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Abstract
Multiple kernel learning for feature selection (MKL-
FS) utilizes kernels to explore complex properties
of features and performs better in embedded meth-
ods. However, the kernels in MKL-FS are generally
limited to be positive definite. In fact, indefinite
kernels often emerge in actual applications and can
achieve better empirical performance. But due to the
non-convexity of indefinite kernels, existing MKL-
FS methods are usually inapplicable and the corre-
sponding research is also relatively little. In this
paper, we propose a novel multiple indefinite kernel
feature selection method (MIK-FS) based on the pri-
mal framework of indefinite kernel support vector
machine (IKSVM), which applies an indefinite base
kernel for each feature and then exerts an l1-norm
constraint on kernel combination coefficients to se-
lect features automatically. A two-stage algorithm
is further presented to optimize the coefficients of
IKSVM and kernel combination alternately. In the
algorithm, we reformulate the non-convex optimiza-
tion problem of primal IKSVM as a difference of
convex functions (DC) programming and transform
the non-convex problem into a convex one with the
affine minorization approximation. Experiments
on real-world datasets demonstrate that MIK-FS is
superior to some related state-of-the-art methods
in both feature selection and classification perfor-
mance.

1 Introduction
Feature selection is an important problem in machine learning
and has been studied extensively, which aims to select only
a subset of relevant features in order to speed up learning
process, eliminate some noises and provide better model in-
terpretability [Chandrashekar and Sahin, 2014]. In general,
feature selection methods can be divided into three categories:
”filter” which ranks the features according to some discrimina-
tion measures independent of learning algorithms, ”wrapper”
which evaluates the features by learning algorithms, and ”em-
bedded” which embeds feature selection into learning process.
∗Corresponding author.

In the past few years, multiple kernel learning for feature
selection (MKL-FS) has attracted more attention in embed-
ded methods. By means of MKL, MKL-FS can not only
uncover complicated properties of the features effectively, but
also convert the selection of the features into the learning on
a sparse combination of multiple kernels [Xu et al., 2009;
Varma and Babu, 2009]. Chen et al. treated the feature
selection problem of gene expression data as an ordinary
multiple parameter learning problem based on multiple ker-
nel support vector machine [Chen et al., 2007]. Dileep and
Sekhar further applied this method in image categorization
tasks and showed its superiority over principal component
analysis (PCA) [Dileep and Sekhar, 2009]. Varma and Babu
proposed a more generalized MKL scheme for feature selec-
tion where the combination of base kernels can be generalized
to be nonlinear [Varma and Babu, 2009]. Xu et al. presented
a non-monotonic feature selection method to select a specific
number of features and the corresponding combinatorial op-
timization problem was approximated by an MKL problem
[Xu et al., 2009]. Tan et al. focused on sparse support vector
machines (SVM) with l0-norm whose convex relaxation can
be further formulated as an MKL problem where each kernel
corresponds to a sparse feature subset [Tan et al., 2010]. Ya-
mada et al. proposed an alternative feature-wise kernelized
Lasso to capture nonlinear input-output dependency and se-
lect informative features according to the kernel coefficients
[Yamada et al., 2014].

However, MKL-FS methods usually require that base ker-
nels should be positive definite (PD) and satisfy the Mer-
cer’s condition in order to obtain a bi-convex optimiza-
tion problem. In fact, standard PD kernels are inapplica-
ble in many practical situations. For example, kernels ob-
tained from similarity measures often violate Mercer’s con-
ditions and are not positive definite [Saigo et al., 2004;
Chen et al., 2009]. On the contrary, indefinite kernels have
played an increasingly important role in machine learning and
shown much better performance in some scenarios than PD
kernels. Liwicki et al. applied an indefinite robust gradient-
based kernel in an incremental kernel principal component
analysis (KPCA) algorithm for visual tracking and achieved
more efficient results [Liwicki et al., 2012]. Xue et al. in-
tegrated additional problem-specific prior knowledge in the
construction of indefinite kernels and presented its superior-
ity in supervised and semi-supervised classification [Xue and



Chen, 2014]. Xu et al. solved single indefinite kernel SVM
with difference of convex functions (DC) programming and
showed the superiority of indefinite kernels in classification.
[Xu et al., 2017].

