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Abstract. Encoding is one of the most important steps in Error Cor-
recting Output Codes (ECOCs). Traditional encoding strategies are usu-
ally data-independent. Recently, some tree-form encoding algorithms are
proposed which firstly utilize mutual information to estimate inter-class
separability in order to create a hierarchical partition of the tree from top
to down and then obtain a coding matrix. But such criterion is usually
computed by a non-parametric method which would generally require
vast samples and is more likely to lead to unstable results. In this paper,
we present a novel encoding algorithm which uses the maximum margins
between classes as the criterion and constructs a bottom-up binary tree
based on the maximum margin. As a result, the corresponding coding
matrix is more stable and discriminative for the following classification.
Experimental results have shown that our algorithm performs much bet-
ter than some state-of-the-art coding algorithms in ECOC.

Keywords: Multi-class classification · Maximum margin tree · Error
Correcting Output Codes

1 Introduction

The multi-class classification problem has attracted a lot attentions in machine
learning field. The traditional solutions tend to transform it into multiple binary
problems. The corresponding strategies include decision tree, neural networks,
and so on.

Error Correcting Output Codes (ECOCs) [1,2] is a widely-used method in
these strategies, which was originally proposed by Dietterich and Bakiri [3].
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It usually involves two parts: encoding and decoding. Encoding part generates
a sequence of bits, i.e. a code word for each class. All code words form a coding
matrix. Decoding part predicts class labels for unseen data through comparing
their output code words with the code words of classes in the coding matrix
depending on some specific strategies such as Hamming decoding (HD) [4] and
Euclidean decoding [5]. In this paper, we will focus on encoding part.

The goal of encoding is to design a coding matrix M. Each row of M repre-
sents one class and each column of M is one binary problem (dichotomizer). For
each class, encoding aims to create a corresponding code word where each bit
is the prediction of the dichotomizer. Traditionally, the coding matrix is coded
by +1 and −1. In Table 1(a), +1 means that the corresponding dichotomizer
takes this class as a positive class and −1 otherwise. However, the length of the
code words in this scenario is actually fixed. As a result, a limited number of
dichotomizers can be used which would restrict the performance of ECOC to
some extent. Allwein et al. [6] further presented a ternary coding matrix which
allows some bits of coding matrix to be zero as Table 1(b). The symbol zero
denotes that the corresponding class does not participate in the specific classifi-
cation. Result from the zero symbols, the ternary coding matrix is more flexible
and could have much longer code words than the binary one.

Consequently, the core task in encoding has boiled down to how to build such
an appropriate coding matrix. The simplest strategy is one-versus-all (OVA) [4]
which takes one class as a positive class and all the others as a negative class to
build the binary coding matrix. One-versus-one (OVO) [5] forms a ternary coding
matrix where each column only considers two classes to be positive and negative
classes respectively and the rest are represented by zero symbols. Random codes
[6] generate the coding matrix randomly, where the binary coding matrix is
called dense random while the ternary one is termed as spare random. Though
these traditional strategies are simple, they are all data-independent. As a result,
they either perform poorly or get too long code words which would require more
dichotomoizers with higher computational costs.

Recent proposed tree-form encoding algorithms [7–10] utilize some criteri-
ons to estimate inter-class separability so as to build a tree and obtains a
data-dependent coding matrix. Discriminant ECOC (DECOC) [8] applies the
sequential forward floating search (SFFS) to generate the tree from top to down

