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Abstract

Label distribution learning (LDL) is a novel ma-
chine learning paradigm that gives a description de-
gree of each label to an instance. However, most of
training datasets only contain simple logical labels
rather than label distributions due to the difficul-
ty of obtaining the label distributions directly. We
propose to use the prior knowledge to recover the
label distributions. The process of recovering the
label distributions from the logical labels is called
label enhancement. In this paper, we formulate the
label enhancement as a dynamic decision process.
Thus, the label distribution is adjusted by a series
of actions conducted by a reinforcement learning
agent according to sequential state representation-
s. The target state is defined by the prior knowl-
edge. Experimental results show that the proposed
approach outperforms the state-of-the-art methods
in both age estimation and image emotion recogni-
tion.

1 Introduction
Multi-label learning (MLL) [Grigorios and Ioannis, 2006]
can deal with the ambiguous case where one instance be-
longs to more than one classes [Zhou and Zhang, 2006;
Zhang and Zhou, 2014; Gibaja and Eva, 2015], but it does not
fit many real-world learning problems well where the impor-
tance of relevant labels is often different. Label distribution
learning (LDL) is proposed to cover a certain number of la-
bels, representing the degree to which each label describes
the instance [Geng, 2016]. During the past decade, LDL
techniques have been widely employed to learn age estima-
tion [Xin et al., 2013; Gao et al., 2018], video parsing [Ling
and Geng, 2017], emotion classification [Yang et al., 2017b;
Zhou et al., 2016; Yang et al., 2017a], facial landmark de-
tection [Su and Geng, 2019], etc. However, most of the
existing datasets only contain single logical labels or multi-
labels rather than label distributions. It is difficult to obtain
the label distribution directly. A popular method to obtain
the label distribution is the vote strategy [Yang et al., 2017b;
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Liu et al., 2017]. The vote strategy is not only costly, but al-
so easily influenced by the annotators’ individual subjective
opinions, age, sex, occupation, social background, etc. This
fact encourages researchers to explore new methods to recov-
er label distributions.

Label enhancement (LE) [Xu et al., 2018] is the way to
recover the label distributions from the logical labels in the
training set leveraging the topological information in the fea-
ture space and the correlation among the labels. Some label
enhancement approaches, like fuzzy clustering [Gayar et al.,
2006], label propagation [Li et al., 2016] or manifold learn-
ing [Hou et al., 2016] are proposed to recover label distri-
butions. But the pioneer works ignore the importance of the
prior knowledge, which is widely existing in many applica-
tions. The prior knowledge indicates some natural properties
of the label distribution. For example, the people usually pre-
dict another person’s age in a way such as “around 25 years
old”, which indicates using not only 25, but also the neigh-
boring age to describe the appearance of the face. Among the
ages, 26 and 24 are closer to 25, 27 and 23 are farther away
25. The farther away from the chronological age, the less
the importance it is. In addition, psychology theories, like
Plutchik’s wheel [Plutchik, 2001] and Mikels’ wheel [Mikels
et al., 2005] can also be used as the prior knowledge. We
propose a reinforcement learning based method for label en-
hancement (RLLE) via the prior knowledge. Reinforcemen-
t learning is much more focused on goal-directed learning
[Sutton and Barto, 2018]. Given a goal, an agent can auto-
matically learn a policy to reach it. Coincidently, properties
implied in the prior knowledge can be defined as the goal.
And the target label distribution may not be obtained in one
step. It is a more natural way to obtain the label distribution
by sequential adjustment. Therefore, in this paper, label en-
hancement is formulated as a dynamic decision process that a
set of actions conducted on the label distribution to adjust the
description degrees automatically until it reaches the termi-
nal state, which is defined by the prior knowledge. RLLE can
automatically learn a policy to recover the label distribution
from the single logical label directly based only on the prior
knowledge. No additional information is needed anymore.

