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Abstract Indefinite kernel support vector machine

(IKSVM) has recently attracted increasing attentions in ma-

chine learning. Since IKSVM essentially is a non-convex

problem, existing algorithms either change the spectrum of

indefinite kernel directly but risking losing some valuable in-

formation or solve the dual form of IKSVM whereas suffer-

ing from a dual gap problem. In this paper, we propose a pri-

mal perspective for solving the problem. That is, we directly

focus on the primal form of IKSVM and present a novel

algorithm termed as IKSVM-DC for binary and multi-class

classification. Concretely, according to the characteristics of

the spectrum for the indefinite kernel matrix, IKSVM-DC

decomposes the primal function into the subtraction of two

convex functions as a difference of convex functions (DC)

programming. To accelerate convergence rate, IKSVM-DC

combines the classical DC algorithm with a line search step

along the descent direction at each iteration. Furthermore,

we construct a multi-class IKSVM model which can classify

multiple classes in a unified form. A theoretical analysis is

then presented to validate that IKSVM-DC can converge to

a local minimum. Finally, we conduct experiments on both

binary and multi-class datasets and the experimental results

show that IKSVM-DC is superior to other state-of-the-art

IKSVM algorithms.

Keywords indefinite kernel, support vector machine,

multi-class classification, non-convex optimization

Received April 18, 2018; accepted November 21, 2018

E-mail: hxue@seu.edu.cn

1 Introduction

Support vector machines (SVM) [1] with kernels have been

successfully used in many application areas. In traditional

SVMs, the kernels embed samples into a high-dimensional

(possibly infinite-dimensional) feature space for linear sep-

aration, where the corresponding kernel matrix is required

to be symmetric and positive semi-definite (PSD) [2–4]. The

PSD property guarantees that the problem can be formulated

as a convex quadratic programming and yields a global op-

timum. However, in practice, many real-world applications

directly utilize similarity measures as the kernels, most of

which are indefinite rather than PSD. For example, Smith-

Waterman and BLAST scores for evaluating pair-wise simi-

larity between protein sequences usually generate indefinite

kernel matrices [5]. The weighted meta-path based similarity

matrices for text classification in natural language process-

ing are frequently indefinite [6]. The sigmoid kernels in neu-

ral networks with various values of the hyper-parameters are

also mostly indefinite [7]. As a result, indefinite kernels have

become increasingly important in kernel methods [8–12] and

indefinite kernel SVM (IKSVM) has attracted more and more

attentions in machine learning [13–15]. However, different

from the traditional SVMs, IKSVM boils down to a non-

convex optimization which is an NP-hard problem.

In the past few years, many algorithms have been proposed

to address the IKSVM problem. They generally fall into two

categories: (1) “Kernel Transformation” which transforms

the indefinite kernel matrix to be PSD and (2) “Non-convex
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Optimization” which solves the non-convex problem directly.

In the first category, some algorithms directly transform the

eigenspectrum of the kernel matrix. For example, “Clip” ne-

glects the negative eigenvalues [16], “Flip” flips the sign of

the negative eigenvalues [17], and “Shift” shifts all the eigen-

values by a positive constant [18]. Other algorithms further

consider the indefinite kernel as a noisy observation of some

unknown PSD kernel. Luss and d’Aspremont presented a

joint optimization on the dual model of SVM with an ad-

ditional regularization term which measures the similarity

between the proxy and the original indefinite kernel matri-

ces [19]. Chen and Ye reformulated the formulation into

a semi-infinite quadratically constrained linear programming

and proposed a faster algorithm [20]. Chen et al. further intro-

duced a primal model to avoid over-fitting [21]. Gu and Guo

incorporated the kernel principal component analysis into the

SVM classification and naturally generated a surrogate PSD

kernel [22]. However, these methods actually change the in-

definite kernels themselves and thus may lead to the loss of

some important information involved in the kernels.

In the second category, most algorithms aim to solve the

non-convex dual form of IKSVM. For example, Lin and Lin

proposed an SMO-type method to solve the non-convex dual

formulation of IKSVM which can converge to some station-

ary points for the non-PSD sigmoid kernel [23]. Akoa incor-

porated difference of convex functions programming into de-

composition methods to tackle the dual problem and obtained

a stationary point as a solution [24]. Ong et al. extended

IKSVM into a reproducing kernel kreı̌n space (RKKS), in

which they stabilized the primal IKSVM model and refor-

mulated it as a dual optimization problem by transforming

the indefinite kernel into the summation of two PSD kernels

[25, 26]. Alabdulmohsin et al. transferred the indefinite ker-

nel matrix into an affine constraint and the non-convex prob-

lem was converted into a linear programming by imposing an

additional non-negative constraint on kernel functions’ coef-

ficients [27]. However, these approaches either suffer from a

dual gap between the primal and dual problems of IKSVM or

sacrifice optimization performance and converge to a station-

ary point.

Furthermore, since multi-class classification problems are

very common in reality, it is necessary to extend the binary

classification model to the multi-class scenarios [28]. How-

ever, all the above algorithms are basically designed for bi-

nary classification. For complex multi-class scenarios, they

have to resort to some classical multi-class strategies, e.g.,

One vs. One (OvO) [29, 30], One vs. Rest (OvR) [31] and

Many vs. Many (MvM) [32–34] etc. Unfortunately, the algo-

rithms using these strategies would suffer from some draw-

backs caused by the strategies themselves, such as the high

computational cost in the case of many classes.

In this paper, we propose a primal perspective to solve the
non-convex IKSVM problem. That is, we directly focus on
the primal form of IKSVM and present a novel algorithm
named as IKSVM-DC for both binary and multi-class classi-

fication problems. IKSVM-DC firstly formulates the primal

problem as a difference of convex functions (DC) program-

ming equivalently, and iteratively optimizes it by the DC al-

gorithm (DCA). For speeding convergence rate, IKSVM-DC

then adopts a line search along the descent direction under

the Armijo type rule at each iteration in classical DCA. We

further extend IKSVM-DC to multi-class classification. The

corresponding multi-class IKSVM-DC algorithm can learn a

unified model to predict multiple classes all-together. A the-

oretical analysis is finally presented to validate that IKSVM-

DC can converge to a local minimum. We conduct systematic

experiments on binary and multi-class real-world datasets

respectively. For binary classification problems, the experi-

mental results demonstrate that our algorithm has not only

much better classification accuracy compared to some related

IKSVM algorithms, but also nearly three times higher con-

vergence rate than the classical DCA. For multi-class clas-

sification problems, our algorithm is superior to both OvO-

strategy-based and OvR-strategy-based related IKSVM algo-

rithms.

This paper is organized as follows. In Section 2, we ana-

lyze that related dual-based IKSVM works would suffer from

a dual gap problem. In Section 3, we present a brief introduc-

tion to DC programming and DCA. In Section 4, we formu-

late a primal IKSVM model for binary classification prob-

lem and further incorporate the classical DCA into the cor-

responding algorithm IKSVM-DC. A theoretical analysis is

then given for the convergence of IKSVM-DC. The primal

multi-class IKSVM model and the corresponding algorithm

are derived in Section 5. In Section 6, experiments on both bi-

nary and multi-class classification are presented to compare

the proposed algorithms with several state-of-the-art related

IKSVM methods. Finally, we conclude with some remarks in

Section 7.

