sauer’s lemma to show that for m ≥ dA + dB + 2, ΠC(m) < 2m, and
give a bound on the VC-dimension of C.

3.17 VC-dimension of symmetric difference of concepts. For two sets A and B, let
AΔB denote the symmetric difference of A and B, i.e., AΔB = (A∪B)− (A∩B).
Let H be a non-empty family of subsets of X with finite VC-dimension. Let A be
an element of H and define HΔA = {XΔA : X ∈ H}. Show that

VCdim(HΔA) = VCdim(H).

3.18 Symmetric functions. A function h : {0, 1}n → {0, 1} is symmetric if its value
is uniquely determined by the number of 1’s in the input. Let C denote the set of
all symmetric functions.

(a) Determine the VC-dimension of C.

(b) Give lower and upper bounds on the sample complexity of any consistent
PAC learning algorithm for C.

(c) Note that any hypothesis h ∈ C can be represented by a vector (y0, y1, ..., yn) ∈
{0, 1}n+1, where yi is the value of h on examples having precisely i 1’s. Devise
a consistent learning algorithm for C based on this representation.

3.19 Biased coins. Professor Moent has two coins in his pocket, coin xA and coin
xB . Both coins are slightly biased, i.e., Pr[xA = 0] = 1/2 − ε/2 and Pr[xB = 0] =
1/2 + ε/2, where 0 < ε < 1 is a small positive number, 0 denotes heads and 1
denotes tails. He likes to play the following game with his students. He picks a coin
x ∈ {xA, xB} from his pocket uniformly at random, tosses it m times, reveals the
sequence of 0s and 1s he obtained and asks which coin was tossed. Determine how
large m needs to be for a student’s coin prediction error to be at most δ > 0.

(a) Let S be a sample of size m. Professor Moent’s best student, Oskar, plays
according to the decision rule fo : {0, 1}m → {xA, xB} defined by fo(S) = xA

iff N(S) < m/2, where N(S) is the number of 0’s in sample S.
Suppose m is even, then show that

error(fo) ≥ 1
2

Pr
[
N(S) ≥ m

2

∣∣∣x = xA

]
. (3.56)

(b) Assuming m even, use the inequalities given in the appendix (section D.3)
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to show that

error(fo) >
1
4

[
1 −

[
1 − e

− mε2

1−ε2

] 1
2
]
. (3.57)

(c) Argue that if m is odd, the probability can be lower bounded by using
m + 1 in the bound in (a) and conclude that for both odd and even m,

error(fo) >
1
4

[
1 −

[
1 − e

− 2�m/2�ε2

1−ε2

] 1
2
]
. (3.58)

(d) Using this bound, how large must m be if Oskar’s error is at most δ, where
0 < δ < 1/4. What is the asymptotic behavior of this lower bound as a function
of ε?

(e) Show that no decision rule f : {0, 1}m → {xa, xB} can do better than
Oskar’s rule fo. Conclude that the lower bound of the previous question applies
to all rules.

3.20 Infinite VC-dimension.

(a) Show that if a concept class C has infinite VC-dimension, then it is not
PAC-learnable.

(b) In the standard PAC-learning scenario, the learning algorithm receives all
examples first and then computes its hypothesis. Within that setting, PAC-
learning of concept classes with infinite VC-dimension is not possible as seen
in the previous question.
Imagine now a different scenario where the learning algorithm can alternate
between drawing more examples and computation. The objective of this prob-
lem is to prove that PAC-learning can then be possible for some concept classes
with infinite VC-dimension.
Consider for example the special case of the concept class C of all subsets of
natural numbers. Professor Vitres has an idea for the first stage of a learning
algorithm L PAC-learning C. In the first stage, L draws a sufficient number of
points m such that the probability of drawing a point beyond the maximum
value M observed be small with high confidence. Can you complete Professor
Vitres’ idea by describing the second stage of the algorithm so that it PAC-
learns C? The description should be augmented with the proof that L can
PAC-learn C.

3.21 VC-dimension generalization bound – realizable case. In this exercise we show
that the bound given in corollary 3.4 can be improved to O(d log(m/d)

m ) in the
realizable setting. Assume we are in the realizable scenario, i.e. the target concept is
included in our hypothesis class H. We will show that if a hypothesis h is consistent
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with a sample S ∼ Dm then for any ε > 0 such that mε ≥ 8

Pr[R(h) > ε] ≤ 2
[2em

d

]d
2−mε/2 . (3.59)

(a) Let HS ⊆ H be the subset of hypotheses consistent with the sample S,
let R̂S(h) denote the empirical error with respect to the sample S and define
S′ as a another independent sample drawn from Dm. Show that the following
inequality holds for any h0 ∈ HS :

Pr
[

sup
h∈HS

|R̂S(h) − R̂S′(h)| >
ε

2

]
≥ Pr

[
B[m, ε] >

mε

2

]
Pr[R(h0) > ε] ,

where B[m, ε] is a binomial random variable with parameters [m, ε]. (Hint :
prove and use the fact that Pr[R̂(h) ≥ ε

2 ] ≥ Pr[R̂(h) > ε
2 ∧ R(h) > ε].)