Table 1. Coding matrix for a 4-class problem

(a) Binary

h1 h2 h3 h4

C1 +1 -1 -1 -1

C2 -1 +1 -1 -1

C3 -1 -1 +1 -1

C4 -1 -1 -1 +1

(b) Ternary

h1 h2 h3 h4 h5 h6

C1 +1 +1 +1 0 0 0

C2 -1 0 0 +1 +1 0

C3 0 -1 0 -1 0 +1

C4 0 0 -1 0 -1 -1
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through maximizing the mutual information (MI) [11] between classes heuristi-
cally. Then a ternary coding matrix is constructed according to the hierarchical
partition of the tree. Based on DECOC, subclass ECOC (SECOC) [9] further
uses a cluster method to create subclasses while the original classification prob-
lem is linearly non-separable. However, the MI criterion used in DECOC and
SECOC is computed by a non-parametric method which generally requires a
large number of samples and further leads to an unstable result. Hierarchical
ECOC (HECOC) [12] utilizes support vector domain description (SVDD) [12]
as the criterion to estimate inter-class separability, which is more stable than
DECOC and SECOC. However, when building the tree, HECOC chooses two
classes which have the smallest inter-class separability as a node. As a result,
the base dichotomizers will face a relatively difficult binary classification problem
which limits the performance of ECOC to some degree.

In this paper, we propose a novel encoding method termed as maximum mar-
gin tree ECOC (M2ECOC). M2ECOC estimates the maximal inter-class sepa-
rability by the maximum margins between classes rather than the MI criterion.
Consequently, the corresponding coding matrix is more stable and discrimina-
tive for the following classification. Concretely, M2ECOC uses support vector
machine (SVM) [13] to compute the maximum margins between classes and
then obtains a maximum margin matrix. Depending on this matrix, M2ECOC
further generates a bottom-up binary tree based on choosing the maximal maxi-
mum margin. Finally, such maximum margin tree will be converted into a ternary
coding matrix according to the hierarchical partition of the tree.

The paper is organized as follows. Section 2 introduces the tree-form encoding
algorithms DECOC and SECOC. Section 3 introduces our M2ECOC algorithm
in detail. In Sect. 4, the compared experiments with some state-of-the-art encod-
ing algorithms are shown. Finally, the last section concludes the paper.

2 Tree-Form Encoding Algorithms

2.1 Discriminant ECOC (DECOC)

DECOC [8] firstly applies SFFS to find the hierarchical partition of the tree
and builds the tree from top to down. As Fig. 1(a) shown, DECOC separates
the original class set {C1,C2,C3} into two partitions {C1,C3} and {C2} until
each partition has only one class. SFFS is one kind of suboptimal sequential
search methods which dynamically changes the number of forward steps until the
resulting subsets are better than the previously ones based on some criterions [8].
MI, which is an often-used metric to compute the relativity between two random
variables in information theory, is selected to evaluate the discriminability of
class sets in DECOC. MI is defined as follow:

I(x ,y) =
∫ ∫

p(x, y) log(
p(x, y)
p(x)p(y)

) dx dy (1)

where x denotes the sample in the class sets and y denotes the class label. p(x)
and p(y) are their probability density functions respectively. DECOC aims to
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(a) DECOC (b) SECOC

Fig. 1. Illustration of the trees in DECOC and SECOC

maximize the MI value between the data in the class sets and the class label to
maximize the discriminability of class sets. However, when computing the MI
value, DECOC uses a non-parametric parzen estimation method which usually
requires a large number of samples in order to reach a relatively better perfor-
mance and is more likely to lead to unstable experimental results.

When the tree has been completely constructed, DECOC further fills a
ternary coding matrix based on the tree. Particularly, the classes in the left
partition are represented by +1 and the classes in the right partition are rep-
resented by −1. Meanwhile, classes which are not shown up in the hierarchical
partition are represented by 0.

2.2 Subclass ECOC (SECOC)

On the basis of DECOC, SECOC [9] contributes to solving the linearly non-
separable problems by dividing the original class into some new subclasses.
SECOC also uses SFFS to find the hierarchical partition of the tree by maximiz-
ing the MI value. When the original partition is linearly non-separable, SECOC
further uses the cluster method K -means to split it into simpler and smaller
sub-partitions. Usually, the number of sub-partitions is set to 2 [9]. As Fig. 1(b)
shown, SECOC splits the original linearly non-separable problem {C1,C3} into
two linearly separable problems {C1, C3 1} and {C1,C3 2} by dividing class C3

into two new subclasses C3 1 and C3 2. Therefore, if the original classification
problem is linearly non-separable, SECOC can transform it into a linearly sep-
arable one through several times of decompositions.