2 Dual gap problem

Given a training set {(xi, yi)}ni=1, where xi ∈ X and yi ∈
{−1,+1}, the soft margin SVM classification is in the formu-

lation:
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min
w,b,ξ

fp(w, b, ξ) =
1
2
〈w,w〉 + C

n∑

i=1

ξi,

s.t. yi(〈w, xi〉 + b) � 1 − ξi,
ξi � 0, i = 1, . . . , n , (1)

and the associated kernelized dual problem [35] is

max
α

fd(α) =
n∑

i=1

αi − 1
2

n∑

i, j=1

αiα jyiy jK(xi, x j),

s.t.
n∑

i=1

αiyi = 0, 0 � αi � C, i = 1, . . . , n , (2)

where K(·, ·) is a kernel function. Then, the Lagrangian of

Eq. (1) is

L(w, b, ξ,α, ζ)

= fp(w, b, ξ) −
n∑

i=1

αi[yi(〈w, xi〉 + b) − 1 + ξi] −
n∑

i=1

ζiξi .

(3)

In the view of the primal and dual problems respectively,

Eq. (3) can be transformed into these two problems:

min
w,b,ξ

fp(w, b, ξ) = p∗ = min
w,b,ξ

max
α,ζ

L(w, b, ξ,α, ζ) ,

and
max
α

fd(α) = d∗ = max
α,ζ

min
w,b,ξ

L(w, b, ξ,α, ζ) ,

where p∗ and d∗ are the optimal solutions of the primal and

dual problems respectively.

Obviously, the relationship between the two optimal solu-

tions is
d∗ � p∗ .

The equality holds if and only if the kernel matrix gener-

ated from K(·, ·) is PSD [2]. When the kernels become indefi-

nite, the equality would never hold and thus a dual gap exists

between the primal and dual problems.

However, many existing IKSVM algorithms still empha-

size on the dual problem. For example, proxy kernel algo-

rithms obtain a surrogate PSD kernel matrix for the indefinite

kernel directly based on the dual form of IKSVM [19–22].

SMO-type algorithm proposes an improved SMO method to

solve the non-convex dual form of IKSVM [23]. Akoa uti-

lized difference of convex functions programming to solve

non-convex problems in decomposition methods, but the de-

composition methods are still based on the dual form of

IKSVM [24]. In order to avoid suffering from the dual gap,

we will directly focus on the primal form of IKSVM in this

paper.

3 DC programming and DCA

DC programming and DCA [36, 37] are powerful tools for

solving smooth/non-smooth non-convex problems which can

be decomposed into the form of the subtraction of two convex

functions. Concretely, the corresponding objective function f

can be formulated as

P = inf{ f (ω) = g(ω) − h(ω) : ω ∈ Rn} . (4)

The two functions g, h are convex and lower semi-continuous

on Rn and take values in R ∪ {+∞}. Especially, for some ob-

jective functions with a closed convex constraint set O ⊂ Rn,

DC programming can also extend the variable domain by in-

corporating an indicator function IO of O, i.e., IO(ω) = 0 if

ω ∈ O, and +∞ otherwise. Thus we have

P = inf{ f (ω) = (g(ω) + IO(ω)) − h(ω) : ω ∈ Rn} .
Let h∗(ψ) = sup{〈ω,ψ〉 − h(ω),ω ∈ Rn} be the Fenchel

conjugate function of h. The dual problem of Eq. (4) can be

described as

D = inf{ f ∗(ψ) = h∗(ψ) − g∗(ψ) : ψ ∈ Rn} .
Due to the property of Fenchel conjugate dual, P = D al-

ways holds. It means that the primal and dual problems are

completely equivalent. Furthermore, two variables ω and ψ

satisfy

ψ ∈ ∂h(ω), ω ∈ ∂g∗(ψ) , (5)

where ∂h and ∂g∗ denote the sub-gradients of h and g∗

respectively.1)

The algorithm DCA further utilizes Eq. (5) to linearize the

concave parts −h and −g∗ of the two problems and constructs

two sequences {ωk} and {ψk} for solutions by solving the pri-

mal and dual problems alternately. The performance of DCA

is affected by three important choices [38]: (1) the explicit

choice of the decomposition on f , (2) the choice of the start-

ing pointω0, (3) the choice of the intermediate convex solver.

We will discuss these choices detailedly in our algorithm in

Section 6.

4 Primal binary IKSVM classification

In this section, we will firstly construct a primal IKSVM
model for binary classification problem. Then we further

1) The sub-gradient ∂h(ω) of function h(ω) at ω′ can be defined as ∂h(ω′) = {ψ ∈ Rn : h(ω) � h(ω′) + 〈ω − ω′,ψ〉 ,∀ω ∈ Rn}. Gradient ∇h(ω) and
sub-gradient ∂h(ω) have different requirements for functions. A function can find a gradient if and only if the function is continuous and differentiable while
sub-gradient does not need these conditions
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characterize the primal binary IKSVM into a DC problem

and finally propose a novel algorithm to solve it [39].

4.1 Primal binary IKSVM model

The primal binary problem of IKSVM has the same form as

Eq. (1), but the kernel becomes indefinite. So we firstly refor-

mulate Eq. (1) as an unconstrained optimization problem:

min
w,b
γ 〈w,w〉 +

n∑

i=1

V(yi, 〈w, xi〉 + b) , (6)

where the parameter γ = 1/C and V(·) is a loss function.

When the kernel is indefinite, we can solve Eq. (6) in a

wider RKKS K as

min
f∈K ,b
γ 〈 f , f 〉K +

n∑

i=1

V(yi, f (xi) + b) . (7)

In RKKS, Ong et al. have verified that the Representer The-

orem still holds [25] and the solution to the problem of mini-

mizing a regularized risk function can be expanded as

f ∗ =
n∑

i=1

βiK(xi, ·) ,

where K is a kernel function in RKKS and the coefficient

βi ∈ R.

Consequently, using the Representer Theorem in RKKS,

we can further express the primal model in Eq. (7) as

min
β,b
γβTKβ +

n∑

i=1

V(yi, Kiβ + b) , (8)

where K is the indefinite kernel matrix derived from associ-

ated kernel function Ki j = K(xi, x j) and Ki represents the ith

row of K. It is worth noting that the coefficient β is not the

same as the parameter α in Eq. (2), and thus the coefficient β

should not be interpreted as a Lagrange multiplier. In fact, the

main difference between them is the value range: the param-

eter α is required to be non-negative but such requirement is

inapplicable to the coefficient β. Furthermore, for the solution

β∗ of Eq. (8), the corresponding support vector set is

S Vs = {xi ∈ X s.t. V(yi, Kiβ∗ + b) � 0} ,
that is, the samples which let the loss function not equal to

zero.

In order to make the primal binary IKSVM model continu-

ously differentiable in the variable β, we select the smooth

quadratic hinge loss function as V(·). So the optimization

problem in Eq. (8) after adding the scaling constant 1/2 be-

comes

min
β,b

1
2

⎡⎢⎢⎢⎢⎢⎣γβTKβ +
n∑

i=1

max
(
0, 1 − yi(Kiβ + b)

)2
⎤⎥⎥⎥⎥⎥⎦ . (9)

Although much similar to the traditional primal PSD ker-

nel SVM, Eq. (9) is actually an unconstrained non-convex

optimization which has become an NP-hard problem in terms

of indefinite kernels.

