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Abstract

During the last decade, biomedicine has witnessed a tremendous development. Large amounts of experimental and computational
biomedical data have been generated along with new discoveries, which are accompanied by an exponential increase in the number
of biomedical publications describing these discoveries. In the meantime, there has been a great interest with scientific communities
in text mining tools to find knowledge such as protein–protein interactions, which is most relevant and useful for specific analysis tasks.
This paper provides a outline of the various information extraction methods in biomedical domain, especially for discovery of protein–
protein interactions. It surveys methodologies involved in plain texts analyzing and processing, categorizes current work in biomedical
information extraction, and provides examples of these methods. Challenges in the field are also presented and possible solutions are
discussed.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In post genomic science, proteins are recognized as ele-
ments in complex protein interaction networks. Hence pro-
tein–protein interactions play a key role in various aspects
of the structural and functional organization of the cell.
Knowledge about them unveils the molecular mechanisms
of biological processes. However, most of this knowledge
hides in published articles, scientific journals, books and
technical reports. To date, more than 16 million citations
of such articles are available in the MEDLINE database
[1]. In parallel with these plain text information sources,
many databases, such as DIP [2], BIND [3], IntAct [4] and
STRING [5], have been built to store various types of infor-
mation about protein–protein interactions. Nevertheless,
data in these databases were mainly hand-curated to ensure
their correctness and thus limited the speed in transferring
textual information into searchable structure data. Retriev-
ing and mining such information from the literature is very
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complex due to the lack of formal structure in the natural-
language narrative in these documents. Thus, automatically
extracting information from biomedical text holds the prom-
ise of easily discovering large amounts of biological knowl-
edge in computer-accessible forms.

Many systems [6–10], such as EDGAR [11], BioRAT
[12], GeneWays [13] and so on, have been developed to
accomplish this goal, but with limited success. Table 1 lists
some popular online databases, systems, and tools relating
to the extraction of protein–protein interactions.

In general, to automatically extract protein–protein
interactions, a system needs to consist of three to four
major modules [13,14], which is illustrated in Fig. 1.

• Zoning module. It splits documents into basic building
blocks for later analysis. Typical building blocks are
phrases, sentences, and paragraphs. In special cases,
higher-level building blocks such as sections or chapters
may be chosen. Ding et al. [15] compared the results of
employing different text units such as phrases, sentences,
and abstracts from MEDLINE to mine interactions
between biochemical entities based on co-occurrences.
Experimental results showed that abstracts, sentences,
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Table 1
Online databases, systems, tools relating to the extraction of protein–protein interactions

Description URL

Online databases storing protein–protein interactions

BIND Biomolecular Interaction Network Database contains over 200,000 human-curated interactions www.bind.ca
DIP Database of Interacting Proteins catalogs experimentally determined interactions between

proteins. Until now, it contains 56,186 interactions, combining information from various sources
to construct a single, stable set of protein–protein interactions

dip.doe-mbi.ucla.edu

HPRD The Human Protein Reference Database [21] contains interaction networks for each protein in
the human proteome. All the information in HPRD has been manually extracted from the
literature by expert biologists who read, interpret and analyze the published articles

www.hprd.org

HPID Human Protein Interaction Database integrates the protein interactions in BIND, DIP and
HPRD

www.hpid.org

IntAct IntAct consists of an open source database and several analysis tools for protein interaction
data. It now contains more than 150,000 curated binary molecular interactions

www.ebi.ac.uk/intact

MINT Molecular INTeraction database [22] is a database storing interactions between biological
molecules. It focuses on experimentally verified protein interactions with special emphasis on
proteomes from mammalian organisms

mint.bio.uniroma2.it/mint

STRING STRING, a database consisting of known and predicted protein–protein interactions,
quantitatively integrates interaction data from several sources for a large number of organisms.
It currently contains 1,513,782 proteins in 373 species

string.embl.de

Online protein–protein interaction information extraction systems

BioRAT BioRAT is a search engine and information extraction tool for biological research bioinf.cs.ucl.ac.uk/biorat
GeneWays GeneWays is a system for automatically extracting, analyzing, visualizing and integrating

molecular pathway data from the literature. It focuses on interactions between molecular
substances and actions, providing a graphical consensus view on these collected information

