
1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2916346, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XXX, NO. XXX, XXX 2017 1

LSTM-Based End-to-End Framework for
Biomedical Event Extraction

Xinyi Yu, Wenge Rong, Jingshuang Liu, Deyu Zhou, Yuanxin Ouyang, and Zhang Xiong,

Abstract—Biomedical event extraction plays an important role in the extraction of biological information from large-scale scientific
publications. However, most state-of-the-art systems separate this task into several steps, which leads to cascading errors. In addition,
it is complicated to generate features from syntactic and dependency analysis separately. Therefore, in this paper, we propose an
end-to-end model based on long short-term memory (LSTM) to optimize biomedical event extraction. Experimental results
demonstrate that our approach improves the performance of biomedical event extraction. We achieve average F1-scores of 59.68%,
58.23% and 57.39% on the BioNLP09, BioNLP11 and BioNLP13’s Genia event datasets, respectively. The experimental study has
shown our proposed model’s potential in biomedical event extraction.

Index Terms—Biomedical event extraction, end-to-end, Bi-LSTM, Tree-LSTM

F

1 INTRODUCTION

FOR several years, biology and information communi-
ties have been working towards the goal of extracting

complex information from large volumes of biological pub-
lications, especially information related to the behavior of
bio-molecules containing event information in a structured
form [1]. The structured descriptions of biomedical events
consisting of “event category,” “trigger,” and “argument”
[2]. Figure 1 presents a typical instance describing the
phosphorylation and negative regulation behaviors between
proteins “TRAF2” and “CD40.” The trigger for the phos-
phorylation event is “phosphorylation” and the argument
is “TRAF2.” The word “inhibits” indicates that a negative
regulation event is also included. These two events can be
annotated as follows: 1) Event1: Phosphorylation, Trigger:
phosphorylation, Theme1: TRF2; 2) Event2: Negative Regu-
lation, Trigger: inhibits, Theme1: CD40, Cause1: Event1.

hypothesized that the phosphorylation of TRAF2 inhibits the CD40.
[Protein] [Protein][Phosphorylation] [Neg-Reg]

Theme(E1) Theme(E2)

Cause(E2)

Fig. 1. An example of event extraction.

Recently, a lot of methods toward biology event extrac-
tion have been proposed and most of them are based on
three steps: 1) event trigger detection, 2) argument detection,
and 3) post-processing. Although this pipeline is easy to
implement, it might cause cascading errors [3]. For example,
if there is no trigger detected in the first step, the argument

• X. Yu, W. Rong, J. Liu, Y. Ouyang and Z. Xiong are with State Key
Laboratory of Software Development Environment, Beihang University,
Beijing 100191, China. They are also with School of Computer Science
and Engineering, Beihang University, Beijing 100191, China. E-mail:
{yuxinyi, w.rong, jingshuangl, xiongz}@buaa.edu.cn.

• D. Zhou is with School of Computer Science and Engineering, Southeast
University, Nanjing 210096, China. E-mail: d.zhou@seu.edu.cn

Manuscript received October 19, 2018; revised .

will never be detected and thus the entire event will be
missed. To address this problem, Poon and Vanderwende [4]
adopted a Markov logic network to create logically joint s-
tatements to extract triggers and arguments simultaneously.
However, their Markov logic network method does not sig-
nificantly outperform previous systems because the Markov
logic network cannot make good use of a large number of
features. Riedel and McCallum [5] proposed three combined
models with a prediction-based passive-aggressive (PA)
online learning algorithm to overcome this problem. The
first model performs joint trigger and argument extraction.
The second model captures correlations between events.
The third model ensures consistency between arguments
of the same event. Furthermore, to solve the problem of
one-hot encoding being unable to represent rich semantic
information, Li et al. [6] proposed a method that adopted
dual decomposition and rich features by integrating word
embedding to detect events jointly.

Although these methods have shown some potential,
certain challenges still remain: 1) Cascading errors are not
eliminated because these models still utilize at least three
steps that separate trigger detection and argument detection
into two individual models (without any common parame-
ters), as such errors emerging from the trigger detection step
will be passed to the argument detection step and eventually
affect the final result because models for trigger detection
and argument detection are trained separately with their
own parameters. 2) Few models can capture useful fea-
tures automatically because they are not good at handling
sequence information. 3) Representing words purely with
word embedding is not sufficient as semantic information
and dependency information should also be included [7].

In light of these challenges, we tried to adopt end-to-end
oriented approach to solve the challenges. Our motivation
is inspired by the study of Bhattacharyya et. al [8], who pro-
posed a novel approach for end-to-end relationship extrac-
tion by using a module based on a neural network. Similarly,
Miwa et al. presented an end-to-end neural model that can
capture both word sequence and dependency tree substruc-

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2916346, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XXX, NO. XXX, XXX 2017 2

Skip-gram model

PreprocessPubMed

Corpus

BioNLP

Corpus
Preprocess

Word

Embeddings

Pos-vectorsPos tag

Random

initialization

Training

data

Validation

data

Test

data

Event extraction model

c

LSTM LSTM LSTM LSTM LSTM

LSTM LSTM LSTM

backward

LSTM

Logit Logit Logit Logit Logit
Softmax

Layer

Mean PoolingLogistic

Regression

Trigger

Type

LSTM

LSTM

LSTM

c

LSTMLSTMLSTMLSTM

Forward

LSTM

Output

LSTM

LSTM

LSTM

Bi-LSTM Based

Trigger Detection

Sequence

inputs

Tree-LSTM Based

Dependency Analysis

� !!"�� !!" !!"

c-fos stimulate

Argument

detection

Argument

Dependency

Layer

Fig. 2. Overall Framework: Consists of Bi-LSTM, dependency layer, and Tree-LSTM

ture information by stacking bidirectional tree-structured
long short-term memory (LSTM) recurrent neural networks
(RNNs) with bidirectional sequential LSTM-RNNs to extract
entities and the relationships between them. This method
outperformed a state-of-the-art feature-based system on
end-to-end relationship extraction [9]. Based on this idea,
Li et. al [10] introduced a new model called DET-BLSTM
for event extraction. DET-BLSTM used a dynamic extended
tree (DET) instead of the original sentences as the input,
as well as constructed a bidirectional LSTM model to get
the different information from forwards and backwards.
However, DET-BLSTM was a single model and was applied
to a relatively simple event extraction task of BioNLP’16
Shared Task on Bacteria Biotope. Thus, it is still a challenge
to design a model which can achieve co-training between
two sub-models.