Recently, indefinite kernels have been widely studied in
dimensionality reduction. Liu utilized an indefinite fractional
power polynomial kernel in KPCA in face recognition, which
can achieve higher recognition accuracies than the KPCA
using PD polynomial kernels [Liu, 2004]. Haasdonk and
Pekalska proposed indefinite kernel discriminant analysis
(IKDA) to extend traditional KDA in indefinite kernel scenar-
ios [Haasdonk and Pekalska, 2010]. Huang et al. addressed
PCA with indefinite kernels (IKPCA) in the framework of
least squares support vector machine and then gave IKPCA
a feature space interpretation [Huang et al., 2016]. However,
the problem of indefinite kernels applied in feature selection
has got relatively little research. Kowalski et al. focused on
using mixed norm regularization to reach better sparsity rather
than indefinite kernels for feature selection [Kowalski et al.,
2009]. Furthermore, due to the non-convexity of indefinite
kernels, almost all existing MKL-FS methods can not be used.

In this paper, we propose a novel multiple indefinite kernel
feature selection method (MIK-FS) based on the primal frame-
work of indefinite kernel support vector machine (IKSVM) in
embedded method scenarios. MIK-FS uses an indefinite base
kernel to represent each feature respectively and an l1-norm
constraint is then enforced on kernel combination coefficients
in order to select features naturally. A two-stage algorithm
is further presented to optimize the coefficients of IKSVM
and kernel combination alternately. Concretely, when the ker-
nel combination coefficients are fixed, the non-convex primal
problem of IKSVM is reformulated as a difference of convex
functions (DC) programming and then converted into a con-
vex one by the affine minorization approximation. Once the
coefficients of IKSVM have been solved, kernel combination
coefficients can be optimized by projected gradient descent.
We further prove that the value of the objective function in
MIK-FS is strictly monotonic decreasing with each iteration
in the algorithm. Experimental results on real-world datasets
have shown that MIK-FS outperforms some related methods
in terms of feature selection and classification.

2 Related Work
Given a training set {(xi, yi)}ni=1, where xi ∈ RM is a train-
ing sample and yi ∈ {−1,+1} is the corresponding class label.
MKL-FS firstly applies a base kernel km on each feature of
the samples and then combines these kernels into a kernel
combination including two ways: additive and multiplicative
combinations.

Most MKL-FS methods integrated the kernels into an addi-
tive combination [Dileep and Sekhar, 2009]:

k (xi,xj) =

M∑
m=1

dmkm (xi,m, xj,m), dm ≥ 0 (1)

where xi,m denotes the mth feature of xi and dm represents
the coefficient of the kernel km.

Varma and Babu further extended the linear combination Eq.

(1) into a nonlinear product form [Varma and Babu, 2009]:

k (xi,xj) =

M∏
m=1

dmkm (xi,m, xj,m), dm ≥ 0 (2)

MKL-FS aims to learn a sparse combination of the kernels
so that the feature can be selected naturally. Consequently,
SVM-based MKL-FS methods further embeds the kernel com-
bination into the dual problem of SVM, which can learn the
coefficients of SVM and the combination simultaneously:

min
α,d

1
2

n∑
i,j=1

αiαjyiyjk (xi,xj) + λ‖d‖1 −
n∑

i=1

αi

s.t.
n∑

i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, · · · , n
dm ≥ 0,m = 1, · · · ,M

(3)

where d is the kernel combination coefficients. An l1-norm
regularizer is used on d to obtain a spares solution.