4.2 Binary IKSVM converted into a DC problem

The primal IKSVM model can be converted into a DC prob-

lem due to the favorable property of the spectra for indefi-

nite kernel matrices, which involve valuable information in

kernels. Firstly, we denote the objective function of primal

IKSVM as

f (β) =
1
2

⎡⎢⎢⎢⎢⎢⎣γβTKβ +
n∑

i=1

max
(
0, 1 − yi(Kiβ + b)

)2
⎤⎥⎥⎥⎥⎥⎦ , (10)

and the eigenspectrum of the indefinite kernel matrix can be

depicted as K = UΛUT, where U and Λ represent the or-

thonormal column eigenvector matrix and the diagonal eigen-

value matrix respectively.Λ consists of both positive and neg-

ative eigenvalues. Then, we can easily get several equivalent

decompositions on Eq. (10) through shifting the eigenspec-

trum of the indefinite kernels. In our algorithm, we utilize the

following two kinds of decompositions, that is, the objective

function can be decomposed as f (β) = g(β) − h(β) with

1©

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(β) =
1
2

[γβTU(ρ1I + Λ)UTβ

+

n∑

i=1

max(0, 1 − yi(Kiβ + b))2],

h(β) =
1
2
γβTU(ρ1I)UTβ ,

2©

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(β) =
1
2

[γβTU(ρ2I)UTβ

+

n∑

i=1

max(0, 1 − yi(Kiβ + b))2],

h(β) =
1
2
γβTU(ρ2I − Λ)UTβ ,

(11)

where the two positive numbers ρ1 and ρ2 are chosen to guar-

antee that the two functions g(β) and h(β) are convex func-

tions, i.e., ρ1 � −min({λi}ni=1) and ρ2 � max({λi}ni=1), and the

set {λi}ni=1 represents eigenvalues in the eigenvalue matrix Λ.

Given the decomposition of primal IKSVM model, we

can obtain the conjugate dual problem of function f (β), i.e.,

minθ∈Rn { f ∗(θ) = h∗(θ) − g∗(θ)}. According to the property of

DC programming in Eq. (5), we have

θ ∈ ∂h(β), β ∈ ∂g∗(θ) . (12)
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Utilizing Eq. (12), we can approximate the function h with

its affine minorization at point βt

h(β) � h(βt) + 〈β − βt, θt〉 , (13)

where θt ∈ ∂h(βt). At point θt, the function g∗ of conjugate

dual problem can be formulated as

g∗(θ) � g∗(θt) + 〈θ − θt, βt+1〉 , (14)

where βt+1 ∈ ∂g∗(θt). As a result, the primal IKSVM prob-

lem and its conjugate dual problem become convex after the

transformation in Eqs. (13) and (14).

We further construct two sequences {βt} and {θt} for solu-

tions by solving Eq. (15) alternately
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

βt+1 = arg min
β∈Rn

g(β) − 〈β, θt〉, βt+1 ∈ {βt},

θt+1 = arg min
θ∈Rn

h∗(θ) − 〈θ, βt+1〉, θt+1 ∈ {θt} .
(15)

Following [37], we omit the conjugate dual problem with

a simplified form θt ∈ ∂h(βt) in practice, and obtain
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

θt ∈ ∂h(βt),

βt+1 ∈ arg minβ∈Rn g(β) − 〈β, θt〉 .
(16)

The sequence {βt} can generate a descent direction at each

iteration. In order to accelerate the convergence rate, we fur-

ther search the smallest non-negative integer lt under the

Armijo type rule along the direction to achieve a larger re-

duction in the value of f [40]

f (βt+1 + η
lt d(β)) � f (βt+1) − μηlt ‖d(β)‖2 .

Algorithm 1 summarizes the procedure of our algorithm

binary IKSVM-DC 2) . Given the training set, a DC decompo-

sition is chosen to formulate the primal binary IKSVM into a

DC problem (Step 2). After that, an iterative DC algorithm is

performed to obtain the solutions for primal binary IKSVM

problem and its conjugate dual problem (Steps 4–9). Mean-

while, a line search step is conducted to accelerate the con-

vergence of binary IKSVM-DC (Steps 10–14). Finally, the

unseen instance is classified based on the solutions (Step 16).

4.3 Convergence analysis

In this subsection, we will present a theoretical analysis for

the convergence of binary IKSVM-DC.

Proposition 1 For the sequence {βt}, we have

(g − h)(βt) − (g − h)(βt+1) � τ‖d(β)‖2 ,
the equality holds if and only if τ‖d(β)‖2 = 0, where τ is a

positive parameter to make functions g and h strongly convex.

Algorithm 1 Binary IKSVM-DC

Inputs:

D: the training set {xi , yi}ni=1 ∈ Rm × {±1}
γ: the regularization parameter

ῡ: the step size of Armijo Rule (ῡ > 0)

μ, η: the parameters of Armijo Rule (0 < μ < η < 1)

T : the maximize number of iterations

x∗: the unseen instance

Outputs:

y∗: the predicted class label for x∗

Process:

1: Initialize the kernel coefficient β0 and set t = 0;

2: Choose a DC decomposition: f (β) = g(β) − h(β);

3: while t < T do

4: Obtain a solution for conjugate dual problem: θt = ∇h(βt);

5: Solve the convex minimization problem in Eq. (16) to obtain a

solution βt+1 for primal IKSVM problem;

6: Set d(β) = βt+1 − βt;

7: if ‖d(β)‖2 � δ then

8: IKSVM-DC converges to a local minimum and break;

9: end if

10: Set υt = ῡ;

11: while f (βt+1 + υtd(β)) > f (βt+1) − μυt‖d(β)‖2 do

12: υt = ηυt;

13: end while

14: Update the solution of IKSVM: βt+1 = βt+1+υtd(β) and set t = t+1;

15: end while

16: return y∗ = sign(K(x∗, x)β + b);

Proof Firstly, we can construct the the convex functions

g, h as being strongly convex with an additional term τ
2β

2 :

(g − h)(β) =
(
g(β) − τ

2
β2
)

︸����������︷︷����������︸
G(β)

−
(
h(β) − τ

2
β2
)

︸����������︷︷����������︸
H(β)

.

Then given the convexity of function G, we have

G(βt) � G(βt+1) + ∇G(βt+1)(βt − βt+1)T .

After simplified, we get

g(βt) � g(βt+1)+ 〈∇g(βt+1), βt − βt+1〉+ τ2‖βt −βt+1‖2 . (17)

Similarly, for the function H, we can get

H(βt+1) � H(βt) + ∇H(βt)(βt+1 − βt)T ,

h(βt+1) � h(βt) + 〈∇h(βt), βt+1 − βt〉 + τ2 ‖βt+1 − βt‖2 . (18)

Since βt+1 is a unique solution of the convex problem in

Eq. (16), we have

∇g(βt+1) = θt = ∇h(βt) . (19)

Combining Eqs. (17), (18) and (19), we have

(g(βt) − h(βt)) − (g(βt+1) − h(βt+1)) � τ‖βt+1 − βt‖2 .
2) Code package is available at the corresponding author’s homepage
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Proposition 1 presents that IKSVM-DC can decrease the

value of objective function at each iteration and further pro-

vides a condition ‖d(β)‖2 = 0 for the convergence to IKSVM-

DC. The following Proposition 2 verifies that d(β) = βt+1−βt

is a descent direction for f at βt+1 and thus we can conduct a

line search along the direction in IKSVM-DC to further de-

crease the value of objective function.

Proposition 2 For the sequence {βt}, we have

〈∇(g − h)(βt+1), βt+1 − βt〉 � 0 ,

that is, d(β) = βt+1 − βt is a descent direction for f = g− h at

βt+1.

Proof Following Proposition 1, we have

h(βt) � h(βt+1)+ 〈∇h(βt+1), βt − βt+1〉+ τ2‖βt −βt+1‖2 . (20)

Given the Eq. (20), we can know that the function h(β) is

strongly convex on Rn. Then according to the Theorem 2.1.9

in [41], we have

〈∇h(βt) − ∇h(βt+1), βt − βt+1〉 � τ‖βt − βt+1‖2 .

Combining Eq. (19), we have

〈∇g(βt+1) − ∇h(βt+1), βt+1 − βt〉 � −τ‖d(β)‖2 � 0 ,

the equality holds if and only if τ‖d(β)‖2 = 0.