The proposed model defines instance as the environment.
The features of an instance and the current label distribution
are defined as the state. The action space includes {bigger,
smaller, constant}. The multi-dueling Q-learning algorithm
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Figure 1: Overview of the RLLE framework. The state includes the features of the instance and the current label distribution. A set of actions
is conducted on the description degrees of the label distribution respectively to adjust the label distribution at every step. The modified label
distribution will replace the one contained in the state after the adjustment process.

is designed to output several actions at every step. The mod-
el starts by analyzing the initial label distribution whose de-
scription degrees are all zero and then sequentially to adjust
the label distribution by the actions. Figure 1 illustrates sev-
eral steps of the dynamic decision process to generate a label
distribution. To evaluate the proposed method, we conduct
a comprehensive experimental evaluation on both facial age
estimation and image emotion classification datasets, obtain-
ing competitive results in terms of MAE and accuracy. Our
contributions are summarized as follows.

• We model the label enhancement as a dynamic decision
process and propose a reinforcement learning based al-
gorithm for label enhancement (RLLE). To the best of
our knowledge, this paper is the first to apply reinforce-
ment learning to label enhancement.

• We address the label enhancement for label distribution
learning problem by using the prior knowledge and de-
sign the multi-dueling Q-learning algorithm to train the
RLLE network.

• We conduct comprehensive experiments on two applica-
tions. The results show that our proposed approach not
only outperforms the other state-of-the-art methods, but
also achieves superior performance over the vote strate-
gy.

2 Related Work
Label distribution learning. Label distribution learning is
successfully applied to ambiguous tasks. According to the
methodology in [Geng, 2016], the nature way to label an in-
stance x is to assign a real number dyx, to each possible label
y, representing the degree to which y describes x. Without
of generality, assume that dyx ∈ [0, 1]. Further suppose that
the label set is complete, i.e. using all the labels in the set
can always fully describe the instance. Then,

∑
y d

y
x = 1.

Such dyx is called the description degree of y to x. The learn-

ing process on the instances labeled by label distributions is
therefore called label distribution learning (LDL). Problem
transfer (PT), algorithm adaption (AA), and specialized algo-
rithms (SA) strategies are contained in [Geng, 2016]. LDL
is successfully applied to age estimation [Xin et al., 2013;
Gao et al., 2018], crowd counting [Zhang et al., 2015], etc.
LDSVR [Geng and Hou, 2015] is proposed to predict the
crowd opinions about a movie. [Yi and Wu, 2019] propos-
es an end-to-end framework called PENCIL, which can up-
date both network parameters and label estimations as label
distribution to solve the problem of the noisy labels. DLDL
[Bin-Bin et al., 2017] is proposed to learn the label distri-
bution using deep neural network for tasks with discrete and
continuous labels. [Yang et al., 2017b] develops binary con-
ditional probability neural network (BCPNN) and augmented
conditional probability neural network (ACPNN) for predict-
ing sentiment distributions. [Yang et al., 2017a] demonstrates
a multi-task deep framework by jointly optimizing classifica-
tion and label distribution prediction. As shown above, LDL
applications are very broad. However, due to the difficulty of
obtaining the label distributions directly, many training sets
only contain simple logical labels rather than label distribu-
tions.

Label enhancement. Label enhancement (LE) [Xu et al.,
2018] is defined as recovering the label distributions from the
logical labels in the training set via leveraging the topolog-
ical information of the feature space and the correlation a-
mong the labels. The logical label vector of instance xi is
denoted by li = (ly1xi

, ly2xi
, ..., lycxi

)T , where c is the number of
possible labels. The description degree of y to x is denoted
by dyx, and the label distribution of xi is denoted by di =
(dy1xi

, dy2xi
, ..., dycxi

)T . Given a training set, S = {(xi, li)|l ≤
i ≤ n}, where li is the logical labels, LE recovers the label
distribution di of xi from the logical labels, and thus trans-
forms S into a LDL train set ε = {(xi, di)|l ≤ i ≤ n}. Fuzzy
clustering (FCM) [Gayar et al., 2006] is one of the label en-
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Figure 2: Two examples of the prior knowledge for age estimation
and image emotion classification. (a) The farther away from the
chronological age α, the lower its description degree is. (b) Emotion
pairs with 45 degrees have a positive relationship. More than 45
degrees between one emotion and the dominant votes emotion has
no/negative relationship.