When the kernels are PD, MKL-FS can select the informa-
tive features meanwhile train a good classifier SVM. However,
when the kernels become indefinite, it more likely leads to bad
classification performance if we directly embed the combina-
tion into the dual problem of indefinite kernel SVM (IKSVM).
In the case of indefinite kernels, the primal and dual problems
of IKSVM are both non-convex. Consequently, there is a
dual gap between the two problems and their solutions are not
equivalent [Xu et al., 2017]. As a result, the selected features
and the classifier’s coefficients learned from the dual IKSVM
are more likely not beneficial for the subsequent classification.
In other words, it is more reasonable that the indefinite ker-
nel combination should be embedded into the primal IKSVM.
However, existing SVM-based MKL-FS methods mostly fo-
cus on the dual problem and will fail in solving the non-convex
indefinite kernel problems.

3 MIK-FS
In this section, we will present our multiple indefinite kernel
feature selection method (MIK-FS). In MIK-FS method, each
feature of the samples is characterized by an indefinite ker-
nel and the global optimization problem would come to be
non-convex. In order to avoid suffering from the dual gap,
we attempt to focus on the primal problem of IKSVM and
its objective function can be formulated as an unconstrained
optimization problem:

min
f∈K,b

λ 〈f ,f〉K +

n∑
i=1

L(yi,f(xi) + b) (4)

where K represents a Reproducing Kernel Kreı̌n Space
(RKKS) and L is a loss function. According to [Ong et al.,
2004], the Representer Theorem still holds in RKKS and the
solution to Eq. (4) can be expressed as

f∗ =

n∑
i=1

βik(xi, ·) (5)

where βi ∈ R, k(·, ·) is a kernel function in RKKS and the
corresponding kernel matrix can be indefinite. Combining
Eqs. (4) and (5), the kernelized primal form of IKSVM can be



formulated as:

min
β,b

λ

n∑
i,j=1

βiβjk (xi,xj) +

n∑
i=1

L(yi,

n∑
j=1

βjk (xi,xj) + b)

(6)
We further embed the indefinite kernel combination of Eq.

(1) into Eq. (6) to obtain our MIK-FS. An l1-norm regularizer
is added to get sparse kernel combination coefficients. The
corresponding model of MIK-FS is:

min
β,b,d

λ1β
TKβ + λ2‖d‖1 +

n∑
i=1

L(yi,K
iβ + b)

s.t dm ≥ 0,m = 1, · · · ,M
(7)

where K =
∑M

m=1 dmKm is an indefinite kernel matrix
derived from associated kernel function Kij = k(xi,xj)
described in Eq. (1) andKm is derived from kernel function
km. Ki represents the ith row ofK.

Furthermore, in order to ensure the MIK-FS model is con-
tinuously differentiable, we select the smooth quadratic hinge
loss function as L(·) and the optimization problem becomes

min
β,b,d

λ1β
TKβ + λ2‖d‖1 +

n∑
i=1

max
(
0, 1− yi(Kiβ + b)

)2
s.t dm ≥ 0,m = 1, · · · ,M

(8)

In Eq. (8), the first term is the regularizer related to hypoth-
esis f . Specially, it is worth noting that β is unconstrained
which is different to the Lagrange multiplier α in Eq. (3).
The second term is the l1-norm regularizer related to d. If the
coefficient dm equals to zero, it means that the corresponding
feature has no effect on the classification and can be discarded.

Compared to traditional MKL-FS methods, the proposed
MIK-FS has two advantages. Firstly, the kernels used in
MIK-FS can actually involve both PD and indefinite kernels.
Consequently, MIK-FS is a broader method to exploit more
generalized kernels. Secondly, we construct MIK-FS on the
the primal form of IKSVM and avoid the dual gap in the
non-convex optimization problem effectively.

4 Optimization Algorithm
We adopt a two-stage algorithm to optimize the coefficients
(β, b) of IKSVM and d of kernel combination alternately. The
complete algorithm is described in Algorithm 1. We will
introduce the two stages in detail in the following subsections.