Based on Propositions 1 and 2, we can further validate that

IKSVM-DC can converge to a local optimum.

Theorem 1 If the sequence {βt} satisfies d(β) = βt+1 − βt =

0, let β∗ = βt+1 = βt and U be a neighbourhood of β∗. For

∀β ∈ U, we have

g(β) − h(β) � g(β∗) − h(β∗) .

Proof Following Eq. (19), the condition d(β) = βt+1 − βt =

0 implies ∇g(β∗) = ∇g(βt+1) = θt, that is, ∃θ ∈ ∂g(β∗). So

the conjugate function of g at β∗ is

g∗(θ) = sup{〈β∗, θ〉 − g(β∗)} = 〈β∗, θ〉 − g(β∗) , (21)

and ∀θ ∈ Rn, the conjugate function of h at β∗ is

h∗(θ) = sup{〈β∗, θ〉 − h(β∗)} � 〈β∗, θ〉 − h(β∗) . (22)

Combining Eqs. (21) and (22), we have

g(β∗) + g∗(θ) = 〈β∗, θ〉 � h(β∗) + h∗(θ) . (23)

On the other hand, since θ = ∇h(β), it means ∃θ ∈ ∂h(β).

Similar to the process in Eqs. (21), (22) and (23), we have

h(β) + h∗(θ) = 〈β, θ〉 � g(β) + g∗(θ) . (24)

Combining Eqs. (23) and (24), we can reach the conclu-

sion.

5 Primal multi-class IKSVM classification

In this section, we extend the binary IKSVM model to a uni-

fied multi-class formulation for multi-class problems.

5.1 Primal multi-class IKSVM model

Given a multi-class training set {(xi, ci)}ni=1, where xi ∈ X
and ci ∈ {1, 2, . . . , c}. Since the primal binary IKSVM model

is not suitable for the multiple classes scenarios, here we con-

struct another multi-class model with different loss term and

regularization term. Firstly, based on the Representer Theo-

rem in RKKS [25], the solution to the multi-class problem of

minimizing a regularized risk function can be expanded as

f ∗ =
c∑

j=1

n∑

i=1

B jiK(xi, ·) ,

where c is the number of classes and B ∈ Rc×n is the coeffi-

cient of kernel K. Then, considering the classes are indepen-

dent from each other in the multi-class problem, we can have

the following formulation in a trace form for the regulariza-

tion term

〈 f , f 〉K = tr(BKBT) ,

where tr(·) represents the trace operation.

Traditionally, in order to tackle multi-class classification

problems, many methods would resort to different classifica-

tion strategies, e.g., OvO, OvR and MvM, which focus on the

combination of several binary classification classifiers. How-

ever, all these strategies have to train a large number of classi-

fiers. Especially, OvO strategy must construct c(c−1)/2 clas-

sifiers which results in high computational cost [42]. Thus

we will construct a multi-class loss function to consider all

classes in an unified optimization formulation. Motivated by

many “all-together” methods [43–45], we construct a multi-

class loss function in the following formulation

n∑

i=1

V(·) =
n∑

i=1

∑

j�ci

max(0, B jK
i − Bci K

i + 1) ,

where B j and Bci represent the jth row and the cith row of the

coefficient matrix B respectively. Ki represents the ith row
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of the kernel matrix K. This multi-class loss function aims

to maximize the margin between the correct class and other

wrong classes.

Consequently, we can obtain the multi-class IKSVM

model by combining the regularization term and the loss term

together

min
B

1
2
γtr(BKBT) +

n∑

i=1

∑

j�ci

max(0, B jK
i − Bci K

i + 1) ,

where the additional term 1/2 is for the convenience of

derivation which would be used in the following section. γ

is the regularization parameter.

When the optimal solution B∗ is obtained, for an unseen

sample, the predict scores of every class can be computed as

C j =

n∑

i=1

B∗jiK(xi, x′) , (25)

where x′ is an unseen sample and C = {C1, . . . ,C j, . . . ,Cc} ∈
R

1×c is the scores of every class. Then we choose the class

corresponding to the maximal score to be the predicted class

for the sample, that is

predicted_class = max
1,..., j,...,c

C j . (26)

5.2 DC form of primal multi-class IKSVM

We denote the primal multi-class IKSVM model as the fol-

lowing function

f (B) =
1
2
γtr(BKBT) +

n∑

i=1

∑

j�ci

max(0, B jK
i − Bci K

i + 1) .

(27)

The corresponding second derivative of function f (B) is

∇2 f (B) = γK.3) Since the function f (B) is convex if and

only if ∇2 f (B) � 0, the objective function f (B) will be a

non-convex problem when the kernel matrix K becomes in-

definite.

Observing the primal multi-class IKSVM Model in

Eq. (27), we can see that this model is actually a function of

matrix variable B. Thanks to the property of trace operation,

the primal multi-class IKSVM model still satisfies the two

decomposition formulations in Section 2 and here we take

one of the decompositions as an example. That is, Eq. (27)

can be written as f (B) = g(B) − h(B) where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(B) =
1
2
γtr(BU(ρ1I + Λ)UTBT)

+

n∑

i=1

∑

j�ci

max(0, B jK
i − Bci K

i + 1)

h(B) =
1
2
γtr(BU(ρ1I)UTBT) ,

(28)

where U and Λ represent the orthonormal column eigenvec-

tor matrix and the diagonal eigenvalue matrix of kernel ma-

trix K respectively. The positive numbers ρ1 is chosen to

guarantee that the two functions g(B) and h(B) are convex

functions.

Furthermore, given the DC form of multi-class IKSVM

model in Eq. (28), we can also obtain the following two solu-

tion sequences

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{Bt} = arg minB∈Rc×n {Bt+1 : g(B) − tr(〈B,Θt〉)},
{Θt} = arg minΘ∈Rc×n {Θt+1 : h∗(Θ) − tr(〈Θ, Bt+1〉)},

where Θ is the conjugate dual variable of objective function

f (B) and h∗(Θ) is the conjugate dual function. Then, in prac-

tice, we omit the conjugate dual problem with a simplified

form Θt ∈ ∇h(Bt) and obtain Eq. (29)4)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Θt ∈ ∇h(Bt),

Bt+1 ∈ arg minB∈Rc×n g(B) − tr(〈B,Θt〉) .
(29)

For the matrix sequence {Bt}, we can also prove that the di-

rections between each iteration are all descent directions (See

Proposition 4). Combining these descent directions together,

we can use the following formulation to further reduce the

objective function value and accelerate the convergence rate

f (Bt+1 + η
lt d(B)) � f (Bt+1) − μηlt‖d(B)‖2F ,

where d(B) = Bt+1−Bt and ‖d(B)‖F represents the Frobenius

norm of d(B).

The overall algorithm procedure for multi-class IKSVM-

DC algorithm5) is similar to binary IKSVM-DC in Algo-

rithm 1 except for several steps, i.e., the condition for if in

step 7 is ‖d(B)‖2F � δ, the condition for while in step 11 is

f (Bt+1 + υtd(B)) > f (Bt+1) − μυt‖d(B)‖2F , and the class pre-

dict formulation in step 16 is the combination of Eqs. (25)

and (26).

3) The derivative of trace in Eq. (27) is d/dB(tr(BKBT )) = B(K + KT) = 2BK, and the second equation holds because the kernel matrix K is symmetry
4) ∇h(Bt) represents the gradient of function h(B) at variable matrix Bt . Since the classes are independent from each other in the multi-class problem, we
have ∇h(Bt) = [∇h(B1

t ); . . . ;∇h(Bi
t); . . . ;∇h(Bc

t )] where Bi
t represents the ith row of the matrix Bt

5) Code package is available at the corresponding author’s homepage
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5.3 Convergence analysis

In this subsection, we will present a theoretical analysis for

the convergence of multi-class IKSVM model. Since the de-

duction process of the corresponding theoret- ical results are

similar to the ones of binary IKSVM, we only present the

results here and the detailed proofs can be found in the ap-

pendix A.