hancement algorithms, which attempts to cluster feature vec-
tors by iteratively minimizing an objective function. [Li et
al., 2016] recovers the label distributions from logical labels
by using iterative label propagation. The topological struc-
ture of the feature space is considered for label enhancement
in [Hou et al., 2016], which is based on manifold learning.
[Jiang et al., 2006] demonstrates that a fuzzy support vector
machine can effectively reduce the effects of outliers when
solving the classification problem and uses the kernel func-
tion to calculate the center and radius. Generating the dis-
tribution with a univariate Gaussian function is widely used
in multiple applications [Xin et al., 2013; Gao et al., 2018;
Yang et al., 2017a]. More recently, the Graph Laplacian
Label Enhancement (GLLE) [Xu et al., 2018] is proposed
to generate label distributions. However, the related work-
s ignore recovering the label distribution by using the prior
knowledge, which always implies the important properties of
the label distribution. In this paper, we consider using pri-
or knowledge combining reinforcement learning algorithm to
solve the label enhancement problem.

3 Methodology
We define the properties implied in prior knowledge as the
target state. The agent can learn the policy to sequentially
adjust the description degrees of the label distribution auto-
matically to the target state.

3.1 The Definition of Prior Knowledge
The prior knowledge always implies important properties of
the label distribution. Figure 2 shows two examples of prior
knowledge for facial age and image emotion respectively. In
the age estimation application, due to the appearance simi-
larity of the neighboring ages, both the chronological age 25
and the neighboring ages 24 and 26 can be used to describe
the appearance of a 25-year-old face [Xin et al., 2013]. This
is consistent with the real-life experience that people usually
predict another person’s facial age in a way such as “around
25 years old”. The description importance of neighboring
ages is lower than the chronological age. Therefore, as shown
in Figure 2(a), the prior knowledge for facial age estimation
satisfies the following two properties: 1) The description de-
gree of α is the highest in the label distribution, which en-
sures the leading position of the chronological age; 2) the
description degree of other age decreases with the increase of
the distance away from α, which makes the age closer to the

chronological age contribute more to the class description.
In the adjustment process, if the generated label distribution
meets these two properties, it means that the terminal state
has been reached.

Psychological theories are widely adopted [Zhou et al.,
2016; Yang et al., 2017a]. The distance among emotions can
be defined by counting the number of steps from one emotion
to another according to Mikels’ wheel [Mikels et al., 2005].
In this paper, we use the label from the dominant votes as the
single emotion label ydominant label. The description degree
of the single emotion label is the highest. dyix > d

yj
x if the

distance between the i–th emotion and the dominant votes
label is smaller than the distance between the j–th emotion
and the dominant votes label. Inspired by [Zhou et al., 2016],
we reproduce a wheel of eight emotions’ relationship, which
is shown in Figure 2(b). In the reproduced emotion wheel, e-
motions sat at the opposite end have an opposite relationship,
while emotions next to each other are more closely related.
The correlation between the two emotions comes from psy-
chological research [Mikels et al., 2005]. We quantify the re-
lations between each pair of emotions based on the angle be-
tween them in the wheel. For example, emotion pairs with 45
degrees have a positive relationship, while emotion pairs with
90 degrees have no relationship. Emotions pairs with 180 de-
grees and 135 degrees have negative relationship. To reduce
the influence of the negative relationship, it would like to en-
force the description degree dyix = 0, if the angle between the
label yi and the dominant votes label ydominant label more
than 90 degrees.

From the above analysis, the prior knowledge can be de-
fined as the properties that the descriptive degree of the log-
ical label is the highest, the farther the other labels are from
the logical label, the lower the descriptive degree. The prior
knowledge can be applied to any applications that meet these
two properties. It is not limited to facial age estimation and
image emotion classification.

3.2 Label Enhancement as a Dynamic Decision
Process

We cast the problem of label enhancement as a dynamic deci-
sion process since this setting provides a formal framework to
model an agent that makes a sequence of decisions to adjust
the single logical labels into label distributions. The prop-
erties implied in the prior knowledge can be formulated as
the terminal state. A reinforcement learning agent can learn
a policy to reach the terminal state. Formally, the dynamic
decision process has a set of actions A, a set of states S, and
a reward function R. This section presents details of these
three components.

