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Abstract
Reinforcement learning maps from perceived s-
tate representation to actions, which is adopted to
solve the video summarization problem. The re-
ward is crucial for dealing with the video summa-
rization task via reinforcement learning, since the
reward signal defines the goal of video summariza-
tion. However, existing reward mechanism in re-
inforcement learning cannot handle the ambiguity
which appears frequently in video summarization,
i.e., the diverse consciousness by different people
on the same video. To solve this problem, in this
paper a label distribution is mapped from the C-
NN and LSTM-based state representation to cap-
ture the subjectiveness of video summaries. The
dual-reward is designed by measuring the similar-
ity between user score distribution and the gener-
ated label distribution. Not only the average score
but also the the variance of the subjective opinions
are considered in summary generation. Experimen-
tal results on several benchmark datasets show that
our proposed method outperforms other approach-
es under various settings.

1 Introduction
Video summarization aims to produce a compact short video
summary, which preserves the most representative sequence
of frames/shots. Deep reinforcement learning has been in-
troduced to interactive video summarization to capture the
dynamic patterns of key-frames during the interactive with
the video. However, reinforcement learning is limited to deal
with the ambiguous applications due to the restricted scalar
reward mechanism. Especially, in video summarization, the
label ambiguity appears frequently since people have sub-
jective consciousness about the importance of video frames.
Inspired by label distribution learning (LDL) [Geng, 2016],
a novel label distribution-based dual-reward is designed to
guide the reinforcement learning agent to solve the video
summarization task. Besides, the action form of reinforce-
ment learning is redefined from the perspective of label dis-
tributed learning. The proposed method has great potential in
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various challenging sequential decision making scenarios that
require both ambiguity modeling and long-term planning.

In recent years, video summarization has attracted a resur-
gence of interest [Li et al., 2020; Zheng and Lu, 2020], es-
pecially with reinforcement learning. For example, DR-DSN
[Zhou et al., 2018a] designs a reward function that jointly ac-
counts for the diversity and representativeness of the generat-
ed summaries. A weakly hierarchical reinforcement learning
framework [Chen et al., 2019] decomposes the whole task in-
to several subtasks to enhance the summarization quality. The
related works only consider the binary labels or the average
user scores of the summary frames. However, video summa-
rization is a highly typical problem with label ambiguity since
people have subjective preferences over the summaries they
would like to watch. Different users have various attentions
on the same video. Through the analysis of video summa-
rization, we draw two significant conclusions. As shown in
Figure 1(a) and in Figure 1(b), 1) two frames may have the
same average score, but the variance of the distribution and
the image content are quite different. It reveals that a single
scalar average score is insufficient to capture the true nature
of the key-frame. 2) the larger the absolute importance s-
core is, the smaller the variance of the user score distribution
is. It indicates that the people’s opinions on the key-frames
are more consistent, and the opinions on the non-important
frames are more scattered. Therefore, the score distribution
maintains crucial information.

The previous works only use the average scores or the gen-
erated binary results to learn the policy to select the key-
frames. As analysis above, the score distribution contains
vital information to determine whether the video frame is a
key-frame. Therefore, we consider not only the average s-
cores of frames but also the score distributions. In addition,
we develop a new label enhancement framework to transform
the user scores or the binary summary results into label dis-
tributions by leveraging the relations among the label space.

In this paper, a specialized reinforcement learning algo-
rithm with label distributions dual-reward is designed for the
task of video summarization to solve the summary ambigu-
ous problem. First, we introduce a new label enhancement
framework to recover the label distributions from the annotat-
ed user scores or the binary results. Specially, the annotated
user scores from multiply annotators can be transformed into
label distributions according to the ratio of the sum of each
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Figure 1: Even with the same average scores, the image content and the variance of distributions (frames 21 and 7212 from video 21) are
different in TVSum dataset (a). The relation between the expectation and the variance of the score distribution is illustrated in (b). The
framework of video summarization via label distributions dual-reward is shown in (c).