In this paper, we present an end-to-end model based
on bidirectional LSTM (Bi-LSTM) networks and tree LSTM
(Tree-LSTM) networks. Bi-LSTM has been proven to be ben-
eficial in other natural language processing tasks, such as
multi-feature extraction [11] and named entity recognition
[12]. Because of their superior ability to preserve sequence
information over time, Bi-LSTM networks have achieved
excellent results on a variety of sequence modeling tasks.
Regarding Tree-LSTM, it is a generalization of LSTMs into
tree-structured network topologies [13], which can simulta-
neously optimize both a composition function and parser
in order to eliminate the need for external parse trees [14].
Therefore, we first represent words as a linear sequence
using word embedding. We then build a Bi-LSTM model to
detect triggers. Next, we employ a bidirectional Tree-LSTM
to assist argument detection. Finally, in order to reduce the
risks caused by cascading errors, we implement an end-to-

end framework to train our model.
The main contributions of our work are as follows: 1)

We employ Bi-LSTM to extract words in order to represent
syntactic interpretations of sentence structure and preserve
sequence information over time. 2) We employ Tree-LSTM
to derive the long-term dependencies of text, instead of
local features. 3) The proposed end-to-end model makes it
possible to jointly perform trigger detection and argument
detection with shared parameters. 4) We employ word em-
bedding to better solve the semantic sparsity problem of
short text compared to the one-hot representation.

The remainder of this paper is organized as follows.
Related work is discussed in Section 2. The proposed end-
to-end model is detailed in Section 3. Section 4 shows the
details of our experimental study. Section 5 concludes this
paper and discusses future research directions.

2 RELATED WORK

Extracting information from unstructured text is one of the
most important goals in the biomedical event extraction
domain. Biomedical event extraction can be regarded as
the task of assigning labels to corresponding words and
determining the relationships between target pairs. Typical
examples of such processes have been analyzed in [1], where
events were expressed using three different types of entities:
T-entities, including event triggers (localization, binding,
etc.), protein references (protein), and references to other
entities (entity). Typically, the goal of extraction is to detect
the types of triggers and relationships between triggers and
arguments [39].

Traditionally, there are two types of approaches for this
task in the community, i.e., rule-based approaches and

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2916346, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XXX, NO. XXX, XXX 2017 3

machine learning based approaches [39]. Rule-based ap-
proaches generate a dictionary and patterns from annotat-
ed events and then apply the dictionary and patterns to
extract events from input text [40]. Therefore, because of
poor generalization ability resulting from stable rules, this
approach typically has high precision, but low recall during
prediction. Machine Learning(ML) approach is currently the
most common approach to biomedical event extraction. It
considers each task as a classification problem. The common
pipeline for event extraction includes event trigger iden-
tification and event argument detection. ML approaches,
especially those using SVMs, have achieved the best per-
formance on previous BioNLP-ST Genia event extraction
tasks [39]. For example, Björne et al.’s system adopted an
SVM for event extraction and extracted a wide array of
features based on dependency parsing graphs. Lever et
al. (VERSE Team) extracted semantic features and adopted
feature selection for SVM classification through the use of
a feature-based approach [41]. Despite the advantages of
ML approaches in terms of extracting rich features from text
[39], these approaches still have some drawbacks. One-hot
features are restricted by the issues of semantic gaps and
dimensionality disasters. Additionally, selecting an optimal
subset of features may require excessive experiments [10].
Furthermore, pipeline-based systems suffer from cascading
errors.

To overcome these issues, deep neural networks have
been considered as an effective method for event extraction
tasks [42]. Mehryary et al. proposed a deep-learning-based
approach for event extraction by combining several LSTM
networks through syntactic dependency graphs [43]. Li et al.
proposed a novel bidirectional LSTM-based RNN called the
dynamic extended tree for bacteria biotope event extraction
[10]

Although these methods have shown some promising
results, challenges still exist. Cascading errors are not elimi-
nated because these methods separate trigger detection and
argument detection into two individual models without any
common parameters shared. This means that the errors in
any subtask will negatively affect subsequent subtasks [8].
Therefore, if we can create an end-to-end model to perform
trigger detection and argument detection simultaneously, it
will be much easier to eliminate cascading errors. Recently,
joint-neural-network-based models have achieved superior
performance compared to separate predictive models in
event extraction tasks. For example, Li and Ji presented
an incremental joint framework to simultaneously extract
entity mentions and relationships using a structured percep-
tron combined with an efficient beam-search [44]. Similarly,
Pawar et al. proposed an approach that combines the ad-
vantages of neural networks and Markov logic networks to
jointly address all three subtasks of end-to-end relationship
extraction [8]. Additionally, Miwa et al. stacked bidirectional
tree-structured LSTM-RNNs on top of bidirectional sequen-
tial LSTM-RNNs to capture both word sequence and de-
pendency tree substructure information. This allowed their
model to jointly represent both entities and relationships
using shared parameters in a single model [9].

3 METHODOLOGY

In this study, we developed an end-to-end method based
on Bi-LSTM and Tree-LSTM to extract biomedical events.
The framework of our method is illustrated in Fig. 2. The
framework is composed of a Bi-LSTM layer and Tree-LSTM
layer. First, we preprocess the dataset for model training and
employ word embedding to represent the raw corpus. Next,
Bi-LSTM is utilized to predict trigger types and find trigger
words. We then represent the dependency information of
sentences by using Tree-LSTM which can synthesize other
semantic and syntactic information from the hidden layer
of Bi-LSTM. Finally, an argument is detected by Tree-LSTM
and the entire event extraction process is completed.

3.1 Word Embedding
The primary purpose of word embedding is to form a
lookup table to represent each word in a vocabulary with
dense, low dimensional, and real-valued vectors. Although
there are several methods available for word embedding, we
adopt Word2Vec, which is a standard tool used in various
natural language processing tasks, because of its excellent
model performance with a wide range of parameters and
hardware configurations [15]. In this study, we used a large
number of unlabeled texts to train the word embedding
model. First, we downloaded abstract texts from PubMed
to build a corpus. Then we split the abstracts into sentences
and tokenized each sentence into tokens. Finally, we used
Word2Vec [16] to process the sentences and derive vectors
via the skip-gram language model [17], as shown in Fig. 2.

3.2 Long Short-Term Memory
Using artificial neural networks in language modeling was
first proposed by Bengio et al. [18], who noted that archi-
tectures such as RNNs [19] can make use of information
in arbitrarily long sequences. This approach was further
investigated by Mikolov et al. [20], who demonstrated that
RNNs perform better than other methods in language mod-
els. However, in practice, this model is limited to looking
back only a few steps because of the vanishing gradient
problem. Therefore, a novel architecture called LSTM [21]
has been developed over recent years. LSTM has overcome
the vanishing gradient problem and solved complex chrono-
logical lag issues by using the qualities discussed previously
[22].