4.1 Solving (β, b)

Firstly, we denote the objective function of MIK-FS as

F (β, b,d) =λ1β
TKβ + λ2‖d‖1

+

n∑
i=1

max
(
0, 1− yi(Kiβ + b)

)2 (9)

When the coefficients d are fixed, Eq. (9) degenerates into a
non-convex problem of IKSVM with a single indefinite kernel.
That is

Algorithm 1 MIK-FS
Inputs:

T : the maximum number of iterations
λ1, λ2: the regularization parameters
ε: the tolerance value for convergence

Process:
1: set t = 0, initialize dt, objt ;
2: while (t < T ) do
3: set t = t+ 1;
4: fix dt−1 and solve Eq. (8) to obtain (βt, bt) ;
5: fix (βt, bt) and solve Eq. (8) to obtain a solution dt;
6: calculate the value of objective function objt;
7: if |objt − objt−1| ≤ ε then
8: MIK-FS converges and break;
9: end if

10: end while
11: return βt, bt,dt;

f(β, b) = λ1β
TKβ + L+ Constantd (10)

where L =
∑n

i=1 max
(
0, 1− yi(Kiβ + b)

)2
and

Constantd = λ2‖d‖1 is a constant.
According to [Xu et al., 2017], the non-convex problem

of Eq (10) can be reformulated as a DC programming [Tao
and An, 1997; Dinh and Le Thi, 2014] equivalently due to the
favorable property of the spectra for indefinite kernel matrices.
Concretely, the objective function can be decomposed as

f(β, b) = g(β, b)− h(β, b)

with g(β, b) = λ1β
T (ρI)β + L+ Constantd

h(β, b) = λ1β
T (ρI −K)β

(11)

where the positive number ρ satisfies the condition: ρ ≥ η and
the number η is the maximum eigenvalue of the kernel matrix
K. As a result, the functions g(β, b) and h(β, b) can both be
guaranteed to be convex.

Then, the conjugate dual problem of Eq. (11) can be for-
mulated as f∗(β, b) = h∗(β, b)−g∗(β, b), where g∗(β, b) =
sup{〈(β, b), (β, b)〉− g(β, b), (β, b) ∈ Rn×R} is the conju-
gate function of g and h∗ is the conjugate function of h . And
the relationship between variables {(β, b)} and {(β, b)} is

(β, b) ∈ ∂h(β, b), (β, b) ∈ ∂g∗(β, b) (12)

Using Eq. (12), we can approximate the functions h and g∗

with their affine minorization at points (βk, bk) and (β
k
, b

k
)

respectively

h(β, b) = h(βk, bk) +
〈
β − βk,β

k
〉

g∗(β, b) = g∗(β
k
, b

k
) +

〈
β − βk

,βk+1
〉 (13)

where (β
k
, b

k
) ∈ ∂h(βk, bk) and (βk+1, bk+1) ∈

∂g∗(β
k
, b

k
). Embedding Eq. (13) into the primal and conju-

gate dual problems of IKSVM, we have



arg min
(β,b)
{g(β, b)− h(β, b)}

= argmin{(βk+1, bk+1) : g(β, b)−
〈
β,β

k
〉
}

arg min
(β,b)
{h∗(β, b)− g∗(β, b)}

= argmin{(βk+1
, b

k+1
) : h∗(β, b)−

〈
β,βk+1

〉
}

(14)

So these two problems of IKSVM become convex after the
transformation in Eq. (14). We can construct two sequences
{(β, b)} and {(β, b)} by solving Eq. (14).