annotated label to all annotators. The annotated binary re-
sults are converted into the normalized continuous scores via
a proportionally scaling method to ensure the consistency of
the relative distance among scores both in the original score s-
pace and the normalized score space. Then label distributions
are recovered from the normalized scores in the training set
by leveraging the topological information in the feature space
and the correlation among the normalized scores by GLLE
[Xu et al., 2018]. The overall framework of video summa-
rization is shown in Figure 1(c), CNN features of each frame
are extracted by the pre-trained CNN model. Then the state
representations are obtained by the LSTM architecture to ex-
ploit temporal dependency among video frames. Unlike the
related works that output a scalar value to present the impor-
tance of the frame, our model predicts a label distribution,
which includes the absolute importance information as well
as the distribution of the importance score. The action of the
reinforcement learning agent is mapped from the generated
label distribution.

To better handle the ambiguous problem in video summa-
rization, a novel dual-reward is designed to guide the agent
to capture the true nature of the key-frames. The final re-
ward consists of two parts, label distribution-based reward
and the expectation-based reward. The dual-reward will en-
courage the agent to predict a distribution whose average and
variance are both close to the groundtruth. The variance of
the label distribution is also aggregated in the generation of
video summaries. Therefore, the results are more consistent
with human perceived summaries.

To demonstrate the effectiveness of our proposed method,
we conduct various experiments on two widely used datasets,
TVSum [Song et al., 2015] and SumMe [Gygli et al., 2014].
Experimental results indicate that our method achieves the
better performance, especially under the much better rank
correlation coefficient metrics setting. All the datasets, the
code as well as the trained models have been be released
1. The contributions of our paper are concluded as follows,

1http://palm.seu.edu.cn/xgeng/

1) we propose a new label distribution-based dual-reward to
cover the ambiguity in video summarization. To the best of
our knowledge, we are the first to handle this problem with la-
bel distribution. 2) We demonstrate a new label enhancement
framework to transform the user scores or the binary summa-
ry results into label distributions to capture the average scores
as well as the distribution of human subjective opinions. 3)
Our proposed method not only outperforms the reinforcement
learning-based methods but also the supervised/unsupervised
approaches.

2 Related Work
Label distribution learning and label enhancement. La-
bel distribution learning (LDL) [Geng, 2016] has been ex-
plored a lot in recent years. LDL is successfully applied to
multiple ambiguous applications such as partial multi-label
learning [Lv et al., 2020], head pose estimation [Geng et
al., 2020], and facial age estimation [Smith-Miles and Geng,
2020], etc. LDL-SCL [X et al., 2018] is proposed to encode
the influence of local samples by a local correlation vector
for each instance. A label distribution learning forests algo-
rithm based on differentiable decision trees is presented by
[Shen et al., 2017]. More recently, LDL-ALSG [Chen et al.,
2020] is proposed to leverage the topological information of
the labels from related but more distinct tasks and PENCIL
[Yi and Wu, 2019] is demonstrated to update both network
parameters and label estimations as label distribution to solve
the problem of noisy labels. Due to the difficulty of obtain-
ing the label distributions directly, label enhancement [Xu et
al., 2018] is proposed to recover label distributions from the
logical labels. RLLE [Gao et al., 2020] algorithm formulates
the label enhancement as a dynamic decision process to se-
quential adjust the label distribution via the prior knowledge.
Inspired by LDL, we design a novel label distribution-based
reward and propose a new label enhancement framework to
generate the label distribution for video summarization.
Video summarization. Earlier works mainly focus on un-
supervised basic visual features clustering. An unsupervised