LSTM [22] is composed of a cell, input gate, output gate,
and forget gate. The input gate can ensure that information
added to the cell state is important and non-redundant. The
output gate can create a filter using the values of ht−1 and xt

(xt is the input for the current time step. ht−1 is the output
from the previous LSTM unit). Then, it can regulate the
values that are outputted from the aforementioned vector.
The forget gate can remove information that is no longer
required for the LSTM from the cell state via multiplication
with a filter. Each of the three gates can be considered as a
multi-layer neural network that can compute an activation
based on a weighted sum. The gates block or pass informa-
tion based on their own sets of weights. These weights are
adjusted through the recurrent network learning process.
Figure 3 illustrates how data flows through a memory cell
and is controlled by gates.

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2916346, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XXX, NO. XXX, XXX 2017 4

x

xx

+

tanh

tanh

Cell Cell

Fig. 3. LSTM cell [21]

Accoring to Fig. 3, the given inputs are multiplied by the
weight matrices and a bias is added. A sigmoid function,
which generates an output ranging from 0 to 1, is responsi-
ble for deciding which values to keep and which to discard.
ct−1 is the “memory” of the previous unit. Regarding the
outputs, ht is the output of the current network. ct is the
memory of the current unit.

3.3 Bi-LSTM-Based Trigger Detection
Trigger detection, which involves the identification of event
triggers and their types, is the core operation in biomedical
event extraction. In our model, we employ a Bi-LSTM net-
work [23] to detect triggers. Most previous studies treated
trigger detection as a separate classification problem and
trained support vector machines (SVMs) for each event type
based on a rich set of features. To avoid the complexity
of building a dictionary from training data and syntactic
dependence, we implement LSTM to learn the information
among sentences automatically during the training process.

A Bi-LSTM network [24] can access both preceding and
subsequent contexts. It aims to map every word in a dictio-
nary to a numerical vector such that the distance and rela-
tionship between vectors reflects the semantic information
between words. Therefore, in this step, inputs are composed
of vectors corresponding to the words in a sentence. During
training, the Bi-LSTM network is able to learn and improve
representations for words automatically [25]. A memory cell
can be implemented as follows:

it = σ(W (i)xt + U (i)ht−1 + b(i)) (1)

ft = σ(W (f)xt + U (f)ht−1 + b(f)) (2)

ot = σ(W (o)xt + U (o)ht−1 + b(o)) (3)

ut = tanh(W (u)xt + U (u)ht−1 + b(u)) (4)

ct = it ⊙ ut + f ⊙ ct−1 (5)

h⃗t = ot ⊙ tanh(ct) (6)

where σ is the logistic sigmoid function, and i, f , o, and c
are the input gate, forget gate, output gate, and cell vectors
respectively, all of which are of the same size as the hidden
vector h. xt, which denotes t-th word input, is composed
of word embedding and part of speech (POS) embeddings
(word embedding for POS tags) and can be represented as
[v(w)

t ;v(p)t].
Using Bi-LSTM will move inputs in two directions–from

past to future and from future to past. From the above
equations, the memory cells will produce a representation
sequence h⃗1, h⃗2, h⃗3, ..., h⃗n after the LSTM unit finishes

recurrent computation of all tokens from left to right. Then,

the counterpart
←
ht of h⃗t will be generated by another LSTM

unit computing in the opposite direction. The final repre-
sentation sequence h = {h1, h2, ...hn} is a concatenation of

h⃗t and
←
ht.

In our model, we first use Bi-LSTM to capture the
syntactic and semantic information in a sentence. We then
predict the trigger type by employing average pooling and
logistic regression layers following the Bi-LSTM network, as
illustrated in Fig. 2. To train a good classifier, we require a
wide range of features, such as word embeddings, POS tags,
and semantic information. Additionally, we were inspired
by the one-against-all [26] strategy to solve the problem that
one sentence may include more than one trigger of different
types. We construct one classifier for each class and each
classifier is trained to distinguish between samples of its
corresponding class and samples of all other classes. The
classifiers determine whether or not the current sentence
includes triggers belonging to one or more classes.

If the sentence does include triggers belong to certain
classes, we continue to extract trigger words from the sen-
tence, as shown in Figure 2. We employ a softmax after
the output layer of Bi-LSTM, to find which vector has
achieved the highest score. Then the corresponding input
of the selected vector can be considered as the trigger. This
process can be represented by the following equations:

p(yt = 1|ht) =
exp(Wht)

N∑
t=1

exp(Wht)

(7)

Here, W represents weight matrices and b represents
bias vectors.

3.4 Tree-LSTM-Based Argument Detection

In this part, Tree-LSTM is used to denote the type of rela-
tionship between each target pair. Target pair candidates for
argument detection are built using all possible combinations
of the trigger word and the remaining words in the sentence.
For example, we first detect the word “transcription” as
the trigger for the “Transcription” type. We then create
a target pair candidates for further analysis. Each target
pair is composed of “transcription” and another word from
the sentence, such as (“transcription”, “stimulates”), (“tran-
scription”, “c-fos”). If the detected triggers are wrong or
there is no relationship between the pair, this pair will be
labeled as the “Other” type. Otherwise, this pair can be
considered as the argument of the trigger word. Usually,
the argument exist between one trigger words and another
trigger words, or between trigger words and the Proper
noun of biomedical.

First, we create candidate pairs according to the trigger
word found in previous step. Then we build a depen-
dency tree layer by employing Tree-LSTM. According to
[13], features of nodes are mainly constructed based on the
shortest dependency path. Next, for each candidate pair, its
new vector can be represented by the combination of its
corresponding hidden layer in both Bi-LSTM network and
Tree-LSTM network. The softmax layer then receives the
target candidate vectors and will make a prediction.

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2916346, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XXX, NO. XXX, XXX 2017 5

As for dependency tree layer, it represents the rela-
tionships between two words in the dependency tree [13].
Typically, this layer largely focuses on the shortest depen-
dency path (SDP) between two entities. This method was
shown to be effective at learning sentence embeddings and
syntax jointly [14] as well as relations between words in
sentences [27], where the shortest dependency paths were
able to retain the most relevant information and eliminate
irrelevant words in a sentence.