3 Maximum Margin Tree ECOC (M2ECOC)

3.1 Maximum Margin

Margin, which is defined as the minimum distance between the decision boundary
and samples, is one of the most famous concepts in SVM proposed by Vapnik [13].
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Specifically, decision boundary which is also called decision hyperplane, is
denoted as follows:

wTΦ(x ) + b = 0 (2)

where Φ(x ) is a fixed feature-space transformation function, w is a weight vector
and b is the bias. The functional margin can be formulated as:

r̂ = min
i

{yi(wTΦ(x i) + b)} i = 1, 2, ..., N (3)

where yi ∈ y denotes the corresponding class label and N is the number of
samples. However, the functional margin does not have the scaling invariance.
So, we further get the geometric margin by normalizing (3):

r̃ = min
i

{yi(
wT

||w ||Φ(x i) +
b

||w || )} i = 1, 2, ..., N (4)

According to (3) and (4), we can easily obtain the relationship with the
functional margin and the geometric margin as follows:

r̃ =
r̂

||w || (5)

Let r̂ equal to 1. The maximum margin can be optimized by solving the
following problem:

max
w ,b

1
||w || (6)

s.t. yi(w
TΦ(x i) + b) − 1 � 0, i = 1, 2, ..., N

It is obvious that the maximization of ||w ||−1 is equivalent to the minimiza-
tion of ||w ||. So we can transform (6) into the following optimization problem:

min
w ,b

1
2
||w ||2 + C

N∑
i=1

ξi (7)

s.t. yi(w
TΦ(x i) + b) � 1 − ξi, i = 1, 2, ..., N

ξi � 0, i = 1, 2, ..., N

where the parameter ξ is the slack variable and C is used to balance ξ and
the margin. (7) can be further changed into a dual problem using Lagrange
multipliers with kernel functions:

max
α

N∑
i=1

αi − 1
2

N∑
i,j=1

αiαjyiyjK(x i,x j) (8)

s.t.

N∑
i=1

αiyi = 0, i = 1, 2, ..., N

0 � αi � C, i = 1, 2, ..., N
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Through (8), we can solve the α. Consequently, the maximum margin can
be finally computed as follows [14]:

margin =
1

||w || (9)

where the vector w is determined by

w =
N∑
i=1

αiyixi (10)

3.2 Maximum Margin Matrix

Given a k -class classification problem, we can compute the maximum margin
between each pair of classes according to (9). Then all maximum margins can
be combined as a maximum margin matrix:

⎡
⎢⎢⎢⎢⎣

0 m12 ... m1(k−1) m1k

m21 0 ... m2(k−1) m2k

... ... ... ... ...
m(k−1)1 m(k−1)2 ... 0 m(k−1)k

mk1 mk2 ... mk(k−1) 0

⎤
⎥⎥⎥⎥⎦

where mij is the maximum margin between the ith and j th classes. Obvi-
ously, this matrix is symmetric. So we just compute the values of upper tri-
angular matrix elements. As can be seen, the bigger the value of mij is, the
larger the maximum margin between these two classes would be. Furthermore,
a larger maximum margin means that the corresponding two classes are more
well-separated. Consequently, the maximum margin actually gives us a natural
criterion to evaluate the discriminability between classes. In M2ECOC, we will
directly use the maximum margin to build the tree.

3.3 Maximum Margin Tree

Traditional tree algorithms such as DECOC and SECOC usually built the tree
from top to down as Fig. 1 shown. In fact, such strategy emphasizes more on the
discriminability between internal nodes, but ignores the discriminability between
leaf nodes. For example, in Fig. 1(a), DECOC firstly separates the original class
set {C1,C2,C3} into two partitions {C1,C3} and {C2} and then divides the
internal node {C1,C3} into two leaf nodes {C1} and {C3}. As a result, DECOC
can guarantee that the internal partition between the internal node {C1,C3}
and {C2} has good discriminability and the corresponding dichotomizer in the
internal node can achieve satisfactory performance. However, DECOC can not
guarantee that the two leaf nodes {C1} and {C3} also have similarly good dis-
criminability, which leads to the performance of the corresponding dichotomizer
uncontrollable.
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(a) (b)