geneways.genomecenter.columbia.
edu

MedScan MedScan is a commercial system based on natural language processing technology for automatic
extraction of biological facts from scientific literature such as MEDLINE abstracts, and internal
text documents

www.ariadnegenomics.com/
products/medscan.html

Online tools for biomedical literature mining

CBioC Collaborative Bio Curation [23] uses automatic text extraction as a starting point to initialize the
interaction database. After that, researchers in biomedical domain contribute to the curation
process by subsequent edits

cbioc.eas.asu.edu

Chilibot Chilibot [24] is a search software for MEDLINE literature database to rapidly identify
relationships between genes, proteins, or any keywords that the user might be interested

www.chilibot.net

GoPubMed GoPubMed [25] is a search engineer that allows users to explore PubMed search results with the
Gene Ontology (GO), a hierarchically structured vocabulary for molecular biology

www.gopubmed.org

iHOP Information Hyperlinked over Proteins [26] constructs a gene network by converting the
information in MEDLINE into one navigable resource using genes and proteins as hyperlinks
between sentences and abstracts

www.ihop-net.org/UniPub/iHOP

iProLINK iProLINK is a resource to facilitate text mining in the area of literature-based database curation,
named entity recognition, and protein ontology development. It can be utilized by
computational and biomedical researchers to explore the literature information on proteins and
their features or properties

pir.georgetown.edu/iprolink

PreBIND PreBIND is a tool helping researchers locate biomolecular interaction information in the
scientific literature. It identifies papers describing interactions using a support vector machine

prebind.bind.ca

PubGene PubGene is constructed to identify the relationships between genes and proteins, diseases, cell
processes, and so on based on their co-occurrences in the abstracts of scientific papers, their
sequence homology, and statistical probability of their co-occurrences

www.pubgene.org

Whatizit Whatizit is a text processing tool that can identify molecular biology terms and linking them to
publicly available databases. Identified terms are wrapped with XML tags that carry additional
information, such as the primary keys to the databases where all the relevant information is kept.
It is also a MEDLINE abstracts search engine

www.ebi.ac.uk/webservices/whatizit/
info.jsf
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and phases all can produce comparative extraction results.
However, with respect to effectiveness, sentences are signif-
icantly better than phrases and are about the same as
abstracts.

• Protein name recognition module. Before the extraction
of protein–protein interactions, it is crucial to facilitate
the identification of protein names, which still remains
a challenging problem [16]. Although experimental
results of high recall and precision rates have been
reported, several obstacles to further development are
encountered while tagging protein names for the con-
junctive natural of the names [17]. Chen et al. [18] and
Leser et al. [19] provided a quantitative overview of
the cause of gene-name ambiguity, and suggested what
researchers can do to minimize this problem.

• Protein–protein interaction extraction module. As the
retrieval of protein–protein interactions has attracted
much attention in the field of biomedical information
extraction, plenty of approaches have been proposed.
The solutions range from simple statistical methods rely-
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Fig. 1. A general architecture of an information extraction system for protein–protein interactions.
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ing on co-occurrences of genes or proteins to methods
employing a deep syntactical or semantical analysis.

• Visualization module. This module is not as crucial
as the aforementioned three modules, but it provides
a friendly interface for users to delve into the gener-
ated knowledge [20]. Moreover, it allows users to
interact with the system for ease of updating the sys-
tem’s knowledge base and eventually improve its
performance.

To evaluate the performance of an information extrac-
tion system, normally recall and precision values are mea-
sured. Suppose a test dataset has T positive information
(for example, protein–protein interactions), and an infor-
mation extraction system can extract I ‘‘positive’’ informa-
tion. In I, only some information is really positive which we
denote as B and the remaining information is negative,
however the system falsely extracts as positive which we
denote as C. In T, some information is not extracted by
the system which we denote as A. The relationships of A,
B, and C are illustrated in Fig. 2.

Based on the above definitions, recall and precision can
be defined as:

Precision ¼ kBk
kBk þ kCk ð1Þ

Recall ¼ kBk
kAk þ kBk ð2Þ

For example, a test dataset has 10 protein–protein interac-
tions ðkTk ¼ 10Þ. An information extracting system extracts
11 protein–protein interactions ðkIk ¼ 11Þ. In I, only 6 pro-
tein–protein interactions (B) can be found in T, which are
considered as true positive (TP). The remaining 5 protein–
T = A + B is the positive information in test  
data which need s   to be extracted . 
I = B + C is the extracted results including  
positive and negative information . 