Actions. The set of actions A is composed of three actions
that can be applied to the description degrees of the label dis-
tribution respectively. These actions are illustrated in Figure
1, action to make bigger, smaller, constant. In this way, the
agent has three degrees of freedom to adjust the distribution
during any interaction with the environment. A label distri-
bution is defined as dx = {dy1x , dy2x , ..., dycx }, where c is the
number of the possible labels. Any of the adjustment actions
making a discrete change to the description degree by a factor



relative to its current value in the following way:

dyix = dyix + δ, dyix = dyix − δ, dyix = dyix , (1)

In early exploration experiments, we noticed that smaller val-
ues make the agent slower to reach the target distribution. We
set δ = 1 in our experiments. Since this value gives a good
trade-off between speed and adjustment accuracy. According
to the definition of label distribution learning,

∑
y d

y
x = 1.

Every adjustment step is followed by a normalization opera-
tion on the label distribution to satisfy the sum of description
degrees is 1, i.e

dyix =
ed

yi
x∑

c e
d
yi
x
, (2)

We do not set a trigger action like [Zhao et al., 2018], be-
cause we found that the trigger action introduced extra errors.
Unlike previous works, only one action is mapped from the s-
tate. In our work, a set of actions is selected at every step. The
number of selected actions equals to the number of labels.
State. The state st is defined as a tuple (f, dt), where f ∈ R
is the features of an instance, and dt ∈ Rc is the label distri-
bution at time step t. The feature vector f is extracted from a
pre-processing stage. We will illustrate the details in Section
4.1 and 4.2. The label distribution dt is defined as the result
after the last adjustment step. c is the number of labels. So dt
is a c-dimension vector. In our earlier experiments, inspired
by [Zhao et al., 2018], the history actions were included in
the state space. But the results were poor, so we removed the
history actions from the state space. After the decision of the
action at in the state st, the next state st+1 is obtained by the
state transition: st+1 = (f, dt+1). When the agent reaches
the terminal state, which is defined by the prior knowledge,
we finish the distribution adjustment process and obtain the
target label distribution.
Reward. The reward function r is proportional to the im-
provement that the agent makes to adjust the label distribution
after selecting a particular set of actions. The reward func-
tion is defined as r(st) since the agent obtains the reward by
the state s regardless of the action a. Similar to [Silver et al.,
2016], at the terminal step T , that is, the agent reaches the ter-
minal state, r(sT ) is assigned by 3. We give a larger award to
encourage RLLE to produce the label distribution with quick
convergence, which was shown effective in experiments.

3.3 Training with Multi-dueling Q-learning
The input of RLLE is the features of the instance and the
logical label. The output is the required label distribution
dx = {dy1x , dy2x , ..., dycx }. A set of actions is needed to recover
the label distribution. We propose multi-dueling Q-learning
named as MQ-learning that takes as input the state represen-
tation and gives as output the value of a set of actions based
on dueling Q-learning [Wang et al., 2015]. The multi-dueling
Q-learning outputs c actions. And every action is selected by
argmaxa∈AQ

∗(s, a). So c dueling Q functions are includ-
ed in MQ-learning. Every dueling Q function represents two
separate estimators: one for the state value function and one
for the state dependent action advantage function, while shar-
ing a common feature learning module. The multi-dueling
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Figure 3: The multi-dueling Q-learning network includes three fully
connected layers and outputs c dueling Q functions. Each dueling Q
function represents two separate estimators: one for the value func-
tion and one for the advantage function.

Q-learning structure is combined by the all dueling Q func-
tions jointly.

MQ(s, a) =

c∑
i

Qi(s, a; θ, φ, β), (3)

Q(s, a; θ, φ, β) = V (s; θ, β)+

(A(s, a; θ, φ)− 1

|A|
∑
a,

A(s, a,; θ, φ)),
(4)

where c indicates the number of labels. s represents the state,
a denotes the action, and θ, φ, β mean the parameters in the
feature learning module, advantage function and value func-
tion respectively.