discriminator [Mahasseni et al., 2017] is designed to compare
the summaries generated by GANs and the original video.
CSNet [Jung et al., 2019] designs a variance loss to pre-
dict output scores for each frame with high discrepancy. k-
SDPP [Zheng and Lu, 2020] partitions sampled frames of a
video into segments as well as considering sequential nature
of the frames. A supervised paradigm that predicts the impor-
tance scores of the frames/shots directly [Zhang et al., 2016a;
H et al., 2018] is proposed in recent years. For example, s-
tacked memory network [Wang et al., 2019] is proposed to
explicitly model the long dependency among videos sum-
maries. More recently, reinforcement learning-based meth-
ods [Zhou et al., 2018a; Zhou et al., 2018b; Zhang et al.,
2019] have been proposed to obtain the policy for the key-
frame selection. DR-DSN [Zhou et al., 2018a] designs a re-
ward function that jointly accounts for the diversity and rep-
resentativeness of the generated summaries. The hierarchi-
cal reinforcement learning [Chen et al., 2019] is used to de-
compose the whole task into several subtasks to enhance the
summarization quality. However, related works seldom pay
sufficient attention to the ambiguous problem in video sum-
marization. Query-focused video summarization [Zhang et
al., 2019] only produces different summaries corresponding
to different user queries. It cannot handle the video summa-
rization with ambiguity. This fact encourages us to explore
new methods for video summarization.

3 Approach
We formulate video summarization as a sequential-making
process and study using label distributions dual-reward to
guide the agent to learn the key-frame selection policy.

3.1 Label Enhancement
According to the methodology in [Geng, 2016], let X = Rq
denote that input space, Y = {y1, y2, . . . , yc} denote the
complete set of labels, and dyx denote the description degree
of the label y ∈ Y to the instance x ∈ X , where c indi-
cates the number of labels. Without loss of generality, as-
sume that dyx ∈ [0, 1]. Further suppose that the label set is
complete, i.e. all labels in the set can always fully describe
the instance, di = (dy1xi , d

y2
xi , . . . , d

yc
xi )

T . Then,
∑
y d

y
x = 1.

The benchmark dataset TVSum [Song et al., 2015] provides
average importance score for each video frame, and also re-
leases the annotated information for every annotator. For TV-
Sum dataset, inspired by [Geng and Hou, 2015], the anno-
tated scores can be transformed into label distributions. The
abscissa indicates the annotated scores y, and the ordinate
represents the ratio of the corresponding score among all the
annotators. In LDL formulation, it indicates the description
degree dyx . For SumMe [Gygli et al., 2014] dataset, each an-
notator annotates a binary score, if the annotator considers it
to be a key-frame/key-shot, it is annotated with 1, otherwise
it is annotated with 0. The importance scores are obtained
by the voting strategy. For example, for one frame/shot, 10
out of 15 annotators voted this frame/shot as the summary
frame/shot. Then, the importance score is 10/15 ≈ 0.67. For
those datasets without detailed score annotation, we propose
a label enhancement framework to generated the label distri-

bution. First, KTS [Potapov et al., 2014] segmentation algo-
rithm is used to partition the sequence of frames into shots.
Second, inspired by [Zhang et al., 2016a], the importance
score of each shot is calculated by averaging frame-level s-
cores within the same shot. Third, we propose a proportion-
ally scaling function to transform the continuous score into
a discrete label space while ensuring the relative distance a-
mong the discrete labels constant with that in the original s-
core space. The scaling function converts the importance s-
cores into a discrete label space of 1 to 5 as follows,

y = d (ymax − ymin) ∗ (score− scoremin)
scoremax − scoremin

+ ymine, (1)

where ymin and ymax are the upper and lower limits of the
label space. scoremax and scoremin are the maximum and
minimum values of the importance score. The symbol d·e
indicates the rounding up operation. Finally, the transformed
discrete labels are used as the relevant labels to recover the
label distribution by GLLE [Xu et al., 2018]. The proposed
label enhancement framework provides the solution that can
be applied to any video even if there is no detailed user score
annotation.