Furthermore, in order to simplify the solving process [Dinh
and Le Thi, 2014], we directly compute {(β, b)} in the way
that {(βk

, b
k
)} ∈ ∂h(βk, bk). Aa a result, the two sequences

{(β, b)} and {(β, b)} can be constructed as follows:

(β
k
, b

k
) ∈ ∂h(βk, bk)

(βk+1, bk+1) = argmin{g(β, b)− 〈β,βk〉}
(15)

Since g(β, b) is a convex function and the related convex
optimization problem in Eq. (15) can be easily solved. The
detailed steps for solving (β, b) in Eq. (10) are described in
Algorithm 2.

Algorithm 2 Primal IKSVM
Inputs:

T1: the maximize number of iterations
ε: the tolerance value for convergence
d: the kernel coefficients
K1 . . .KM : matrix obtained from features
δ: the offset for dc decomposition

Process:
1: calculateK =

∑M
m=1 dmKm;

2: calculate η, the maximum eigenvalue ofK;
3: set ρ = |η|+ δ;
4: set k = 0, initialize βk ;
5: while (k < T1) do
6: calculate β

k
= λ1(ρI −K)βk;

7: calculate (βk+1, bk+1) = argmin{g(β, b)− 〈β,βk〉};
8: set αk+1 = (βk+1, bk+1) and αk = (βk, bk);
9: if ‖αk+1 −αk‖22 ≤ ε then

10: the algorithm converges and break the loop;
11: end if
12: set k = k + 1;
13: end while
14: return βk, bk;

Algorithm 2 firstly integrates the kernel matrixesKm into
an additive combination with coefficients d and performs
eigenvalue decomposition onK to find the maximum eigen-
value for DC decomposition (Step 1-3). Within the loop,
algorithm 2 calculates the solution of conjugate dual problem
(Step 6) and then solves primal problem by approximating
h(β, b) with its affine minorization (Step 7). Difference be-
tween two points obtained in adjacent iterations is calculated
for measuring convergence (Step 8-11).

4.2 Solving d
When (β, b) is fixed, Eq. (8) can be reformulated as:

min
d

dTγ +

n∑
i=1

max
(
0, 1− yi

(
θid+ b

))2
s.t. dm ≥ 0,m = 1, ...,M

(16)

where γ = [λ1β
TK1β + λ2, . . . , λ1β

TKMβ + λ2]
T , θ =

[K1β, · · · ,KMβ] and θi represents the ith row of θ. Eq.
(16) can be solved by projected gradient descent (PGD). The
gradient of d at dm is:

∇dm = γm +
∑
i∈SV

(
1− yi

(
Kiβ + b

))(
−yiKi

mβ
)

(17)

where SV =
{
xi ∈ X|yi

(
Kiβ + b

)
≤ 1
}

is the set of sup-
port vectors in current iteration. PGD method for solving d is
summarized in Algorithm 3.

Algorithm 3 PGD
Inputs:

T2: the maximize number of iterations
ε: the tolerance value for convergence

Process:
1: set k = 0, initialize dk ;
2: while (k < T2 and ‖∇dk‖22 ≥ ε) do
3: calculate∇dk according to Eq. (17);
4: calculate step size α by Armijo rule ;
5: set dk+1 = dk − α ∗ ∇dk ;
6: set dk+1 = max(dk+1, 0);
7: set k = k + 1;
8: end while
9: return dk;

Algorithm 3 calculates the gradient of Eq. (16) and the step
size α based on the Armijo rule (Step 3-4). After that, d is
updated and projected to feasible sets (Step 5-6).

4.3 Convergence Analysis
We further present a theoretical analysis for the convergence
of MIK-FS. As mentioned above, MIK-FS is a two-stage al-
gorithm and thus we will analyze the convergence of these
two stages respectively. First of all, when the kernel combi-
nation coefficients d are fixed, MIK-FS can be formulated as
a primal IKSVM problem. We solve it by DC programming
which can guarantee that the objective function of IKSVM is
monotonically decreasing [Xu et al., 2017].