Our network has three fully connected layers (fc1, fc2, fc3)
combined with the ReLU layers, fc1 and fc2 have 64 nodes,
fc3 has 32 nodes, as shown in Figure 3. In our task, the net-
work outputs c actions at every step, where c equals to the
number of labels. And every branch has two separate estima-
tors. One for the value function V (s; θ, β) and the other for
the advantage functionA(s, a; θ, φ). The c actions will be ap-
plied to the description degrees respectively. The update for
the network weights at the i–th iteration θi given transition
sample (s, a, r, s,) is as follows:

θi+1 = θi + α(r + γmaxa,MQ(s,, a,; θi)−
MQ(s, a; θi))5θi MQ(s, a; θi),

(5)

where a, represents the actions that can be taken at state s,, α
is the learning rate and γ is the discount factor.

4 Experiments
We evaluate our method on two applications, e.g. age esti-
mation and image emotion classification, with four datasets.
For both models, the learning rate is 0.001, the batch size is
64, the discount factor γ is 0.9. And the size of the priori-
tized replay is 5000. We use the ε–greedy method to select
the action for exploration. For every instance, the number of
episodes is 5. Though label enhancement is different from
the standard supervised learning. The setting of episodes can
make the agent reach the terminal state with a quick speed.



Algorithm Method Dataset
FG-NET MORPH

IIS

Single 6.27 6.35± 0.17
Gaussian 5.77 5.67± 0.15
Triangle 5.90 6.09± 0.14
RLLE 5.32 5.34± 0.04

BFGS Gaussian 6.70 4.78± 0.08
RLLE 5.92 3.94± 0.07

CPNN
Single 5.31 6.59± 0.31

Gaussian 4.76 4.87± 0.31
Triangle 5.07 4.91± 0.29
RLLE 4.58 4.33± 0.10

Table 1: MAEs of RLLE, Single label, Gaussian and Triangle func-
tions on the FG-NET and MORPH datasets.

4.1 Age Estimation
Implementation Details. Two datasets are used in this ap-
plication. The first one is the FG-NET Aging dataset [Lanitis
et al., 2002]. There are 1,002 face images from 82 subject-
s in this dataset. Each image is labeled by its chronological
age. The ages are distributed in a wide range from 0 to 69.
The second dataset is the much larger MORPH dataset [Ri-
canek and Tesafaye, 2006]. There are 55,132 face images
from more than 13,000 subjects in this dataset. The ages of
the face images range from 16 to 77.

An agent selects an action according to the state represen-
tation. As is illustrated in Section 3.2, the state st is defined
as a tuple (f, dt), where f ∈ R is the features of the instance.
For fair comparison, following [Xin et al., 2013], the fea-
ture extractor used for the FG-NET dataset is the appearance
model [Edwards et al., 1998]. The first 200 model param-
eters are used as the extracted features. The features used
for the MORPH dataset are the BIF [Guo et al., 2009]. The
dimensionality of the BIF vector is further reduced to 200
using marginal Fisher analysis [Yan et al., 2005]. In our ear-
lier experiment, we try to output actions for all ages at every
step, but we find that the actions farther from the chronolog-
ical age are noise. Therefore, 5 actions are output left and
right respectively, centered on the chronological age. The
features vector concatenates with the label distribution, re-
sulting in a state vector s ∈ R211 in the FG-NET and MORPH
datasets. We compare the proposed method RLLE against the
Gaussian and Triangle functions used in [Xin et al., 2013;
Gao et al., 2018]. The standard deviation of Gaussian func-
tion and the bottom length of Triangle function are recom-
mended by [Xin et al., 2013]. We use the label distribu-
tions generated by RLLE as the ground-truth to train the age
estimation model with three label distribution learning algo-
rithms, e.g. IIS, BFGS, and CPNN [Xin et al., 2013]. Ac-
cording to [Xin et al., 2013; Gao et al., 2018], mean absolute
error (MAE) is used to evaluate the performance.