(c) (d)

Fig. 2. Construction of a bottom-up maximum margin tree in M2ECOC

In M2ECOC, we adopt a bottom-up strategy [10] to construct the maxi-
mum margin tree. In order to illustrate the strategy more clearly, we will take
a five-class classification problem as an example in Fig. 2. Concretely, we firstly
regard each class as a subclass and use (9) to compute the maximum mar-
gin matrix. According to this matrix, {C1} and {C4} have the maximal maxi-
mum margin. So we combine them as a new subclass (Fig. 2(a)) but still keep
their original classes labels. Then the new subclass and the rest classes generate
a new four-class classification problem. Repeating the above process, we take
{C2} and {C3} between which have the maximal maximum margin as another
new subclass (Fig. 2(b)). Consequently, the subclasses {C1, C4}, {C2, C3} and
{C5} boil down to a new three-class classification problem. Following the same
steps, the two subclasses {C1, C4} and {C2, C3} are integrated as a new subclass
{C1, C2, C3, C4} (Fig. 2(c)). Particularly, when computing the margin between
subclasses {C1, C4} and {C2, C3}, the classes in the same subclass will be con-
sidered as one class temporarily. Finally the expected maximum margin tree can
be obtained as Fig. 2(d).

After the optimal hierarchical partition of the maximum margin tree has
been finished, we obtain the coding matrix M as follows:

M(r, l) =

⎧⎨
⎩

1 Cr ∈ P left
l

0 Cr /∈ Pl

−1 Cr ∈ P right
l

(11)

where M (r,l) denotes the element lying in the rth row and the lth column
in the coding matrix and the Cr denotes the rth class. Pleft

l and Pright
l are
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Table 2. Coding matrix of the example in Fig. 2

h1 h2 h3 h4

C1 +1 0 +1 +1

C2 0 +1 −1 +1

C3 0 −1 −1 +1

C4 −1 0 +1 +1

C5 0 0 0 −1

the left and right partition of the lth partition respectively (Regardless of the
root node). Table 2 lists the corresponding coding matrix of the above example
following (11).

4 Experimental Results

In this section, we compare M2ECOC with some state-of-the-art coding algo-
rithms like OVA [4], OVO [5], dense random [6], sparse random [6], DECOC [8]1,
SECOC [9] and HECOC [10] to validate the superiority of our approach.

Ten multi-class datasets from common-used UCI datasets [15] are used in
the experiments, that is, Wine (178,13,3), Lenses (24,4,3), Glass (214,9,6), Bal-
ance (625,4,3), Cmc (1473,9,3), Ecoli (332,6,6), Iris (150,4,3), Tea (151,5,3),
Thyriod (215,5,3), Vehicle (846,18,4), where the numbers of samples, dimen-
sion and classes are listed in the bracket. We randomly split each dataset into
two non-overlapping training and testing set. The training set contains almost
seventy percent of the samples and the rest samples are composed as the testing
set. The whole process is repeated ten times. The average accuracies are also
reported.

Moreover, in dense and sparse random algorithms, all random matrices are
selected from a set of 10000 randomly generated matrices where P(1) =
P(−1) = 0.5 for the dense random matrix as well as P(1) =P(−1) = 0.25 and
P(0) = 0.5 for the sparse random matrix [6]. In SECOC, the parameter set
Θ = {Θsize, Θperf , Θimpr} is fixed to Θsize = |J|

50 , Θperf = 0 and Θimpr = 0.95
according to [9]. The regularization parameter C and the width σ in radial
basis function kernel in HECOC and M2ECOC are selected from the interval
{2−6, 2−5, ..., 25, 26} by cross-validation.