3.2 State Representation
The state representation is based on CNN and LSTM net-
works. First, a convolutional neural network (CNN) is used
to extract visual features {xt}Tt=1 from the input video frames
{vt}Tt=1 with the length T as shown in Figure 1(c). Then the
sequential features are input into LSTM networks to capture
the long-range temporal dependency of videos. The output
of LSTM is defined as the state put into the summarization
network to predict the label distribution. For fair comparison,
we use the output from the penultimate layer of GoogLeNet
[Szegedy and Liu, 2015], which is pre-trained on ImageNet
[Deng et al., 2009], as our CNN features (1024-dimensions).
During the training process, the parameters of the feature ex-
traction network remain unchanged, and only the LSTM and
summarization networks are updated. Using the pre-trained
model to extract CNN features can save the processing time
of feature learning, thereby reducing the time required for
policy learning.

The proposed video summarization architecture consists of
two parts, one is the actor network that takes state representa-
tion st as input and maintains a parameterized actor function
(dt, at) = u(st; θ

u), which specifies the current policy by de-
terministically mapping state representation to a specific label
distribution, where θu is the parameters of the actor function.
Action at is mapped from the expectation of the label dis-
tribution. The details of the actor function u(st; θu) are as
follows,

gt = σ(st; θ
u), (2)

dt = softmax(gt), (3)

at =

c∑
i=1

(i) ∗ dit, (4)

where σ is the activate function, and gt is the penultimate out-
put of the actor network. According to the definition of label



distribution learning, an instance is described by all labels,∑
y d

y
x = 1. Therefore, we use a softmax function to normal-

ize the output to generate the label distribution. Another part
is the critic network that takes state st as input and maintains
a value network parameterized by θQ to approximate the state
value, where Q indicates the critic network. More details of
the learning algorithm are illustrated in Section 3.4. During
training stage, at each time step t, the agent receives the s-
tate st and generates the label distribution dt. Then action at
is conducted based on the expectation of the generated label
distribution.

3.3 Label Distributions Dual-Reward
The reward R(st) is combined of label distribution-based re-
ward and expectation-based reward. Labeling the importance
of the frame/shot by the average score will lose the differ-
ence of image content and variance of the score distribution.
We evaluate the generated label distribution by measuring the
similarity with the ground truth.

Rld =

{
exp(−dis(dt, d

′

t)), if dis(dt, d
′

t) > δ,

1, otherwise,
(5)

where

dis(dt, d
′

t) =
1

c

c∑
i=1

(dit − di
′

t )
2, (6)

where dit and di
′

t indicate the description degrees of the gen-
erated label distribution dt and ground truth d

′

t at time step
t respectively. In practice, we give a larger reward when the
distance is within a threshold δ to encourage the model to
learn the policy with a quick convergence, which is proved
effective in experiments. Intuitively, the label distribution-
based reward maintains the generated label distribution to fit
the corresponding ground truth. The closer the distance, the
higher the reward that the agent can receive.

Predicting the importance score directly from the frame has
been extensively studied [Zhang et al., 2016a; H et al., 2018;
Gygli et al., 2014; Zhou et al., 2018b]. As mentioned above,
the generated label distribution indicates the distribution of
the score. According to the methodology in [Lillicrap et al.,
2016], the action should be a deterministic continuous val-
ue. We propose to use the expectation of the generated label
distribution as both the agent’s action and the part of the im-
portance score, which can enhance the consistency with the
ground truth label distribution. We propose an expectation-
based reward, which evaluates the expectation of the distribu-
tion from the current video frame.

Rep = exp(−‖E(dt)− E(dt′ )‖2), (7)

where

E(dt) =

c∑
i=1

i ∗ dyit , (8)

E(dt′ ) =

c∑
i=1

i ∗ dyi
t′
, (9)

where E(·) presents the expectation of the label distribu-
tion. The video summaries generation is based on both the

expectation and the variance of the generated label distribu-
tion. Therefore, with this reward, the agent is encouraged to
maintain the predicted importance score within a certain error
range.
Rld and Rep complement to each other, which not only

guarantee the predicted label distribution to fit the ground
truth label distribution as much as possible, but also maintain
the expectation within a certain error range. The final dual-
reward is jointly combined by the label distribution-based re-
ward and the expectation-based reward.