Firstly, we have the following proposition to show that the

multi-class IKSVM-DC algorithm would decrease the multi-

class IKSVM objective function value.

Proposition 3 For the sequence {Bt}, we have

(g − h)(Bt) − (g − h)(Bt+1) � τ‖d(B)‖2F ,
the equality holds if and only if τ‖d(B)‖2F = 0, where τ is a

positive parameter to make functions g and h strongly convex.

According to Proposition 3, the equation ‖d(B)‖2F = 0 is

also a condition for the convergence to multi-class IKSVM-

DC algorithm.

Then Proposition 4 verifies that every direction d(Bi) =

Bi
t+1 − Bi

t is a descent direction for f at Bi
t+1 and thus we

can conduct a line search along these directions in multi-class

IKSVM-DC algorithm to further decrease the value of objec-

tive function.

Proposition 4 For the sequence {Bt} = {[B1
t ; . . . ; Bi

t; . . . ;

Bc
t ]} where Bi

t is one row of the variable matrix Bt, we have

〈∇(g − h)(Bi
t+1), d(Bi)〉 � 0,∀i ∈ [1, . . . , c] ,

that is, d(Bi) = Bi
t+1 − Bi

t is a descent direction for f = g − h

at Bi
t+1.

Based on Propositions 3 and 4, we can further validate that

multi-class IKSVM-DC algorithm can also converge to a lo-

cal optimum.

Theorem 2 If the sequence {Bt} satisfies d(B) = Bt+1 −
Bt = 0, let B∗ = Bt+1 = Bt andU be a neighbourhood of B∗.
For ∀B ∈ U, we have

g(B) − h(B) � g(B∗) − h(B∗) .

6 Experiments

We experimentally evaluate the performance of the proposed
algorithm IKSVM-DC for both binary and multi-class clas-

sification through comparing with several related IKSVM al-

gorithms using a collection of datasets on the benchmark.

6.1 Experimental setup

In the experiments, nineteen real-world datasets are used

for learning IKSVMs, including six datasets {Ionosphere,

S onar, Dermatology, Ecoli, NewThyriod, Glass} from UCI

Machine Learning Repository [46], four datasets {Titanic,

Breast − cancer, Thyroid, Flare − solar} from IDA

database [47], and the rest nine dissimilarity datasets are

{Balls3D, Protein, CoilYork, Zongker, Chickenpieces− 5−
45, Chickenpieces − 10 − 45, Chickenpieces − 20 − 45,

Chickenpieces − 30 − 45, Chickenpieces − 40 − 45}6) pro-

vided by similarity-based pattern analysis and pecognition

project [48]. Table 1 lists a brief description of these datasets

and the corresponding similarity measures.

For the UCI and IDA datasets, we randomly divide the

samples into two non-overlapping training and testing sets

which contain almost half of the samples in each class. For all

the dissimilarity datasets, we extract half of the points from

the dissimilarity matrix for training set and the rest for test-

ing set. The processes are repeated ten times to generate ten

independent epoches for each dataset, and then the average

results are reported.

For all the datasets, we choose the regularization pa-

rameter γ and the parameters in sigmoid kernels by ten-

fold cross-validation on the training set from the set

{2−6, 2−5, . . . , 25, 26}.
As the algorithms IKSVM-DC for both binary and multi-

class classification are both quadratic programming without

constraints, we utilize the interior-point optimizer to solve it

by Mosek optimization software [49]. Moreover, since the

values in variables β ∈ Rn and B ∈ Rc×n can be negative,

we randomly initialize {β0, B0} ∈ [−1,+1]. As a result, con-

sidering the three factors of DCA described above, we only

need to take the decomposition of f into consideration in the

experiments, which is depicted in Eq. (11).

Since many datasets used in our experiments are naturally

incorporated with indefinite kernels and traditional SVM

methods fail to train on these datasets, we compare IKSVM-

DC with several state-of-the-art IKSVM algorithms includ-

ing:

• “Clip”, “Flip” and “Shift” [50]: three methods directly

change the eigenspectrum to obtain a PSD kernel ma-

trix, and take the modified PSD kernel into a dual form

of SVM.

6) The numbers in chicken pieces datasets are two parameters to calculate the weight edit distance between two chicken pieces images where the first number
represents straight line segment of a fixed length and the second number represents the angles between the neighbouring segments and editing cost. Here we
try to observe the influence of the second parameter on the distance metric by fixing the first parameter
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Table 1 Datasets description

UCI & IDA Datasets Abbreviation # Examples # Features # Classes φ7) Measure

Ionosphere Ion. 351 33 2 0.340 Sigmoid kernel

Sonar Son. 208 60 2 0.290 Sigmoid kernel

Titanic Tit. 2,201 3 2 0.261 Sigmoid kernel

Breast-cancer Bre. 277 9 2 0.718 Sigmoid kernel

Thyroid Thy. 215 5 2 0.470 Sigmoid kernel

Flare-solar Fla. 1,066 9 2 0.211 Sigmoid kernel

Dermatology Der. 366 33 6 0.093 Sigmoid kernel

Ecoli Eco. 332 6 6 0.143 Sigmoid kernel

NewThyriod New. 215 5 3 0.085 Sigmoid kernel

Glass Gla. 214 9 6 0.172 Sigmoid kernel

Dissimilarity Datasets Abbreviation # Examples # Classes φ7) Measure

Balls3D Bal. 200 2 0.500 Distance on 3-D balls

Protein Pro. 213 2 0.500 Protein sequences matching

CoilYork Coi. 288 4 0.500 Graph matching

Zongker Zon. 2,000 10 0.497 Handwritten digits matching

Chickenpieces-5-45 C5. 446 5 0.500 Chicken pieces images’ distance

Chickenpieces-10-45 C10. 446 5 0.500 Chicken pieces images’ distance

Chickenpieces-20-45 C20. 446 5 0.500 Chicken pieces images’ distance

Chickenpieces-30-45 C30. 446 5 0.500 Chicken pieces images’ distance

Chickenpieces-40-45 C40. 446 5 0.500 Chicken pieces images’ distance

• SMO-IKSVM [23]: a method utilizes the SMO-type al-

gorithm to solve the dual form of IKSVM.

• TDCASVM [24]: a method uses DC algorithm to solve

non-convex dual problems in decomposition methods.

• IKSVM-CA [22]: a method iteratively achieves a low

dimensional representation PSD kernel matrix for the

indefinite kernel, and solves the dual form of SVM with

the PSD kernel matrix.

• ESVM [26]: a method transforms the indefinite kernel

from Kreı̌n spaces into Hilbert spaces, and trains the

convex dual form of SVM.

• 1-norm IKSVM [27]: a method imposes the coeffi-

cients of kernel functions to be non-negative in 1-norm

IKSVM, and tackles the convex problem by Mosek op-

timization software [49].

The dual problem of SVM/IKSVM in the above algorithms

is all solved by the LIBSVM library [51]. For multi-class

classification problems, all the algorithms above are not easy

to develop an unified model to solve the multi-class prob-

lems. Thus we extend all these algorithms with OvO and OvR

strategies to train multiple binary classifiers.