The decoding strategy HD is used to evaluate the performance of different
coding algorithms. Two base classifiers Nearest Mean Classifier (NMC) and SVM
with radial basis function kernel are applied as the dichotomizers, where the
regularization parameter C is set to 1 [9]. Moreover, the width σ in the kernel
is also selected from the same interval in HECOC and M2ECOC.
1 We download the DECOC code from http://jmlr.csail.mit.edu/papers/v11/
escalera10a.html which was provided by Sergio Escalera, Oriol Pujol, Petia Radeva
in 2010.

http://jmlr.csail.mit.edu/papers/v11/escalera10a.html
http://jmlr.csail.mit.edu/papers/v11/escalera10a.html


Maximum Margin Tree Error Correcting Output Codes 689

The classification results on the ten datasets are reported in Tables 3 and 4.
From the tables, we can see that M2ECOC can reach better or comparable per-
formance than compared algorithms on most datasets. Especially, the accuracies
of M2ECOC exceed the other algorithms’ accuracies beyond 3 % on the Glass
and Vehicle sets with NMC in Table 3. In Table 4, Its accuracy even excels the
other accuracies nearly 12 % on the Lenses set with SVM. Furthermore, we also
list the average accuracies and standard deviations on all the datasets in the
bottom of the tables. It obviously can be seen that M2ECOC possesses the best
performance compared with the other algorithms, which further indicates the
superiority of M2ECOC. On the contrary, DECOC and SECOC perform much
poorly with SVM in some datasets. For example, their accuracies are even 10 %
lower than the other algorithms’ accuracies on the Lenses, Balance, Iris sets

Table 3. Classification results (mean± std) of NMC and HD on ten datasets (•/◦
indicates that our algorithm is significantly better or worse than other algorithms
based on the t-test at 95% significance level)

OVO OVA Dense Sparse DECOC SECOC HECOC M2ECOC

Wine 97.55±1.79 94.91±2.82• 93.40±5.85• 94.34±4.71• 97.36±3.11 97.36±3.11 95.09±3.47• 98.30±1.88

Lenses 77.50±7.91 78.75±8.44 72.50±9.86 70.00±10.50• 78.75±8.44 78.75±8.44 71.25±11.90 80.00±8.74

Glass 46.62±6.07• 23.23±5.69• 40.31±9.22• 47.85±6.62 42.15±11.40• 49.08±6.97 42.31±10.00• 52.77±6.03

Balance 73.69±4.63• 88.07±1.90◦ 69.79±20.10 75.72±14.60 80.32±3.72 81.60±5.27 81.60±3.16 81.17±2.77

Cmc 46.74±2.10 45.86±1.58 46.02±2.20 45.81±2.35 46.29±1.19 46.31±1.18 45.48±2.38 46.97±1.60

Ecoli 84.90±2.88◦ 70.50±1.90• 77.50±5.46• 78.50±4.14• 74.20±8.27• 77.90±4.07• 71.90±13.40• 81.90±2.60

Iris 86.00±5.55 82.89±2.97 76.67±9.03• 74.44±10.10• 79.78±8.35 85.11±3.93 86.22±5.52 86.00±5.55

Tea 56.52±5.12 52.83±6.49 54.13±6.60 51.96±4.64 53.26±5.64 55.87±5.80 54.13±6.44 56.09±5.21

Thyriod 92.81±1.98 94.06±2.42 92.50±3.52 91.41±2.97• 92.97±3.40 93.44±3.59 94.06±2.42 94.53±2.68

Vehicle 46.10±3.51 43.62±1.52• 40.20±4.22• 38.03±5.40• 40.04±3.37• 43.94±5.22• 40.67±3.40• 49.25±4.86

Average 70.84±4.15 67.47±3.57 66.30±7.61 66.81±6.60 68.51±5.69 70.94±4.76 68.27±6.21 72.70±4.19

win/tie/loss 2/7/1 4/5/1 5/5/0 6/4/0 3/7/0 2/8/0 4/6/0 /

Table 4. Classification results (mean± std) of SVM and HD on ten datasets (•/◦
indicates that our algorithm is significantly better or worse than other algorithms
based on the t-test at 95% significance level)