(b) Prove that Pr
[
B(m, ε) > mε

2

]
≥ 1

2 . Use this inequality along with the
result from (a) to show that for any h0 ∈ HS

Pr
[
R(h0) > ε

]
≤ 2 Pr

[
sup

h∈HS

|R̂S(h) − R̂S′(h)| >
ε

2

]
.

(c) Instead of drawing two samples, we can draw one sample T of size 2m then
uniformly at random split it into S and S′. The right hand side of part (b) can
then be rewritten as:

Pr
[

sup
h∈HS

|R̂S(h)−R̂S′(h)| >
ε

2

]
= Pr

T∼D2m:
T→[S,S′]

[
∃h∈H : R̂S(h) = 0 ∧ R̂S′(h) >

ε

2

]
.

Let h0 be a hypothesis such that R̂T (h0) > ε
2 and let l > mε

2 be the total
number of errors h0 makes on T . Show that the probability of all l errors
falling into S′ is upper bounded by 2−l.

(d) Part (b) implies that for any h ∈ H

Pr
T∼D2m:
T→(S,S′)

[
R̂S(h) = 0 ∧ R̂S′(h) >

ε

2

∣∣∣ R̂T (h0) >
ε

2

]
≤ 2−l .

Use this bound to show that for any h ∈ H

Pr
T∼D2m:
T→(S,S′)

[
R̂S(h) = 0 ∧ R̂S′(h) >

ε

2

]
≤ 2−

εm
2 .

(e) Complete the proof of inequality (3.59) by using the union bound to upper
bound Pr T∼D2m:

T→(S,S′)

[
∃h∈H : R̂S(h) = 0 ∧ R̂S′(h) > ε

2

]
. Show that we can achieve

a high probability generalization bound that is of the order O(d log(m/d)
m ).
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3.22 Generalization bound based on covering numbers. Let H be a family of
functions mapping X to a subset of real numbers Y ⊆ R. For any ε > 0, the
covering number N (H, ε) of H for the L∞ norm is the minimal k ∈ N such that H

can be covered with k balls of radius ε, that is, there exists {h1, . . . , hk} ⊆ H such
that, for all h ∈ H, there exists i ≤ k with ‖h − hi‖∞ = maxx∈X |h(x) − hi(x)| ≤ ε.
In particular, when H is a compact set, a finite covering can be extracted from a
covering of H with balls of radius ε and thus N (H, ε) is finite.

Covering numbers provide a measure of the complexity of a class of functions: the
larger the covering number, the richer is the family of functions. The objective of
this problem is to illustrate this by proving a learning bound in the case of the
squared loss. Let D denote a distribution over X × Y according to which labeled
examples are drawn. Then, the generalization error of h ∈ H for the squared loss is
defined by R(h) = E(x,y)∼D[(h(x)−y)2] and its empirical error for a labeled sample
S = ((x1, y1), . . . , (xm, ym)) by R̂(h) = 1

m

∑m
i=1(h(xi)−yi)2. We will assume that H

is bounded, that is there exists M > 0 such that |h(x)−y| ≤ M for all (x, y) ∈ X×Y.
The following is the generalization bound proven in this problem:

Pr
S∼Dm

[
sup
h∈H

|R(h) − R̂(h)| ≥ ε
]
≤ N

(
H,

ε

8M

)
2 exp

(−mε2

2M4

)
. (3.60)

The proof is based on the following steps.

(a) Let LS = R(h) − R̂(h), then show that for all h1, h2 ∈ H and any labeled
sample S, the following inequality holds:

|LS(h1) − LS(h2)| ≤ 4M‖h1 − h2‖∞ .

(b) Assume that H can be covered by k subsets B1, . . . , Bk, that is H =
B1 ∪ . . .∪Bk. Then, show that, for any ε > 0, the following upper bound holds:

Pr
S∼Dm

[
sup
h∈H

|LS(h)| ≥ ε
]
≤

k∑
i=1

Pr
S∼Dm

[
sup
h∈Bi

|LS(h)| ≥ ε
]
.

(c) Finally, let k = N (H, ε
8M ) and let B1, . . . , Bk be balls of radius ε/(8M)

centered at h1, . . . , hk covering H. Use part (a) to show that for all i ∈ [1, k],

Pr
S∼Dm

[
sup
h∈Bi

|LS(h)| ≥ ε
]
≤ Pr

S∼Dm

[
|LS(hi)| ≥ ε

2

]
,

and apply Hoeffding’s inequality (theorem D.1) to prove (3.60).