Results. Table 1 shows the MAE of the all compared algo-
rithms. The standard deviations on the MORPH dataset are
also given in the table. We randomly select 80% for training
and the remaining 20% for testing. The results are report-
ed by running this process 10 times. As can be seen, the
overall performance of the RLLE method is better than that

of the Single, Gaussian and Triangle functions [Geng, 2016;
Xin et al., 2013; Gao et al., 2018]. Specially, RLLE performs
remarkably better than the baseline with the BFGS algorith-
m on the MORPH dataset, which reaches 3.94±0.07. There
are mainly two reasons for the good performance of RLLE.
First, since Gaussian and Triangle functions are just simple
distribution hypothesis. And there are many restrictions by
using Gaussian and Triangle functions. The prior knowl-
edge always implies natural properties. The using of the prior
knowledge makes it possible that reduces the restrictions and
learns more natural label distributions. Second, given the tar-
get properties, an agent of reinforcement learning can learn to
achieve the implied properties automatically. Sequential sets
of actions applied to adjust the description degrees of the la-
bel distribution by multi-dueling Q-learning is a more natural
way for label enhancement. The experimental results demon-
strate that the label distributions generated by RLLE are closer
to the natural truth label distributions.

4.2 Image Emotion Classification
Implementation Details. We execute our experiments on
two image emotion distribution datasets, Flickr LDL and
Twitter LDL [Yang et al., 2017b], which have multiple an-
notations. Flickr LDL and Twitter LDL contain 11,150 and
10,045 images respectively, whose labels fall in the typical
eight emotions space [Mikels et al., 2005] (i.e. amusement,
anger, contentment, awe, disgust, excitement, fear and sad-
ness). 11 viewers are hired to label the Flickr LDL dataset
with the eight commonly used emotions and 8 viewers are
hired to label Twitter LDL dataset. The votes from the work-
ers are integrated to generate the label distribution for each
image. We use the label from dominant votes as the single
emotion label to generate label distributions. We compare
the label distributions generated from our method with those
from vote strategy and the other label enhancement methods
to evaluate which result is more suitable for image emotion
classification task.

As suggested by [Yang et al., 2017b], deep features are ex-
tracted with VGGNET [Simonyan and Zisserman, 2014]. For
each image, we extract the last fully connected layer output
as the emotion representation and reduce it to 280 dimensions
using principle component analysis (PCA). Because the label
space contains eight labels, so the state vectors in Flickr LDL
and Twitter LDL result in s ∈ R288. Figure 2 shows the rela-
tionship among emotions, emotion pairs with 45 degrees have
a positive relationship, while emotion pairs with 90 degrees
have no relationship. Emotions pairs with 135 degrees and
180 degrees have a negative relationship. To reduce the influ-
ence of the negative relationship, we enforce the description
degrees of the label distribution generated by RLLE be ze-
ro if the angle between one emotion and the dominant votes
emotion is more than 45 degrees. We use the processed re-
sults as the ground-truth to train the image emotion classifi-
cation model via nine label distribution learning approaches,
including PT-bayes, PT-SVM, AA-KNN, AA-BP, IIS, BFGS,
CPNN [Xin et al., 2013], BCPNN, and ACPNN [Yang et al.,
2017b]. What needs to be pointed out in particular is that
BCPNN and ACPNN are specially designed for image emo-
tion classification with Flickr LDL and Twitter LDL dataset-



Dataset Method BP SVM KNN Bayes IIS BFGS CPNN BCPNN ACPNN Avg R

F LDL

Vote 52.0(4) 37.3(2) 61.4(1) 46.9(2) 57.9(1) 50.1(4) 57.7(1) 59.7(2) 60.0(2) 2.11
Gau c1 56.9(2) 35.4(4) 56.6(4) 25.8(4) 36.3(4) 63.7(2) 42.5(2) 55.8(4) 58.0(3) 3.22
Gau c2 57.7(3) 36.5(3) 58.1(2) 29.9(3) 37.0(3) 62.9(3) 42.3(3) 56.8(3) 57.3(4) 3.0
RLLE 58.6(1) 38.6(1) 58.0(3) 47.4(1) 52.2(2) 64.3(1) 55.3(2) 60.7(1) 62.5(1) 1.44

T LDL

Vote 72.4(2) 40.4(2) 72.6(1) 45.1(2) 70.3(2) 57.0(4) 70.0(3) 73.0(1) 74.2(1) 2.0
Gau c1 71.8(3) 36.0(3) 68.2(4) 27.6(4) 46.2(3) 74.4(2) 71.0(2) 70.7(3) 70.2(4) 3.11
Gau c2 70.7(4) 35.6(4) 70.6(3) 38.4(3) 45.8(4) 74.3(3) 64.7(4) 67.0(4) 70.4(3) 3.55
RLLE 72.4(1) 42.5(1) 70.9(2) 49.8(1) 72.2(1) 74.9(1) 71.7(1) 72.5(2) 72.6(2) 1.33