R(st) = αRld(st) + (1− α)Rep(st), (10)

where α is a parameter to balance between the expectation-
based reward and the label distribution-based reward. The
dual-rewardR(st) guides the learning of the proposed model.

3.4 Training Procedures
We use the deep deterministic policy gradient (DDPG) algo-
rithm [Lillicrap et al., 2016] to train the model. It should be
noted that the description degree of label distribution is not
probability. It represents the degree to which each label de-
scribes the instance. The spaces of the label distribution and
the action are continuous. Therefore, a deterministic policy is
necessary to generate the label distribution.

DDPG is an actor-critic approach that maps state to a spe-
cific action. In our learning process, a replay buffer is used
to disrupt the correlation among samples. In DDPG, at each
timestep, the actor and critic networks are updated by sam-
pling a minibatch uniformly from the replay buffer. Since
DDPG is an off-policy algorithm, the replay buffer can be
large, allowing the algorithm to benefit from learning across
a set of uncorrelated samples. The actor policy is updated by
using the sampled gradient,

∇θuu|si ≈
1

N

∑
i

∇aQ(s, a|θQ)|s=s,a=u(si)∇θuu(s|θ
u)|si ,

(11)
where

u(si) = E(di), (12)
Action a is mapped from the expectation of the label distribu-
tion. The critic network is updated by minimizing the square
loss,

L =
1

N

∑
t

(zi −Q(si, ai|θQ)2), (13)

where

zi = ri + γQ′(si+1, u
′
(si+1|θu

′

)|θQ
′

), (14)

Since the network Q(s, a|θQ) being updated is used in cal-
culating the target value in Eq.13, the Q update is prone to
divergence. The target network using “soft” updates, rather
than directly copying the weights.

θQ
′

← τθQ + (1− τ)θQ
′

, (15)

θu
′

← τθu + (1− τ)θu
′

, (16)
This soft update method can make the value changing of
the target network slowly, greatly improving the stability of



learning. Exploration-exploitation dilemma is a major chal-
lenge of reinforcement learning. Similar to previous work, we
construct an exploration policy u

′
by adding a random noise

process N to our actor policy.

u
′
(st) = u(st|θut ) +N , (17)

In practice, we add a Gaussian random process at every step.
The mean of the Gaussian distribution is the expectation of
the generated label distribution. And the variance is a vari-
able, which gradually decreases from a constant value N to
zero.

3.5 Video Summarization Inference
During testing, similar to [Zhou et al., 2018a; Zhou et al.,
2018b], we use KTS [Potapov et al., 2014] for the temporal
segmentation. Shot-level scores are computed by averaging
frames scores within the same shots. We apply the trained
model to predict the frame-selection importance score. To
maximize the use of the predicted label distribution informa-
tion. The predicted importance score is obtained by calcu-
lating both the expectation and the variance of the generated
label distribution.

scorepre = E(dt) + (1−D(dt)), (18)

whereD(dt) indicates the variance of the generated label dis-
tribution. Video summaries are generated by maximizing the
total scores while ensuring that the length of summary does
not exceed a limit φ. During testing, the reward is not re-
quired.

4 Experiments
We carry out experiments for video summarization under
both canonical, augmented, and transfer settings to validate
the effectiveness and robustness.

4.1 Datasets
We evaluate our approach on two widely used benchmark
datasets, SumMe [Song et al., 2015] and TVSum [Gygli et
al., 2014]. Both datasets are annotated by multiple person-
s. SumMe contains 25 personal videos downloaded from
YouTube. Each video ranges from 1 to 6 minutes. The
dataset provides shot-level annotated scores annotated by 15
to 18 persons. We use the proposed label enhancemen-
t framework illustrated in Section 3.1 to generate the la-
bel distributions. TVSum contains 50 videos with 10 cat-
egories. The duration of each video varies from 2 to 10
minutes. Each frame is annotated by 20 annotators. The
annotated scores range from 1 to 5 in TVSum. Therefore,
the abscissa of the label distribution is from 1 to 5, the or-
dinate presents the ratio of each annotated score to the to-
tal number of annotations. Following [Zhang et al., 2016a;
Zhou et al., 2018a], we use other two datasets from YouTube
[Avila et al., 2011] and Open Video Project (OVP) 2 as auxil-
iary datasets to conduct augmented and transfer experiments.