Proposition 1. For the sequence {αk = (βk, bk)}, we have

(g − h)(βk, bk)− (g − h)(βk+1, bk+1) ≥ τ‖d(α)‖2,

the equality holds if and only if τ‖d(α)‖2 = 0, where τ is a
positive parameter to make functions g and h strongly convex.

Furthermore, the local minimum would be obtained when
‖d(α)‖2 = 0 is satisfied.

Then, when the coefficients (β, b) of IKSVM are fixed,
MIK-FS is transformed into a convex problem to solve the
kernel combination coefficients. Thus, we can obtain the
following proposition for the whole algorithm MIK-FS.



Table 1: Datasets description.
Datasets #Num #Feature
ALLAML 72 7129
Colon 62 2000
Gli 85 85 22283
Prostate GE 102 5966
Central Nervous System 60 7129
Lung Cancer 181 12533
Dbworld 64 4702
Isolet 120 617
Glioma 21 4434
Carcinom 34 9182

Proposition 2. For the sequence {(βk, bk,dk)} , we have

F (βk+1, bk+1,dk+1) ≤ F (βk, bk,dk),

that is, the objective function F (βk, bk,dk) is strictly mono-
tonic decreasing along the solution sequence.

When F (βk, bk,dk) = F (βk+1, bk+1,dk+1) comes true,
the algorithm MIK-FS can converge to a stationary point.

5 Experiments
We conduct a series of experiments on several real-world
datasets to compare our MIK-FS to some related state-of-the-
art algorithms.

5.1 Experimental Setup
We select ten datasets from three different repositories for
experiments: (a) seven datasets from a feature selection repos-
itory1, namely ALLAML, Colon, Gli 85, Prostate GE, Isolet,
Glioma, Carcinom; (b) two binary datasets from an online
repository2 of high-dimensional biomedical datasets, namely
Central Nervous System, Lung Cancer; (c) one dataset Db-
world from UCI Machine Learning Repository. Table 1 lists a
brief description of these ten datasets, including the number of
samples and the number of features in each sample. As we can
see from the table, the number of features in the ten datasets
are all very large. So there are more likely high redundancies
among these features.

We randomly divide the samples into two non-overlapping
training and testing sets which contain almost half of the sam-
ples in each class. The processes are repeated ten times to
generate ten independent runs for each dataset and then the
average results are reported. Since the three datasets Isolet,
Glioma and Carcinom are designed for multi-class classifica-
tion , we choose the first two classes.

In our experiments, we choose the indefinite sigmoid kernel
k = tanh(a ·xT

i xj − r) as the base feature kernel in MIK-FS.
Gaussian kernel is used for two MKL-FS methods. For all
the algorithms, the regularization parameters and the kernel
parameters are chosen from the set {10−2, 10−1, 1, 101, 102}.
A feature is discarded if the corresponding kernel combination
coefficient di is less than a small threshold, e.g., 10−5.

We compare the proposed MIK-FS with the following algo-
rithms:

1http://featureselection.asu.edu/datasets.php
2http://datam.i2r.a-star.edu.sg/datasets/krbd/

• l1-SVM [Bradley and Mangasarian, 1998]: SVM with
l1-norm regularizer .

• ElasticNet-SVM [Wang et al., 2006]: SVM with mixed
l1-norm and l2-norm regularizer.

• RFMKL [Dileep and Sekhar, 2009]: An SVM-based
MKL-FS algorithm with additive kernel combination.

• GMKL [Varma and Babu, 2009]: An SVM-based MKL-
FS algorithm with multiplicative kernel combination. .

• IKPCA [Huang et al., 2016]: Kernel principal component
analysis with indefinite kernels.

5.2 Experimental Results
Table 2 lists the average classification accuracies and the cor-
responding number of selected features in each compared
algorithm on the ten datasets. The best results are highlighted
in bold.