In addition, in order to capture more information of the
target word pair, we were inspired to adopt bidirectional
Tree-LSTM to represent the relationships between words [9].
First, we employ bottom-up LSTM to propagate information
from the leaves to each of the nodes. We then use the nodes
at the top of the tree to propagate information from the
root via top-down LSTM. In this section, we refer to the
tree-structured LSTM-RNN proposed by Miwa et al. [9],
which overcomes the limitations of the two variants of tree-
structured LSTM-RNNs proposed by Tai et al.

Similar to standard LSTM units, each Tree-LSTM unit
(indexed by t) contains input and output gates it and ot,
respectively, a memory cell ct, and hidden state ht [28].
The difference is that Tree-LSTM units are dependent on the
states of potentially numerous child units for gating vectors
and updating memory cells. The Tree-LSTM used in this
study can defined as follows:

it = σ(W (i)xt +
∑

l∈C(t)

U
(i)
l htl + b(i)) (8)

ftl = σ(W (f)xt +
∑

l∈C(t)

U
(f)
l htl + b(f)) (9)

ot = σ(W (o)xt +
∑

l∈C(t)

U
(o)
l htl + b(o)) (10)

ut = tanh(W (u)xt +
∑

l∈C(t)

U
(u)
l htl + b(u)) (11)

ct = it ⊙ ut +
∑

l∈C(t)

ftl ⊙ ctl (12)

ht = ot ⊙ tanh(ct) (13)

where C(t) is the number of children of the t-th node,
subscript tl means t-th node and its l-th child and same-
type children share a common weight matrix U .

Intuitively, one can interpret each parameter matrix in
these equations as an encoding of the correlations between
the component vectors of the Tree-LSTM units, input xt, and
hidden states ht of a unit’s children. Additionally, because
the Tree-LSTM unit contains one forget gate ftl for each
child l, it can selectively incorporate information from each
child.

In order to detect argument based on the depen-
dency analysis, we represent the t-th candidate vec-
tor constructed by the dependency tree layer as odt =
[hroot

t ;htrigger
t ;hentity

t], where hroot
t is the vector from the

lowest common ancestor of the target pair t, which is
generated by bottom-up LSTM. htrigger

t denotes the hidden
state vector of the trigger word in terms of Tree-LSTM units
and hentity

t represents the vector of another entity in the

target pair candidate. The argument prediction process can
be defined as follows:

h
(d)
t = tanh(W (dh)odt+b(dh)) (14)

yt = softmax(W (dy)h
(d)
t +b(dy)) (15)

where W represents weight matrices and b represents bias
vectors.

3.5 End-to-End Model Training

In this research, we combine Tree-LSTM (corresponding to
argument detection) and Bi-LSTM (corresponding to trigger
detection), as the inputs of the argument detection are com-
posed of vectors from the Bi-LSTM layer and Tree-LSTM
layer.

In previous studies, researchers often constructed two
models to separate trigger detection and argument detection
with two independent loss functions. In contrast, we adopt
an end-to-end model with a single loss function in this
study. First, we apply a dropout operation to the embedding
layers and hidden layers in the model. We then choose a
training set to train the model and calculate the total loss
from trigger detection and argument detection. The total
loss can be defined as loss = l1+l2, where l1 is the loss from
trigger detection and l2 is the loss from argument detection.
The details of l1 and l2 can be represented by the following
equation:

l1 = −
N∑
j=1

[yj logŷj + (1− yj)log(1− ŷj)] (16)

l2 = −
N∑
j=1

Cj∑
i=1

yjilog(ŷji) (17)

where N is the length of a sentence; Cj represents the
number of children of each node; yj and yji are the actual
labels; ŷj and ŷji represent the prediction results.

Next, we adopt back propagation through time (BPTT)
and the Adam algorithm with gradient clipping, parameter
averaging, and L2-regularization to update the parameters
of the model1.

Additionally, we trained n models (n corresponds to
the number of event types in the study, where all datasets
for each model were the same) during our experiment to
solve the problem of one sentence potentially including an
arbitrary number of triggers for different types of events.
In this manner, a binary classifier for trigger type detection
was created for each of the event types. This classifier can
determine whether or not a sentence contains one of the
trigger types. If the sentence contains a trigger type, we
continue with the remaining steps to find specific triggers
and detect arguments. Otherwise, we continue to prediction
for the next sentence and repeat the previous steps until all
sentences in the current model have been tested.

1. The source code is publicly available at https://github.com/
deardelia/LSTM-based-end-to-end-for-biomedical-event-extraction.
git

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2916346, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XXX, NO. XXX, XXX 2017 6

4 EXPERIMENTAL STUDY

4.1 Experiment Configuration

In this study, two datasets were employed. The first is pre-
pared for training Word2Vec and is composed of unlabeled
abstract texts from a public database called PubMed, which
is approximately 6 GB in size, including biological publi-
cations from 2010 to 2017. These abstracts were prepared
for training Word2Vec because some rare biological terms
require more data to construct more accurate word embed-
dings. The other dataset is downloaded from BioNLP’09,
BioNLP’11 and BioNLP’13, which consist of training sets,
development sets, and test sets. Table 1 lists the event
types addressed in the BioNLP’09 and BioNLP’11 Genia
task. There is a modification of the event types defined
in BioNLP’13’s Genia task, which adds a new type called
”Protein modification” including ”Phosphorylation” type.
The details of training data has been showed in 2.

The raw corpus mined from PubMed can be processed
by Word2Vec to extract embeddings. Texts downloaded
from BioNLP’09, BioNLP’11 and BioNLP’13 must be pre-
processed before they can be sent into the training model.
First, we split them into sentences using the Genia Sentence
Splitter [29]. The tokenized sentences are then parsed using
the StanfordParser [30] and tagged using the Stanford-
postagger [31].

During the Bi-LSTM and Tree-LSTM process, we add
dropout [32] into the embedding layer and hidden layers
in the model to avoid overfitting. Dropout can be regarded
as a way to regularize neural network and the core idea
of dropout is to randomly set some of the neurons to zero
during the forward pass of network.

4.2 Evaluation Metrics and Baselines

The purpose of this task is to denote the event types,
the trigger words, types between arguments.In this study,
we adopted the Strict Equality2 evaluation criteria de-
fined by BioNLP Shared Task to judge whether we have
extracted correct biomedical events. to define the c. All
experiments were conducted on the corpora provided by
BioNLP’09 BioNLP’11 and BioNLP’13 and the statistics for
the BioNLP’11 and BioNLP’13 corpus are listed in Fig. 4 and
Fig. 5, respectively (task definition in BioNLP’09 remains the
same as BioNLP’11).