2Open video project. https://open-video.org/.

4.2 Evaluation Metrics
We follow the F-score protocol to evaluate our framework
as in most of the previous works [Zhou et al., 2018a;
Zhou et al., 2018b; Otani et al., 2017; Otani et al., 2019].
Besides, as suggested by [Otani et al., 2019], two rank order
correlation metrics, Kendall’s τ [KENDALL and G., 1945]
and Spearman’s ρ [Kokoska and Zwillinger, 1999], are al-
so adopted to validate the results comparing with three video
summarization methods. We calculate the Kendall’s τ and
Spearman’s ρ correlation coefficients between the generated
scores with respect to each human annotated reference scores.
The final correlation coefficient is then obtained by averaging
over the individual results.

4.3 Implementation Details
For fair comparison, we use the output from the penulti-
mate layer of GoogLeNet pre-trained on ImageNet as our fea-
tures (1024-dimensions), which is same as the previous work
[Zhou et al., 2018a]. We downsample videos by 2 fps. The
LSTM layer includes 128 units. The time step of LSTM is 10.
The actor network has one label distribution layer. The label
distribution layer has 5 units. The critic has two fully con-
nected layers including 32 and 64 units for SumMe dataset,
300 and 600 units for TVSum dataset respectively. The out-
put layer of the critic network has 1 unit. The parameters
ymin and ymax are 1 and 5 in Eq.1. The hyperparameters δ
in Eq.5, α in Eq.10, τ in Eq.15 and 16, N in Eq.17 are 0.2,
0.3, 0.001 and 4, respectively. The learning rate is 1e − 04
for actor and 1e− 03 for critic. The batch size is 32. The dis-
count factor γ is 0.99. And the size of the memory capacity is
10000 for TVSum and 5000 for SumMe. The limited length
of video summaries φ is 15% of the whole video length.

We use three settings to evaluate our method. (1) Canoni-
cal: we use the standard 5-fold cross validation (5FCV). (2)
Augmented: we still use the 5FCV with more training data of
OVP and YouTube. (3) Transfer: for a target dataser, SumMe
or TVSum, the other three datasets are used as training data
to test the transfer ability of our model.

In our evaluation, we select reinforcement learn-
ing/unsupervised/supervised video summarization approach-
es to compare with our method. DR-DSN [Zhou et al.,
2018a], Hier-PG [Chen et al., 2019] and DQSN [Zhou et al.,
2018b] are reinforcement learning-based methods. GANdpp
[Mahasseni et al., 2017] and Co-archetypal [Song et al.,
2015] are unsupervised baselines. vs-LSTM and dpp-LSTM
[Zhang et al., 2016a] are supervised LSTM-based method-
s. Summary transfer [Zhang et al., 2016b] and SASUM [H
et al., 2018] are also supervised approaches by using the se-
mantic information to select the keyframes. DR−DSNsup

and GANsup are two augmented supervised methods extend-
ed from DR-DSN [Zhou et al., 2018a] and GANdpp [Mahas-
seni et al., 2017]. As analysis by [Otani et al., 2019], video
segmentation has significant impact on the performance. For
fair comparison, all the comparison methods use the KTS
[Potapov et al., 2014] segmentation algorithm for evaluation.