As shown in Table 2, our proposed MIK-FS achieves higher
accuracies than other algorithms on almost all the datasets
while selecting a smaller number of features. l1-SVM is
simple and fast, but it performs poorly compared to other
algorithms. Elasticnet-SVM outperforms l1-SVM in terms
of classification accuracies but tends to select too many fea-
tures. GMKL achieves similar results with RFMKL on most
datasets except that it performs worse than RFMKL on Gli 85,
Central Nervous System and Lung Cancer. MIK-FS excels
GMKL and RFMKL on all datasets. The reduced dimen-
sions in IKPCA are limited by the number of samples and it
performs even worse than l1-SVM on most datasets.

Figure 1 shows the classification accuracies corresponding
to the specified number of features of five embedded feature se-
lection algorithms on six datasets including ALLAML, Colon,
Central Nervous System, Isolet, Glioma and Carcinom. The
maximum number of selected feature is set to 60 which is
enough for most algorithms to reach the highest accuracies on
the datasets.

As shown in Figure 1, our algorithm obviously outperforms
the other algorithms in terms of the highest classification accu-
racies, whose accuracies can even exceed the others’ beyond
7% on the datasets Carcinom and Glioma. With the increasing
of the number of selected features, the classification accura-
cies of MIK-FS rise more quickly than the other algorithms
on most datasets. MIK-FS can achieve the highest accuracies
on all the six datasets when the number of selected feature is
larger than 30.

The experiments about the convergence of MIK-FS are
conducted on six datasets the same as previous experiments.
We plot the value of {F (βk, bk,dk)−F (βk+1, bk+1,dk+1)}
of the solution sequence {(βk, bk,dk)} during the iterations in
MIK-FS. Figure 2 shows the process of the difference value of
objective function of MIK-FS method changing with iterations
on six datasets and MIK-FS method converges rapidly within
10 iterations on all the six datasets.

6 Conclusion
In this paper, we propose an embedded feature selection
method MIK-FS based on the primal framework of IKSVM,
which applies an indefinite base kernel for each feature and



Table 2: Classification accuracies and the number of selected features (mean (#dimension)) of each compared algorithm on ten
real-world datasets.

l1-SVM ElasticNet-SVM RFMKL GMKL IKPCA MIK-FS
ALLAML 89.43 (18) 95.14 (558) 95.71 (14) 95.14 (34) 87.71 (13) 97.14 (18)
Colon 82.58 (13) 88.07 (87) 85.81 (11) 85.80 (20) 77.74 (16) 87.09 (17)
Gli 85 76.67 (5) 75.24 (8) 75.00 (28) 73.10 (4) 69.52 (38) 78.09 (14)
Prostate GE 95.49 (15) 95.10 (71) 95.88 (14) 95.88 (29) 50.98 (45) 95.88 (8)
Central Nervous System 71.04 (9) 68.62 (19) 67.93 (10) 66.20 (3) 65.52 (27) 75.52(17)
Lung Cancer 98.34 (12) 98.89 (15) 97.78 (33) 91.44 (428) 83.33 (9) 99.89 (46)
Dbworld 85.16 (14) 90.00 (232) 88.71 (18) 87.74 (154) 89.68 (6) 90.00 (11)
Isolet 98.67 (11) 99.34 (55) 99.34 (12) 99.34 (15) 99.83 (19) 100.00 (9)
Glioma 80.00 (5) 81.00 (104) 81.00 (5) 81.00 (6) 70.00 (9) 90.00 (3)
Carcinom 79.41 (4) 80.59 (488) 81.76 (7) 84.70 (16) 76.47 (15) 91.70 (11)
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Figure 1: Classification accuracies versus the number of selected features of five embedded feature selection algorithms.

generates sparse kernel combination coefficients by l1-norm
to select features automatically. A two-stage algorithm is ac-
cordingly designed to optimize the coefficients of IKSVM and
kernel combination alternately. Experiments on real-world
datasets validate the effectiveness of MIK-FS in feature selec-
tion and classification.
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