We adopted commonly used evaluation metrics in
BioNLP task for our study: precision (P), recall (R), and F1
score [1]. In this study, we compared our method to several
previously proposed and recently developed methods to
investigate our method’s efficiency. These baseline methods
are summarized below:

1) Björne et al. [33] used SVMs to detect event-defining
words, followed by the detection of their relationships. Their
method is characterized by heavy reliance on efficient, state-
of-the-art machine learning (ML) techniques and a wide
array of features derived from full dependency analysis of
each sentence.

2. http://www.nactem.ac.uk/tsujii/GENIA/SharedTask/
evaluation.shtml

Gene e
xpress

ion
Transc

ription

Protein
 catabo

lism
Phosph

orylatio
n

Localiz
ation Binding Regula

tion

Positiv
e regul

ation

Negati
ve regu

lation
0

10

20

30

40

50

Ra
tio
ns
 o
f e
ve
nt
 ty
pe
s(
%
)

20.17%

6.69%

1.28% 1.96% 3.08%

10.3%11.15%

33.05%

12.33%

Fig. 4. Statistics for BioNLP’11 Genia Corpus

Gene e
xpress

ion
Transc

ription

Protein
 catabo

lism

Protein
 modifi

cationLocaliz
ation Binding Regula

tion

Positiv
e regul

ation

Negati
ve regu

lation
0

10

20

30

40

50

Ra
tio

ns
 o
f e

ve
nt
 ty

pe
s(
%
)

25.88%

4.33%
0.82%

4.58%
1.56%

6.92%
10.61%

27.69%

17.61%

Fig. 5. Statistics for BioNLP’13 Genia Corpus

2) Riedel and McCallum [34] adopted a PA online learn-
ing algorithm to predict the confidence of triggers and argu-
ments, then extracted the events with the highest confidence
under certain constraints using dual decomposition.

3) Li et al. [6] adopted a combination of dual decomposi-
tion and rich features integrating word embedding to detect
events. Their model not only extracts rich features based on
dependency parsing, but can also jointly extract events to
alleviate cascading errors using dual decomposition.

4) Hakala et al. [35] tested the availability of the large
scale text mining resource EVEX to provide supporting
information for an existing event extraction system. The
extraction was carried out using a combination of the
BANNER named entity detector [36] and the TEES event
extraction system [33].

5) Björne and Salakoski [37] integrated their convolu-
tional neural network into the open source Turku Event
Extraction System (TEES) framework [33], which used a
linear representation of the input text and could encode the
information with various vector space embeddings.

4.3 Results and Discussion
We summarize our experimental setting as follows. The Bi-
LSTM used for trigger detection are built with 2 hidden
layers while the length of dependency tree has been set 20.
Besides, the batch size is set as 32 and epoch is set as 500.

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2916346, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XXX, NO. XXX, XXX 2017 7

TABLE 1
Event Types

Event type Corpora Core arguments Optional arguments
Gene expression GE, ID Theme (Protein, Regulon/Operon)

Transcription GE, ID Theme (Protein, Regulon/Operon)
Protein catabolism GE, ID Theme (Protein)
Phosphorylation GE, ID,EPI Theme (Protein) Site(Entity)

Localization GE, ID,BB Theme (Protein, Core entity), Bacterium(Bacterium)
Localization (Host, HostPart...) AtLocGE (Entity), ToLocGE(Entity)

Binding GE, ID Theme (Protein, Core entity) Site(Entity)
Regulation GE, ID Theme (Protein, Core entity, Event), Cause (Core entity, Event) Site (Entity), CSite (Entity)

Positive regulation GE, ID Theme (Protein, Core entity, Event), Cause (Core entity, Event) Site (Entity), CSite (Entity)
Negative regulation GE, ID Theme (Protein, Core entity, Event), Cause (Core entity, Event) Site (Entity), CSite (Entity)

TABLE 2
Details of training data

Corpus Number of documents Number of annotatioins
Genia Event (GE) in BioNLP 2009 800 Abstracts 9300 protein, 8,597 events
Genia Event (GE) in BioNLP 2011 1210 abstracts, 14 full-text 21616 protein, 24967 events
Genia Event (GE) in BioNLP 2013 34 full-text 12068 protein, 9364 events

For the sake of analysis, Table 3 compares our method with
Li et al.’s based on the development set of BioNLP’09 (as Li
et al. only provides the experimental results based on the
development set in BioNLP’09). The size of development
set and test set are similar to each other, however, there
is no gold annotation on test set. Then Table 4 lists the
experimental results of our method compared with other
baselines based on the test set of BioNLP’09. In both Table 3
and Table 4, SIMPLE represents all simple events including
“Gene expression”, “Transcription”, “Protein catabolism”
and “Localization”, BIND equals “Binding” event just as
mentioned above, REG refers to complex events which are
composed of “Regulation”, “Positive Regulation” and “Neg-
ative Regulation”, TOTAL means the overall performance
results.

TABLE 3
Detailed results based on the development set of BioNLP’09

Event Category Method Recall(%) Precision(%) F1(%)

SIMPLE Li et al.
Ours

76.74
83.59

83.59
83.67

80.02
83.62

BIND Li et al.
Ours

42.74
44.69

61.27
65.47

50.36
53.12

REG Li et al.
Ours

43.58
48.76

57.30
58.33

49.51
53.12

TOTAL Li et al.
Ours

53.83
55.09

67.18
68.18

59.77
60.94

From Table 3 and Table 4, it is found that in almost
all the classes, our method performs better in terms of
recall compared to the baseline methods. According to the
precision metric, we achieved better performance in most
categories, which indicates that our method can efficiently
extract biomedical events from text. In terms of F1 score,
which is a synthesized evaluation metric considering both
precision and recall, our model achieved better performance
compared to the three baseline methods on all types. In
particular, our method achieved satisfactory performance
for the “Binding” events, which are difficult to extract
completely because of uncertainty regarding the number
of themes. One reason for this result is that our method

is able to capture rich syntactic and semantic information
via Bi-LSTM and Tree-LSTM, and continuously optimize
the relationships between target pairs based on loss, which
can efficiently reduce incomplete event extractions. Im-
provement on simple events, such as “Gene expression,”
“Transcription,” “Phosphorylation,” and “Localization,” is
inconspicuous because these events are relatively easy to
extract because of their simple structure, which includes
only one theme and one trigger.

Although our method can improve complex event ex-
traction (including “Regulation,” “Positive Regulation,” and
“Negative Regulation”) to some degree, it is still difficult to
achieve an ideal result, because complex events sometimes
have themes or triggers spread across multiple sentences.
Additionally, the themes of complex events not only contain
proteins, or a specific domain or region of those proteins,
but may also contain triggers of other events.