6.2 Binary classification results

Table 2 reports the performance of each compared algorithm

on the two-class real-world datasets, where the mean classi-

fication accuracies as well as the standard deviations of each

algorithm are recorded and the best results are highlighted

in bold. Furthermore, to statistically measure the significance

of performance difference, pairwise t-test at 0.05 significance

level is conducted between the algorithms. Specifically, when

IKSVM-DC is significantly superior/inferior to the compared

algorithm on any dataset, a marker •/◦ is shown. Otherwise,

no marker is given [52].

We conduct experiments on the two kinds of decompo-

sitions, and the classification accuracies of these two de-

compositions are comparable, which means that IKSVM-

DC is robust for the decomposition factor. Thus we choose

the higher classification accuracy as the final result to show

in Table 2. It is impressive that IKSVM-DC outperforms

all the other algorithms on the eight datasets. Among the

eight algorithms, three spectrum transformation methods ob-

tain the lowest classification accuracies on six of the eight

datasets. SMO-IKSVM and TDCASVM achieve similar re-

sults to three spectrum transformation methods. IKSVM-CA

slightly excels the spectrum transformation methods on seven

datasets. But it has too much parameters to tune and would

fail when the number of positive eigenvalues is very small

(e.g., the Breast − cancer dataset). ESVM exceeds IKSVM-

CA on half of the datasets yet is worse than 1-norm IKSVM

on most of these datasets. Our algorithm IKSVM-DC is

7) φ =
∑n

i=1 |λi |·I{λi<0}∑n
i=1 |λi | represents the measure of indefiniteness for the datasets
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Table 2 Classification accuracy (mean±std. deviation) of each compared algorithm on several real-world binary datasets. In addition, •/◦ indicates whether
IKSVM-DC is statistically superior/inferior to the compared algorithm on each dataset (pairwise t-test at 0.05 significance level)

Clip Flip Shift SMO-IKSVM TDCASVM IKSVM-CA ESVM 1-norm IKSVM IKSVM-DC

Ion. 73.72%±0.104• 75.92%±0.086• 67.72%±0.055• 73.11%±0.108• 74.93%±0.047• 86.56%±0.057• 88.68%±0.020• 91.93%±0.016• 93.64%±0.011

Son. 67.63%±0.062• 68.93%±0.017• 65.83%±0.047• 64.94%±0.068• 63.86%±0.072• 75.86%±0.030• 73.44%±0.027• 79.23%±0.030• 84.83%±0.023

Tit. 73.62%±0.068• 77.40%±0.009• 71.78%±0.071• 74.3%4±0.051• 73.60%±0.043• 78.84%±0.005 78.82%±0.005 78.76%±0.005• 79.18%±0.004

Bre. 73.11%±0.022• 73.69%±0.023• 71.34%±0.007• 72.79%±0.020• 74.16%±0.022• 37.50%±0.395• 73.47%±0.027• 73.85%±0.026• 78.33%±0.015

Thy. 89.94%±0.039• 92.16%±0.036• 75.78%±0.074• 87.22%±0.041• 87.78%±0.057• 94.05%±0.025• 92.76%±0.051• 94.17%±0.034• 97.73%±0.019

Fla. 60.46%±0.052• 58.91%±0.050• 55.37%±0.000• 58.81%±0.049• 56.97%±0.026• 66.42%±0.039 63.27%±0.055• 62.35%±0.059• 68.16%±0.013

Bal. 47.87%±0.055• 47.16%±0.031• 48.28%±0.053• 49.98%±0.035• 55.84%±0.016• 51.31%±0.040• 53.68%±0.029• 54.69%±0.044• 57.08%±0.031

Pro. 67.90%±0.000• 67.97%±0.000• 67.91%±0.000• 67.93%±0.000• 68.98%±0.029• 95.81%±0.063• 99.07%±0.010 85.98%±0.070• 99.91%±0.003

superior to 1-norm IKSVM on all the datasets. Especially,

the classification results corresponding to two dissimilarity

datasets Balls3D and Protein differ hugely in all compared

algorithms. The reason can obtain by observing the intensity

images8) of dissimilarity matrices: For the Balls3D dataset,

the dissimilarity between two classes is very small and it

would be hard for classifiers to discriminate these kinds of

samples correctly. While for the Protein dataset, it is very

clear that the dissimilarity of two classes is so large that most

of the non-convex optimization methods obtain good classi-

fication accuracies.

The experiments about the convergence of IKSVM-DC are

conducted on four datasets Ionosphere, S onar, Flare− solar

and Balls3D. We plot the value ‖d(β)‖2 = ‖βt+1 − βt‖2 of

the solution sequence {βt} during the iterations, as shown in

Fig. 1. We can see that the value ‖d(β)‖2 gradually converges

in a few iterations on the four datasets.

Fig. 1 Convergence of IKSVM-DC on four datasets

Figure 2 demonstrates the different performance between

IKSVM-DC with and without a line search step on four

datasets. We can see that the algorithm IKSVM-DC with a

line search step would gain a smaller value of objective func-

tion during the iterations and more than two times faster than

the algorithm without a line search step to obtain the same

value of objective function. It illustrates that doing a line

search along the descent direction at each iteration is very

efficient. Moreover, the curve of value of objective function

can only reveal the downward trend of the value of objec-

tive function and does not represent the convergence of the

algorithm. The algorithm IKSVM-DC determines whether it

converges to a local optimum by judging the value ‖d(β)‖2 =
‖βt+1 − βt‖2. The detailed procedure can be seen in the table

Algorithm 1.

Furthermore, the computational cost of the five meth-

ods Shift, SMO-IKSVM, TDCASVM, 1-norm IKSVM and

IKSVM-DC is O(n2), while the cost in other four methods

is O(n3) which is caused by spectral decomposition or inver-

sion of the kernel matrix K ∈ Rn×n. Fortunately, although

our method IKSVM-DC also involves spectral decomposi-

tion, only the minimum eigenvalue of the kernel matrix is

necessary, and we adopt a low cost method [47] to estimate

such a ρ that satisfies ρ � −min({λi}ni=1) in actual implemen-

tation. Thus, IKSVM-DC is comparable to other algorithms

on computational cost.

6.3 Multi-class classification results

Table 3 reports the performance of each compared algorithm

on the real-world multi-class datasets, where the mean classi-

fication accuracies as well as the standard deviations of each

algorithm are recorded and the best results are highlighted

in bold. Furthermore, to statistically measure the significance

of performance difference, pairwise t-test at 0.05 significance

level is conducted between the algorithms. Specifically, when

multi-class IKSVM-DC is significantly superior/inferior to

the compared algorithm on any dataset, a marker •/◦ is

shown. Otherwise, no marker is given [52].

According to the conclusion from Section 2, we choose

the first kind of decomposition for multi-class IKSVM-DC

8) An intensity image is a data matrix, I, whose values represent intensities within some range
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Fig. 2 Different performance between IKSVM-DC with and without a line search step on four datasets. (a) Sonar; (b) flare-solar; (c) breast-
cancer; (d) thyroid

Table 3 Classification accuracy (mean±std. deviation) of each compared algorithm on several real-world multi-class datasets. In addition, •/◦ indicates
whether multi-class IKSVM-DC is statistically superior/inferior to the compared algorithm on each dataset (pairwise t-test at 0.05 significance level)