OVO OVA Dense Sparse DECOC SECOC HECOC M2ECOC

Wine 97.92±1.39• 98.49±1.73 98.11±1.26• 98.11±1.78• 96.23±1.99• 97.36±1.82• 98.30±1.65• 99.62±0.80

Lenses 61.25±3.95• 62.50±0.00• 63.75±3.95• 61.25±3.95• 56.25±8.84• 58.75±6.04• 62.50±0.00• 75.00±10.20

Glass 68.31±2.43◦ 53.23±5.04• 68.46±3.34◦ 67.23±2.62◦ 62.31±9.84 64.15±9.97◦ 61.85±5.88 62.15±3.78

Balance 90.27±0.97 89.36±0.89• 91.50±2.85 91.55±3.07 76.84±1.99• 77.17±2.03• 89.79±1.02• 90.86±0.64

Cmc 54.43±1.46 50.54±1.53• 48.10±1.79• 47.83±1.58• 51.97±1.46• 52.04±1.42• 54.52±1.19 54.00±0.98

Ecoli 86.40±3.03 82.40±2.17• 86.50±2.07 86.80±2.04 80.30±15.10 83.10±6.59 70.30±15.50• 86.90±2.59

Iris 95.56±3.63 93.33±2.34 94.00±3.32 95.11±3.11 72.89±4.42• 74.67±2.81• 95.11±3.60 94.89±1.83

Tea 51.09±4.38 51.09±6.58 49.57±4.44• 51.30±4.25 44.35±5.99• 47.83±5.02• 51.30±3.58• 55.43±4.94

Thyriod 96.09±1.11 94.84±1.66 95.00±2.31 95.31±1.47 94.37±1.32• 94.37±1.32• 95.78±1.06 96.09±1.11

Vehicle 74.92±1.76 66.50±2.48• 72.28±5.20 71.93±2.87• 72.76±2.37• 72.76±2.37• 74.53±1.93 75.08±1.76

Average 77.62±2.41 74.23±2.44 76.73±3.05 76.64±2.67 70.83±5.33 72.22±3.94 75.40±3.54 79.00±2.86

win/tie/loss 2/7/1 6/4/0 4/5/1 4/5/1 8/2/0 8/1/1 5/5/0 /
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in Table 4. The reason lies more on they are more sensitive to different base
classifier and their using a non-parametric estimation to compute the MI value,
which indeed requires numerous training data to achieve acceptable results.

In order to further statistically measure the significance of performance differ-
ence, the pairwise t-tests [16] at 95 % significance level are conducted between the
algorithms. Specifically, whenever M2ECOC achieves significantly better/worse
performance than the compared algorithms on most datasets, a win/loss is
counted and a marker •/◦ are shown. Otherwise, a tie is counted and no marker
is given. The resulting win/tie/loss counts for M2ECOC against the compared
algorithms are provided in the last line of Tables 3 and 4. As the tables shown,
M2ECOC can achieve statistically better or comparable performance on most
datasets, which just accords with our conclusion.

5 Conclusion

In this paper, we present a novel encoding algorithm M2ECOC for ECOC. Dif-
ferent from the existing tree-form encoding algorithms, M2ECOC directly uti-
lizes the maximum margin which actually is a natural criterion to evaluate the
discriminability between classes to get the optimal hierarchical partition of the
tree. Specifically, M2ECOC regards each class as a subclass and computes the
maximum margin matrix. According to this matrix, the classes with the maxi-
mal maximum margin are selected to combine as a new subclass. Then the new
subclass and the rest classes generate a new multi-class classification problem.
Repeating the same steps until all classes in one subclass. M2ECOC constructs
the maximum margin tree in a bottom-up manner and the corresponding coding
matrix can be obtained easily by the tree. The experimental results on several
UCI datasets have shown that M2ECOC is superior to some state-of-the-art
ECOC encoding algorithms, which further validates that the maximum margin
is indeed an effective criterion for building the tree in ECOC.
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