To further prove the effectiveness of our method, we
compared it to the three baseline methods based on the test
set of BioNLP’11 and BioNLP’13. The experimental results
are listed in Table 5 and Table 6. The results also reveal that
the proposed method outperforms the baseline methods in
terms of recall, precision, and F1 Score.

In order to prove the efficiency of the Tree-LSTM, Table
7compare the results achieved by different methods used
in argument detection. The results show that Tree-LSTM is
good at dealing with argument detection and it can also cap-
ture more useful semantic information than the traditional
Bi-LSTM can.

Besides, it is also important to study the suitable hyper-
parameters because selecting optimal parameters for a neu-
ral network architecture can often make the difference be-
tween mediocre and state-of-the-art performance [38]. In
order to find proper values for the parameters used in
our model, we conducted experiments on several hyper-
parameters, including embedding dimensionality and learn-
ing rate.

For embedding dimensionality, we tested values of 50,
100, 150, 200, and 300 to find the optimal value for event
extraction. From the results listed in Table 8, one can see

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2916346, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XXX, NO. XXX, XXX 2017 8

TABLE 4
Detailed results based on the test set of BioNLP’09

Event Category Method Recall(%) Precision(%) F1(%)

Gene expression

Björne et al.
Björne and Salakoski
Riedel and McCallum

Ours

69.81
–
–

79.26

78.50
–
–

85.34

73.90
–
–

82.19

Transcription

Björne et al.
Björne and Salakoski
Riedel and McCallum

Ours

39.42
–
–

62.73

69.23
–
–

86.88

50.23
–
–

72.88

Protein catabolism

Björne et al.
Björne and Salakoski
Riedel and McCallum

Ours

42.86
–
–

77.66

66.67
–
–

85.61

52.17
–
–

81.44

Localization

Björne et al.
Björne and Salakoski
Riedel and McCallum

Ours

49.43
–
–

90.97

81.90
–
–

81.76

61.65
–
–

86.21

Binding

Björne et al.
Björne and Salakoski(2018)

Riedel and McCallum
Ours

40.46
–
–

44.69

49.82
–
–

65.47

44.41
–

48.0
53.12

Regulation

Björne et al.
Björne and Salakoski
Riedel and McCallum

Ours

25.43
–

45.33

38.14
–

61.33

30.52
–

52.13

Positive regulation

Björne et al.
Björne and Salakoski
Riedel and McCallum

Ours

38.76
–

41.47

48.72
–

62.16

43.17
–

49.75

Negative regulation

Björne et al.
Björne and Salakoski
Riedel and McCallum

Ours

35.36
–
–

45.36

43.46
–
–

59.12

38.99
–
–

51.34

SIMPLE

Björne et al.
Björne and Salakoski
Riedel and McCallum

Ours

64.21
–
–

80.36

77.45
–
–

83.67

70.21
–

72.6
81.98

BIND

Björne et al.
Björne and Salakoski
Riedel and McCallum

Ours

40.46
–
–

44.69

49.82
–
–

65.47

44.41
–

52.6
53.12

REG

Björne et al.
Björne and Salakoski
Riedel and McCallum

Ours

35.63
–

48.76

45.87
–

58.33

40.11
46.9
53.12

TOTAL

Björne et al.
Björne and Salakoski
Riedel and McCallum

Ours

46.73
49.34

–
54.33

58.48
69.87

–
66.12

51.95
57.84
57.4
59.68

that 200 is the best choice for embedding dimensionality.
For learning rate, which tells the optimizer how far to move
the weights in the direction of the gradient for a mini-batch,
the experimental results are illustrated in Fig. 6 and as a
result, we set learning rate to 0.001. Besides, the dropout
rate is set 0.5 because a dropout rate of 0.5 has been shown
to be effective in the Fig. 7.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a system to extract structured
events from biomedical publications. As previous models
continue to face challenges in terms of cascading errors
between trigger detection and argument detection that will
affect the final results, we proposed an end-to-end method
based on Bi-LSTM and Tree-LSTM to extract events. This
allows us to predict triggers and detect arguments using a
single model. Semantic and syntactic information between

TABLE 7
Comparing the efficiency of different argument detection methods

(based on the development set from BioNLP’09)

Event Category Method Recall(%) Precision(%) F1(%)

SIMPLE Bi-LSTM
Tree-LSTM

78.32
83.59

80.17
83.67

79.23
83.62

BIND Bi-LSTM
Tree-LSTM

40.33
44.69

62.98
65.47

49.17
53.12

REG Bi-LSTM
Tree-LSTM

43.07
48.76

52.99
58.33

47.52
53.12

TOTAL Bi-LSTM
Tree-LSTM

50.22
55.09

63.14
68.18

55.93
60.94

sentences can be learned automatically using Bi-LSTM. Tree-
LSTM is then able to detect relationships between target
pairs based on dependency analysis. In addition, word
embedding features are introduced at the beginning of the
model to improve performance. Furthermore, in order to to

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2916346, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XXX, NO. XXX, XXX 2017 9

TABLE 5
Detailed results based on the test set of BioNLP’11

Event Category Method Recall(%) Precision(%) F1(%)

SIMPLE

Björne et al.
Björne and Salakoski
Riedel and McCallum

Li et al.
Ours

68.22
–

67.01
73.47
69.87

76.47
–

81.40
83.30
88.57

73.50
–

78.40
78.07
81.98

BIND

Björne et al.
Björne and Salakoski
Riedel and McCallum

Li et al.
Ours

42.97
–

42.97
42.63
47.10

43.60
–

56.42
60.23
60.23

43.28
–

48.79
49.92
52.86

REG

Björne et al.
Björne and Salakoski
Riedel and McCallum

Li et al.
Ours

38.72
–

37.52
39.10
48.76

47.64
–

52.67
51.46
42.42

42.72
–

43.82
44.44
45.37

TOTAL

Björne et al.
Björne and Salakoski
Riedel and McCallum

Li et al.
Ours

49.56
49.94
48.49
51.25
53.07

57.65
69.45
64.08
64.40
64.51

53.30
58.10
55.20
57.08
58.23

TABLE 6
Detailed results based on the test set of BioNLP’13

Event Category Method Recall(%) Precision(%) F1(%)

SIMPLE

Björne and Salakoski
Hakala et al.

Li et al.
Ours

–
–

76.11
75.98

–
–

83.31
84.27

–
76.59
79.55
79.91

Protein modification

Björne and Salakoski
Hakala et al.