Strategy: One vs. One Unified Form

Clip Flip Shift SMO-IKSVM TDCASVM IKSVM-CA ESVM 1-norm IKSVM IKSVM-DC

Der. 96.34%±0.066 94.12%±0.136 93.36%±0.148 62.08%±0.025• 95.32%±0.017• 98.63%±0.006 95.61%±0.087 97.15%±0.009• 98.46%±0.006
Eco. 72.34%±0.187• 71.11%±0.169• 67.18%±0.195• 63.63%±0.103• 66.67%±0.108• 89.13%±0.029 83.96%±0.096 88.01%±0.021• 90.14%±0.021
New. 90.65%±0.043• 92.24%±0.027• 83.86%±0.064• 70.14%±0.000• 86.46%±0.043• 96.67%±0.015• 97.13%±0.015• 97.85%±0.012• 99.37%±0.011
Gla. 53.05%±0.059• 55.33%±0.068• 53.26%±0.067• 47.84%±0.038• 50.01%±0.021• 61.35%±0.089• 68.73%±0.064 67.95%±0.052• 72.42%±0.032
Coi. 13.56%±0.034• 13.53%±0.033• 16.96%±0.028• 21.72%±0.078• 25.85%±0.026• 31.03%±0.017• 62.25%±0.032• 40.45%±0.035• 67.37%±0.037
Zon. 00.00%±0.000• 00.10%±0.001• 00.00%±0.000• 00.00%±0.000• 00.40%±0.002• 37.33%±0.021• 91.35%±0.007• 28.14%±0.029• 92.54%±0.009
C5. 26.55%±0.000• 26.56%±0.000• 26.52%±0.000• 26.56%±0.000• 24.93%±0.023• 28.45%±0.010• 76.17%±0.040• 64.85%±0.026• 81.06%±0.033
C10. 26.56%±0.000• 26.58%±0.000• 26.53%±0.000• 26.56%±0.000• 24.47%±0.044• 27.81%±0.009• 84.25%±0.024• 63.03%±0.023• 89.46%±0.021
C20. 26.55%±0.000• 26.56%±0.000• 26.54%±0.000• 26.54%±0.000• 20.67%±0.026• 27.13%±0.006• 87.17%±0.023• 59.56%±0.035• 92.15%±0.028
C30. 26.55%±0.000• 26.56%±0.000• 26.52%±0.000• 26.57%±0.000• 17.96%±0.031• 27.26%±0.007• 89.33%±0.019• 52.46%±0.028• 92.48%±0.018
C40. 26.57%±0.000• 26.56%±0.000• 26.57%±0.000• 26.53%±0.000• 18.47%±0.048• 26.84%±0.004• 86.57%±0.027• 50.64%±0.036• 90.26%±0.022

Strategy: One vs. Rest Unified Form

Clip Flip Shift SMO-IKSVM TDCASVM IKSVM-CA ESVM 1-norm IKSVM IKSVM-DC

Der. 94.85%±0.052• 94.26%±0.065 77.01%±0.195• 96.86%±0.007• 86.24%±0.023• 97.11%±0.007• 95.54%±0.060 95.36%±0.009• 98.46%±0.006
Eco. 68.65%±0.126• 67.87%±0.109• 50.11%±0.084• 69.84%±0.131• 66.16%±0.089• 79.93%±0.031• 77.47%±0.107• 83.46%±0.031• 90.14%±0.021
New. 76.57%±0.050• 79.49%±0.038• 73.63%±0.035• 74.98%±0.049• 79.38%±0.047• 80.83%±0.044• 93.57%±0.023• 87.93%±0.024• 99.37%±0.011
Gla. 44.24%±0.038• 47.22%±0.034• 41.45%±0.035• 43.18%±0.030• 47.84%±0.025• 47.42%±0.035• 65.06%±0.056• 60.97%±0.045• 72.42%±0.032
Coi. 25.15%±0.004• 25.02%±0.000• 26.27%±0.015• 26.33%±0.018• 25.92%±0.019• 25.05%±0.000• 55.41%±0.039• 27.07%±0.016• 67.37%±0.037
Zon. 10.01%±0.000• 10.00%±0.000• 10.02%±0.000• 10.01%±0.000• 10.01%±0.000• 10.00%±0.000• 61.74%±0.060• 44.67%±0.019• 92.54%±0.009
C5. 17.00%±0.000• 17.01%±0.000• 17.00%±0.000• 17.53%±0.010• 18.75%±0.021• 17.00%±0.000• 52.22%±0.048• 48.34%±0.042• 81.06%±0.033
C10. 17.04%±0.000• 17.05%±0.000• 17.02%±0.000• 17.03%±0.000• 20.86%±0.020• 17.01%±0.000• 55.75%±0.092• 50.65%±0.033• 89.46%±0.021
C20. 17.01%±0.000• 17.04%±0.000• 17.02%±0.000• 17.03%±0.000• 21.51%±0.000• 17.03%±0.000• 72.21%±0.035• 46.64%±0.022• 92.15%±0.028
C30. 17.04%±0.000• 17.03%±0.000• 17.00%±0.000• 17.52%±0.000• 21.52%±0.000• 17.25%±0.004• 80.46%±0.069• 46.92%±0.031• 92.48%±0.018
C40. 17.04%±0.000• 17.00%±0.000• 17.02%±0.000• 17.01%±0.000• 20.66%±0.018• 18.31%±0.011• 82.25%±0.056• 47.11%±0.024• 90.26%±0.022
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and the classification results of all the compared algorithms

are shown in Table 3. As our model is a unified form, we can

directly solve multi-class problems without using strategies.

For the convenience of comparison and analysis, we copied

the results of multi-class IKSVM-DC twice, and compared

them with the two strategies respectively. According to the

results in Table 3, it is remarkable that multi-class IKSVM-

DC shows great advantage to other compared algorithms with

both One vs. One strategy and One vs. Rest strategy. Sim-

ilar to the results in two-class classification, three spectrum

transformation methods obtain the lowest classification accu-

racies on most of the datasets. Influenced by different multi-

class strategies, SMO-IKSVM and TDCASVM algorithms

can achieve slightly higher or lower classification accuracy

than the three spectrum transformation methods. IKSVM-CA

performs better than SMO-IKSVM and TDCASVM algo-

rithms on most of the datasets. ESVM and 1-norm IKSVM

algorithms are superior to all previous methods on most of

the datasets. And ESVM is more robust than 1-norm IKSVM

with both two multi-class strategies on most of the datasets.

However, our unified multi-class IKSVM-DC excels ESVM

in classification accuracies on all the datasets. Furthermore,

we can also find that most of the compared methods achieve

better results on OvO than OvR. One possible reason is that

for OvR strategy it may assume one class as positive and the

rest as negative. This will make the dataset imbalanced which

would more likely lead to the descent of classification perfor-

mance. However, OvO strategy do not suffer from this prob-

lem.

Especially, most algorithms fail on Zongker dataset and the

classification accuracies of some algorithms (e.g., Clip, Flip,

Shift, SMO-IKSVM and TDCASVM) are even worse than

the results of random guess. The possible reason may be ac-

quired that the dissimilarity between different classes are so

small and most of the dissimilarity values fall in the interval

[0, 0.1]. Therefor, it would be very hard for kernel transfor-

mation methods and some dual-based algorithms with multi-

class strategies to obtain a good classification accuracies on

this dataset. However, our multi-class IKSVM-DC algorithm

can learn a unified classifier from these dissimilarity data as

a whole and predict unseen samples with a very high accu-

racy. Furthermore, similar results can also be seen on several

Chickenpieces datasets. Some algorithms (e.g., Clip, Flip,

Shift, SMO-IKSVM) obtain the same classification accuracy.

Actually, this means that these algorithms may not work on

these dissimilarity datasets properly and the accuracies they

obtained are more likely due to the error correction ability

of the multi-class strategy they used. However, our multi-

class IKSVM-DC algorithm is very robust for these kind of

datasets and can achieve very good classification accuracies.

7 Conclusion

In this paper, we firstly present an introduction for recent re-

searches on IKSVM problem and also analyze the dual gap

problem that most existing IKSVM algorithms suffer from.