Table 2: Experimental Results of classification accuracy on two image emotion distribution datasets are shown. “Avg R” in the last column
means the average rank, which is used to indicate the overall performance of the classification accuracy. The accuracy is calculated by the
dominant votes emotional category from the label with the maximum description degree in the predicted label distribution. “Gau c1” and
“Gau c2” represent the two restrictive label enhancement methods as illustrated in Eq. (6) and Eq. (7). “Vote” denotes the vote strategy.

s. Besides, we compare the proposed method against the
state-of-the-art label enhancement approaches used in [Yang
et al., 2017a]. [Yang et al., 2017a] considers two constraints
to generate the label distributions. The first one is using the
Gaussian function to assign the description degrees of all the
emotion labels based on the distance to the dominant votes
label according to Mikels’ wheel. The description degrees of
the label distribution can be written as follows:

f(x, µ, σconf ) =
1√

2πσconf
exp(−|i− µ|

2

2σ2
conf

) +
ε

C
, (6)

where µ represents the label from the dominant votes, and
the σconf denotes the level of influence of each emotion label
determined by the confidence in the label annotations. And
the fixed parameters ε and C ensure that the sum of descrip-
tion degrees is normalized to 1. The second constraint as-
sumes that each affective image only evokes sentiment with
the same valence in the label distribution, either positive or
negative. So the description degrees of the label distribution
are changed to:

f(x, µ, σconf ) =

{
1√

2πσconf
exp(− |i−µ|

2

2σ2
conf

), i ∈ Yµ,
0, i /∈ Yµ,

(7)

where Yµ denotes all the emotion labels of the same va-
lence, either positive or negative. There exists label am-
biguous cases among the emotions. Most works adop-
t vote strategy to get label distributions [Yang et al., 2017b;
Geng and Hou, 2015]. Vote strategy is always considered
as the most objective method to solve the uncertainty of the
“ground-truth label” problem. We also compare our method
against the results from the vote strategy.
Results. The performance of our method and the other three
methods is shown in Table 2. For Flickr LDL and Twit-
ter LDL datasets, the accuracy is examined for evaluating
the performance of the results. For testing, the accuracy is
measured by the label with the maximum description degree
in the label distribution. As can been seen, for Fliker LDL
dataset, RLLE ranks 1st in 66.6% cases and 2nd in 22.2%
cases across all the evaluation accuracy measures. And vote
strategy ranks 1st in 33.3% cases and 2nd in 44.4% cases.
The other two Gaussian constraints have lower ranks. The
average rank of RLLE is 1.44, which achieves superior perfor-
mance over the vote strategy and the other label enhancement

methods. For Twitter LDL dataset, RLLE ranks 1st in 66.6%
cases and 2nd in 33.3% cases. And the vote strategy ranks 1st
in 33.3% and 2nd in 44.4% cases. For the two image emotion
distribution datasets, the average rank of our method is both
1st. We can conclude that our proposed method shows su-
periority in accuracy across all the two Gaussian constraints
and the vote strategy. The experimental results present that
using psychology theories as the prior knowledge is more
suitable for generating the label distributions than the vote
strategy and the other methods. There are mainly two rea-
sons for the good performance of RLLE. First, using prior
knowledge to recover the label distributions can highlight the
essential properties, which is implied in the prior knowledge.
Second, similar to the age estimation application, given the
target properties, sequential decision making process to ad-
just the description degrees of the label distribution is a more
suitable way for label enhancement.

5 Conclusion
This paper proposes the RLLE approach for label enhance-
ment via the prior knowledge. We cast the problem of la-
bel enhancement as a dynamic decision process and design
a multi-dueling Q-learning algorithm to train the proposed
model. Given the target state defined by the prior knowl-
edge, the agent can conduct a set of actions on the description
degrees to adjust the initial label distribution into the target
one. We conduct experiments on two scenarios. Comparing
with several state-of-the-art methods, our proposed approach
achieves the best performance. In the future, we will explore
more prior knowledge to achieve better performance for dif-
ferent applications.
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