Li et al.
Ours

–
–

68.06
69.28

–
–

81.25
83.44

–
65.37
74.07
75.70

BIND

Björne and Salakoski
Hakala et al.

Li et al.
Ours

–
–

46.25
47.28

–
–

45.43
45.76

–
42.88
45.83
46.51

REG

Björne and Salakoski
Hakala et al.

Li et al.
Ours

–
–

34.21
38.97

–
–

47.81
46.31

–
38.41
39.88
42.32

TOTAL

Björne and Salakoski
Hakala et al.

Li et al.
Ours

65.78
58.03
47.96
56.12

44.38
45.44
59.71
58.73

53.30
50.97
53.19
57.39

TABLE 8
The influence of dimensionality on event extraction (based on the

development set from BioNLP’09)

Feature Trigger(F1)% Argument(F1)% Event(F1)%
Baseline50 72.48 66.97 58.03
Baseline100 72.57 67.31 58.97
Baseline150 72.65 67.43 59.76
Baseline200 73.02 67.64 60.75
Baseline300 72.55 67.59 59.34

implement an end-to-end framework, we make the hidden
layer from Bi-LSTM as well as the hidden layer from Tree-
LSTM serve as two input for argument detection, and then
we can train the model using an overall loss function and
reduce cascading errors to some degree.

Despite its promising performance, some limitations
exist in our model that deserve further consideration. As
shown in the experiments section, the extraction of com-
plex events remains a significant challenge. In addition,

an imbalanced data distribution among different types will
also affect final performance. Therefore, in the future, we
will attempt to apply co-reference resolution [45] in our
model to solve the issue of some complex events potentially
featuring themes or causes occurring in other sentences.
Finally, handling imbalanced datasets is another problem
we will attempt to resolve.

ACKNOWLEDGEMENTS

This work was partially supported by the State Key Labora-
tory of Software Development Environment of China (No.
SKLSDE-2017ZX-16) the National Natural Science Founda-
tion of China (No. 61772132).

REFERENCES

[1] J. Kim, T. Ohta, S. Pyysalo, Y. Kano, and J. Tsujii, “Overview of
BioNLP’09 shared task on event extraction,” in Proceedings of the
BioNLP 2009 Workshop Companion Volume for Shared Task, 2009, pp.
1–9.

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2916346, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XXX, NO. XXX, XXX 2017 10

Learning Rate

0

10

20

30

40

50

60

70

80

P
e

rf
o

rm
a

n
c
e

(F
%

)
Trigger

Fig. 6. The influence of learning rate on event extraction(in BioNLP09).

0.0 0.2 0.4 0.6 0.8 1.0
Dropout

0

20

40

60

80

100

Pe
rfo

rm
an

ce
(F
1%

)

BioNLP09
BioNLP11

Fig. 7. The influence of dropout value on event extraction.

[2] G. Gonzalez, T. Tahsin, B. C. Goodale, A. C. Greene, and C. S.
Greene, “Recent advances and emerging applications in text and
data mining for biomedical discovery,” Briefings in Bioinformatics,
vol. 17, no. 2, pp. 33–42, 2016.

[3] S. Riedel, H. Chun, T. Takagi, and J. Tsujii, “A Markov logic
approach to bio-molecular event extraction,” in Proceedings of the
BioNLP 2009 Workshop Companion Volume for Shared Task, 2009, pp.
41–49.

[4] H. Poon and L. Vanderwende, “Joint inference for knowledge ex-
traction from biomedical literature,” in Proceedings of 2010 Confer-
ence of the North American Chapter of the Association of Computational
Linguistics, 2010, pp. 813–821.

[5] S. Riedel and A. McCallum, “Fast and robust joint models for
biomedical event extraction,” in Proceedings of the 2011 Conference
on Empirical Methods in Natural Language Processing, 2011, pp. 1–12.

[6] L. Li, S. Liu, M. Qin, Y. Wang, and D. Huang, “Extracting biomedi-
cal event with dual decomposition integrating word embeddings,”
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
vol. 13, no. 4, pp. 669–677, 2016.

[7] A. Komninos and S. Manandhar, “Dependency based embeddings
for sentence classification tasks,” in Proceedings of 2016 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 2016, pp. 1490–1500.

[8] P. Bhattacharyya, S. Pawar, and G. K. Palshikar, “End-to-end
relation extraction using neural networks and Markov logic net-
works,” in Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics, 2017, pp. 818–827.

[9] M. Miwa and M. Bansal, “End-to-end relation extraction using
LSTMs on sequences and tree structures,” in Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics, 2016,
pp. 1105–1116.

[10] L. Li, J. Zheng, J. Wan, D. Huang, and X. Lin, “Biomedical
event extraction via long short term memory networks along
dynamic extended tree,” in IEEE International Conference on
Bioinformatics and Biomedicine, BIBM 2016, Shenzhen, China,
December 15-18, 2016, 2016, pp. 739–742. [Online]. Available:
https://doi.org/10.1109/BIBM.2016.7822612

[11] A. Zhao, L. Qi, J. Dong, and H. Yu, “Dual channel LSTM based
multi-feature extraction in gait for diagnosis of neurodegenerative
diseases,” Knowledge-Based Systems, vol. 145, pp. 91–97, 2018.

[12] J. P. C. Chiu and E. Nichols, “Named entity recognition with
bidirectional LSTM-CNNs,” Transactions of the Association for Com-
putational Linguistics, vol. 4, pp. 357–370, 2016.

[13] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic
representations from tree-structured long short-term memory net-
works,” in Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing of the Asian Federation of Natural
Language Processing, 2015, pp. 1556–1566.

[14] J. Maillard, S. Clark, and D. Yogatama, “Jointly learning sentence
embeddings and syntax with unsupervised Tree-LSTMs,” CoRR,
vol. abs/1705.09189, 2017.

[15] L. Ma and Y. Zhang, “Using word2vec to process big
text data,” in 2015 IEEE International Conference on Big
Data, Big Data 2015, Santa Clara, CA, USA, October 29 -
November 1, 2015, 2015, pp. 2895–2897. [Online]. Available:
https://doi.org/10.1109/BigData.2015.7364114

[16] K. W. Church, “Word2vec,” Natural Language Engineering, vol. 23,
no. 1, pp. 155–162, 2017.

[17] Y. Nie, W. Rong, Y. Zhang, Y. Ouyang, and Z. Xiong, “Embedding
assisted prediction architecture for event trigger identification,”
Journal of Bioinformatics and Computational Biology, vol. 13, no. 3,
2015.