Then, instead of employing the dual form of IKSVM, we

propose a primal perspective for the IKSVM problem. Con-

sidering the characteristics of the spectrum for the indefinite

kernel matrix, we transform the non-convex primal IKSVM

model into a formulation of DC equivalently, and propose an

algorithm IKSVM-DC to solve the non-convex problem effi-

ciently. Furthermore, in order to accelerate the convergence

rate of IKSVM-DC, we conduct a line search along the de-

scent direction at each iteration. Meanwhile, we construct

a unified multi-class IKSVM model for multi-class classifi-

cation problems, and propose a multi-class IKSVM-DC al-

gorithm to predict multi-class all together. Moreover, a the-

oretical analysis is presented to validate that our proposed

IKSVM-DC algorithms can converge to a local minimum. Fi-

nally, extensive comparative experiments validate the superi-

ority of the proposed IKSVM-DC algorithms for both binary

and multi-class classification problems.

There are several directions for future study:

• Optimization technique In the paper, we apply DC

programming to tackle the non-convex optimizations in

our proposed primal IKSVM models. However, these

algorithms can only arrive at local minima. How to

develop better non-convex optimization techniques for

our models needs more systematic research.

• Multiple indefinite kernel scenario In the paper, we

mainly focus on the single indefinite kernel SVM prob-

lems. However, limited to the representation of single

indefinite kernel, multiple indefinite kernels would pro-

vide more intelligent options and achieve better results.

Thus, how to effectively utilize multiple indefinite ker-

nels is a topic worthy of study.

• Large-scale problem In the experiments, we utilize

the proposed primal IKSVM models in the middle-

scale classification problems. However, due to the re-

quirements of the practical applications, the large-scale

learning problem has become a hot issue in machine

learning. As the size of the dataset becomes larger, on

the one hand, the scale of kernel matrix will increase
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exponentially, then the access and calculation of data is

a difficult problem. On the other hand, much more vari-

ables need to be solved, and the speed of the algorithm

needs to be improved in order to satisfy the needs of

practical applications. Therefore, we will explore some

indefinite kernel approximation methods to tackle these

problems.
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Appendixes A

Convergence Analysis of Multi-class IKSVM-DC

Proposition 3 For the sequence {βt}, we have

(g − h)(βt) − (g − h)(βt+1) � τ‖d(β)‖2 ,
the equality holds if and only if τ‖d(β)‖2 = 0, where τ is a

positive parameter to make functions g and h strongly convex.

Proof Firstly, we can construct the the convex func-

tions g, h as being strongly convex with an additional term
τ
2 tr(BBT):

(g − h)(B) =
(
g(B) − τ

2
tr(BBT)

)

︸������������������︷︷������������������︸
G(B)

−
(
h(B) − τ

2
tr(BBT)

)

︸������������������︷︷������������������︸
H(B)

.

Then given the convexity of function G, we have

G(Bt) � G(Bt+1) + tr
(〈
∇G(Bt+1), (Bt − Bt+1)T

〉)
.

After simplified, we get Eq. (30)9)

g(Bt) � g(Bt+1) + tr
(〈
∇g(Bt+1), (Bt − Bt+1)T

〉)

+
τ

2
(tr(Bt BT

t ) − 2tr(Bt+1BT
t ) + tr(Bt+1 BT

t+1))

= g(Bt+1) + tr
(〈
∇g(Bt+1), (Bt − Bt+1)T

〉)

+
τ

2
‖Bt − Bt+1‖2F . (30)

Similarly, for the function H, we can get

H(Bt+1) � H(Bt) + tr
(〈
∇H(Bt), (Bt+1 − Bt)T

〉)
,

h(Bt+1) � h(Bt)+tr
(〈
∇h(Bt), (Bt+1 − Bt)T

〉)
+
τ

2
‖Bt+1−Bt‖2F .

(31)

Since Bt+1 is a unique solution of the convex problem in

Eq. (21) of the main paper, we have

∇g(Bt+1) = Θt = ∇h(Bt) . (32)

Combining Eqs. (30), (31) and (32), we have

(g(Bt) − h(Bt)) − (g(Bt+1) − h(Bt+1)) � τ‖Bt+1 − Bt‖2F .

Proposition 4 For the sequence {βt}, we have

〈∇(g − h)(βt+1), βt+1 − βt〉 � 0 ,

that is, d(β) = βt+1 − βt is a descent direction for f = g− h at

βt+1.

Proof Following Proposition 3, we have

h(Bt) � h(Bt+1)+tr
(〈
∇h(Bt+1), (Bt − Bt+1)T

〉)
+
τ

2
‖Bt−Bt+1‖2F .

(33)

Since each class is independent from each other for the

multi-class problem, we can simplify Eq. (33) into the fol-

lowing formulation

h(Bi
t) � h(Bi

t+1) +
〈
∇h(Bi

t+1), (Bi
t − Bi

t+1)T
〉
+
τ

2
‖Bi

t − Bi
t+1‖2 .

(34)

Given the Eq. (34), we can know that the function h(Bi
t) is

strongly convex on Rn. Then according to the Theorem 2.1.9

in [41], we have

〈∇h(Bi
t) − ∇h(Bi

t+1), (Bi
t − Bi

t+1)〉 � τ‖(Bi
t − Bi

t+1)‖2 .

Combining Eq. (32), we have

〈∇g(Bi
t+1) − ∇h(Bi

t+1), (Bi
t+1 − Bi

t)〉 � −τd(Bi)2 � 0 ,

the equality holds if and only if τd(Bi)2 = 0.

Theorem 2 If the sequence {βt} satisfies d(β) = βt+1 − βt =

0, let β∗ = βt+1 = βt and U be a neighbourhood of β∗. For

∀β ∈ U, we have

g(β) − h(β) � g(β∗) − h(β∗) .

Proof Following Eq. (32), the condition d(B) = Bt+1−Bt =

0 implies ∇g(B∗) = ∇g(Bt+1) = Θt, that is, ∃Θ ∈ ∂g(B∗). So

the conjugate function of g at B∗ is

g∗(Θ) = sup{tr (〈B∗,Θ〉) − g(B∗)} = tr(〈B∗,Θ〉) − g(B∗) ,
(35)

9) The equation always holds and we can derive from a simplified form. Let A =

⎡⎢⎢⎢⎢⎢⎣
a11 a12

a21 a22

⎤⎥⎥⎥⎥⎥⎦ and B =

⎡⎢⎢⎢⎢⎢⎣
b11 b12

b21 b22

⎤⎥⎥⎥⎥⎥⎦. Then we have tr(AAT) = a2
11 + a2

12 + a2
21 + a2

22,

tr(BBT) = b2
11 + b2

12 + b2
21 + b2

22 and tr(ABT) = a11b11 + a12b12 + a21b21 + a22b22. Therefore, we can derive the following equation that
tr(AAT) − 2tr(ABT) + tr(BBT) =

∑2
i, j=1(ai j − bi j)2 = ‖A − B‖2F
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and ∀Θ ∈ Rc×n, the conjugate function of h at B∗ is

h∗(Θ) = sup{tr(〈B∗,Θ〉) − h(B∗)} � tr(〈B∗,Θ〉) − h(B∗) .
(36)

Combining Eqs. (35) and (36), we have

g(B∗) + g∗(Θ) = tr(〈B∗,Θ〉) � h(B∗) + h∗(Θ) . (37)

On the other hand, sinceΘ = ∇h(B), it means ∃Θ ∈ ∂h(B).

Similar to the process in Eqs. (35), (36) and (37), we have

h(B) + h∗(Θ) = tr(〈B,Θ〉) � g(B) + g∗(Θ) . (38)

Combining Eqs. (37) and (36), we can reach the conclu-

sion.
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