4.4 Results
Table 1 shows the compared results with three reinforcement
learning-based methods on SumMe and TVSum datasets. As



Methods SumMe TVSum
canonical augmented transfer canonical augmented transfer

DR-DSN 41.4 42.8 42.4 57.6 58.4 57.8
DQSN - - - 58.6 - -

Hier-PG 43.6 44.5 42.4 58.4 58.5 58.3
GANdpp 39.1 43.4 - 51.7 59.5 -

Co-archetypal - - - 50.0 - -
Random 41.0 - - 57.0 - -

vs-LSTM 37.6 41.6 40.7 54.2 57.9 56.9
SASUM 40.6 - - 53.9 - -

dpp-LSTM 38.6 42.9 41.8 54.7 59.6 58.7
GANsup 41.7 43.6 - 56.3 61.2 -

Summary Transfer 40.9 - - - - -
DR−DSNsup 42.1 43.9 42.6 58.1 59.8 58.9

our method 44.7 46.1 44.0 60.7 60.9 58.6

Table 1: Results (%) on SumMe and TVSum datasets under canonical, augmented, and transfer settings.

can be observed, our method outperforms the other three rein-
forcement learning-based video summarization methods. On
the canonical setting, our method achieves 44.7% (SumMe)
and 60.7% (TVSum), outperforming 43.6% (SumMe) and
58.6% (TVSum) obtained by Hier-PG and DQSN. There are
mainly two reasons for the good performance of the proposed
framework. First, our method uses the annotated scores to
design a novel reward function. DQSN uses the categories of
videos, which is a high-level semantic information. There is
a deviation between the category information and the frame-
level score annotations. Second, the ambiguity of the subjec-
tivity can be captured by the label distribution.

Table 1 also reports the results compared with unsuper-
vised and supervised approaches. From the results, we can
notice that our approach performs marginally better than the
supervised baseline dpp-LSTM by 6.1% and 6.0% and unsu-
pervised baseline GANdpp by 5.6% and 9.0% on the canon-
ical setting. Our method beats GANsup method (44.7% vs.
41.7% on SumMe and 60.7% vs. 56.3% on TVSum) as well
as the Summary Transfer and the random results. The perfor-
mances of our method are also better than the most compa-
rable methods DR−DSNsup (44.7% vs. 42.1% on SumMe
and 60.7% vs. 58.1% on TVSum). In addition to the aug-
mented and transfer settings on TVSum dataset, our method
gets the best performance. Because the label distribution of
the auxiliary datasets is generated from label enhancement al-
gorithm. There is a certain difference between the enhanced
label distribution and the distribution annotated by the anno-
tators. Therefore, Our method does not achieve the state-of-
the-art results on the TVSum dataset under augmented and
transfer settings. In general, the results verify the effective-
ness of our proposed approach.

Rank correlation coefficient. As analysis in [Otani et al.,
2019], F1-measure evaluation approach is relevant to the pre-
processing stage. Random results also achieve comparable
results. Therefore, Kendall’s τ and Spearman’s ρ correlation
coefficients are recommended to measure the performance of
video summaries. We compare our method with dpp-LSTM,
DR-DSN and Hier-PG on TVSum dataset. The results are il-
lustrated in Table 2. From the results, we can conclude that

Methods Kendall’s τ Spearman’s ρ
Random 0.000 0.000
DR-DSN 0.020 0.026

dpp-LSTM 0.042 0.055
Hier-PG 0.078 0.116

our method 0.1778 0.2316

Table 2: Results of Kendall’s τ and Spearman’s ρ correlation coef-
ficients on TVSum dataset.

the margin from the dpp-LSTM, DR-DSN and Hier-PG is
very significant. It illustrates that the results from our method
are more consistent with the groundtruth from human anno-
tated scores.

5 Conclusion and Future Work
In this paper, we propose a label distributions-based dual-
reward to capture the ambiguity problem in reinforcement
learning. The dual-reward is designed by applying the la-
bel distribution-based and the expectation-based rewards to
guide the agent to learn the policy. In addition, we propose
a new label enhancement framework to transform the anno-
tated scores or the binary results into label distributions. We
redefined the action form by mapping from the label distri-
bution. DDPG algorithm is used to train the proposed model
for video summarization. The experimental results show that
our method achieves good performance, especially under the
rank correlation coefficient metrics. The text description of
the video always implies the summary information. There-
fore, we will explore the semantic information to improve the
performance in the future.
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