[18] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural prob-
abilistic language model,” Journal of Machine Learning Research,
vol. 3, pp. 1137–1155, 2003.

[19] Y. Bengio, A. C. Courville, and P. Vincent, “Representation learn-
ing: A review and new perspectives,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[20] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur,
“Recurrent neural network based language model,” in Proceedings
of 11th Annual Conference of the International Speech Communication
Association, 2010, pp. 1045–1048.

[21] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[22] B. Cortez, B. Carrera, Y. Kim, and J. Jung, “An architecture for
emergency event prediction using LSTM recurrent neural net-
works,” Expert Systems with Applications, vol. 97, pp. 315–324, 2018.

[23] R. Ghaeini, S. A. Hasan, V. V. Datla, J. Liu, K. Lee, A. Qadir, Y. Ling,
A. Prakash, X. Z. Fern, and O. Farri, “Dr-bilstm: Dependent
reading bidirectional LSTM for natural language inference,” in
Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, 2018, pp. 1460–1469.

[24] Z. Huang, W. Xu, and K. Yu, “Bidirectional LSTM-CRF models for
sequence tagging,” CoRR, vol. abs/1508.01991, 2015.

[25] I. J. Unanue, E. Z. Borzeshi, and M. Piccardi, “Recurrent neural
networks with specialized word embeddings for health-domain
named-entity recognition,” Journal of Biomedical Informatics, vol. 76,
pp. 102–109, 2017.

[26] R. K. Eichelberger and V. S. Sheng, “Does one-against-all or
one-against-one improve the performance of multiclass classifi-
cations?” in Proceedings of the 27th AAAI Conference on Artificial
Intelligence, 2013, pp. 1609–1610.

[27] Y. Xu, L. Mou, G. Li, Y. Chen, H. Peng, and Z. Jin, “Classifying
relations via long short term memory networks along shortest de-
pendency paths,” in Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, 2015, pp. 1785–1794.

[28] A. Katiyar and C. Cardie, “Investigating LSTMs for joint extraction
of opinion entities and relations,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics, 2016, pp.
919–929.

[29] R. Satre, K. Yoshida, A. Yakushiji, Y. Miyao, Y. Matsubayashi, and
T. Ohta, “AKANE system: Protein-protein interaction pairs in the

1545-5963 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2916346, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XXX, NO. XXX, XXX 2017 11

BioCreAtIvE2 challenge, PPI-IPS subtask,” in Proceedings of the 2nd
BioCreative Challenge Evaluation Workshop, 2007, pp. 209–212.

[30] H. Xu, S. AbdelRahman, M. Jiang, J. Fan, and Y. Huang, “An initial
study of full parsing of clinical text using the stanford parser,” in
Proceedings of 2011 IEEE International Conference on Bioinformatics
and Biomedicine Workshops, 2011, pp. 607–614.

[31] K. Yordanova, “A simple model for improving the performance
of the stanford parser for action detection in textual instructions,”
in Proceedings of the 2017 International Conference Recent Advances in
Natural Language Processing, 2017, pp. 831–838.

[32] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting,” Journal of Machine Learning Research,
vol. 15, no. 1, pp. 1929–1958, 2014.

[33] J. Björne, J. Heimonen, F. Ginter, A. Airola, T. Pahikkala, and
T. Salakoski, “Extracting contextualized complex biological events
with rich graph-based feature sets,” Computational Intelligence,
vol. 27, no. 4, pp. 541–557, 2011.

[34] S. Riedel and A. McCallum, “Robust biomedical event extraction
with dual decomposition and minimal domain adaptation,” in
Proceedings of BioNLP Shared Task 2011 Workshop, 2011, pp. 46–50.

[35] K. Hakala, S. V. Landeghem, T. Salakoski, Y. V. de Peer, and
F. Ginter, “EVEX in ST’13: Application of a large-scale text mining
resource to event extraction and network construction,” in Proceed-
ings of the BioNLP Shared Task 2013 Workshop, 2013, pp. 26–34.

[36] R. Leaman and G. Gonzalez, “BANNER: an executable survey of
advances in biomedical named entity recognition,” in Biocomput-
ing 2008, Proceedings of the Pacific Symposium, Kohala Coast, Hawaii,
USA, 4-8 January 2008, 2008, pp. 652–663.

[37] J. Björne and T. Salakoski, “Biomedical event extraction using
convolutional neural networks and dependency parsing,” in Pro-
ceedings of the BioNLP 2018 workshop, Melbourne, Australia, July 19,
2018, 2018, pp. 98–108.

[38] N. Reimers and I. Gurevych, “Optimal hyperparameters for
deep LSTM-networks for sequence labeling tasks,” CoRR, vol.
abs/1707.06799, 2017.

[39] A. Wang, J. Wang, H. Lin, J. Zhang, Z. Yang, and K. Xu, “A
multiple distributed representation method based on neural net-
work for biomedical event extraction,” BMC Medical Informatics
and Decision Making, vol. 17, no. S-3, pp. 59–66, 2017.

[40] Q. Bui, D. Campos, E. M. van Mulligen, and J. A. Kors, “A fast
rule-based approach for biomedical event extraction,” in Proceed-
ings of the BioNLP Shared Task 2013 Workshop, 2013, pp. 104–108.

[41] J. Lever and S. J. Jones, “VERSE: event and relation extraction in
the BioNLP 2016 shared task,” in Proceedings of the 4th BioNLP
Shared Task Workshop, 2016, pp. 42–49.

[42] A. Wang, J. Wang, H. Lin, J. Zhang, Z. Yang, and K. Xu, “Biomedi-
cal event extraction based on distributed representation and deep
learning,” in Proceedings of 2016 IEEE International Conference on
Bioinformatics and Biomedicine, 2016, p. 775.

[43] F. Mehryary, J. Björne, S. Pyysalo, T. Salakoski, and F. Ginter,
“Deep learning with minimal training data: TurkuNLP entry in
the BioNLP shared task 2016,” in Proceedings of the 4th BioNLP
Shared Task Workshop, 2016, pp. 73–81.

[44] Q. Li and H. Ji, “Incremental joint extraction of entity mentions
and relations,” in Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics, 2014, pp. 402–412.

[45] K. B. Cohen, A. Lanfranchi, M. J. Choi, M. Bada, W. A. B. Jr.,
N. Panteleyeva, K. Verspoor, M. Palmer, and L. E. Hunter, “Coref-
erence annotation and resolution in the colorado richly annotated
full text (CRAFT) corpus of biomedical journal articles,” BMC
Bioinformatics, vol. 18, no. 1, pp. 372:1–372:14, 2017.