A B C 

Fig. 2. Venn diagram of information extraction results.
protein interaction (C) can not be found in T, which are con-
sidered as false positive (FP). In T, 4 protein–protein interac-
tions (A) are not extracted by the system, which are
considered as false negative (FN). Thus, the recall of the sys-
tem is 6=ð6þ 4Þ ¼ 60% and the precision is
6=ð6þ 5Þ ¼ 54:5%.

Obviously, an ideal information extracting system
should fulfill kAk ! 0; kCk ! 0. To reflect these two condi-
tions, F-measure is defined by the harmonic (weighted)
average of precision and recall [27] as:

F b ¼
ð1þ b2Þ � Precision �Recall

b2 � PrecisionþRecall

¼ ð1þ b2ÞkBk
ð1þ b2ÞkBk þ b2kAk þ kCk

ð3Þ

where b indicates a relative weight of precision. For further
details of the state of the science in text mining evaluations,
please refer to Hersh [28].

In this paper, we focus on the protein–protein inter-
action extraction module and provide a brief survey and
classification on the developed methodologies. In gen-
eral, the methods proposed so far rely on the techniques
from one or more areas [29–32] including Information
Retrieval (IR) [27,33], Machine Learning (ML) [34,35],
Natural Language Processing (NLP) [36–38], Informa-
tion Extraction (IE) [39–42] and Text Mining [43–48].
Earlier work focused on limited linguistic context and
relied on word co-occurrences and pattern matching.
Later computational linguistic techniques that could
handle relations in complex sentences were employed.
The surveyed work illustrates the progress of the field
and shows the increasing complexity of the proposed
methodologies.

The rest of the paper is organized as follows. The next
section presents a survey of various methods applied in
automatical extraction of protein–protein interactions
from the literature. In succession, challenges are identified
and possible solutions are suggested.

2. Methodologies

This section presents a brief discussion on the existing
techniques and methods for extracting protein–protein
interactions. In general, current approaches can be divided
into three categories:
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• Computational linguistics-based methods. To discover
knowledge from unstructured text, it is natural to
employ computational linguistics and philosophy, such
as syntactic parsing or semantic parsing to analyze sen-
tence structures. Methods of this category define gram-
mars to describe sentence structures and use parsers to
extract syntactic information and internal dependencies
within individual sentences. Approaches in this category
can be applied to different knowledge domains after
being carefully tuned to the specific problems. But, there
is still no guarantee that the performance in the field of
biomedicine can achieve comparable performance after
tuning. Until recently, methods based on computational
linguistics still could not generate satisfactory results.

• Rule-based methods. Rule-based approaches define a set
of rules for possible textual relationships, called patterns,
which encode similar structures in expressing relation-
ships. When combined with statistical methods, scoring
schemes depending on the occurrences of patterns to
describe the confidence of the relationship are normally
used. Similar to computational linguistics methods,
rule-based approaches can make use of syntactic informa-
tion to achieve better performance, although it can also
work without prior parsing and tagging of the text.

• Machine learning and statistical methods. Machine learn-
ing refers to the ability of a machine to learn from experi-
ence to extract knowledge from data corpora. As opposed
to the aforementioned two categories that need laborious
effort to define a set of rules or grammars, machine learn-
ing techniques are able to extract protein–protein interac-
However ,  unlike another tumor suppressor protein ,  p 53 ,  Rb di
transcription ,  suggesting that Rb specifically interacts with IE 2

However / RB  , / ,  unlike / IN another / DT tumor / NN suppressor / N
NN )   did / VBD not / RB have / VB any / DT significant / JJ effect / N
suggesting / VBG that / IN  PROTEIN ( Rb / NN )   specifically / RB in
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Fig. 3. General dataflow of information extractio
tion patterns without human intervention. Statistical
approaches are based on word occurrences in a large text
corpus. Significant features or patterns are detected and
used to classify the abstracts or sentences containing pro-
tein–protein interactions, and characterize the corre-
sponding relations among genes or proteins.

It has to be mentioned that many existing systems in fact
adopt a hybrid approach for better performance by com-
bining methods from two or more of the aforementioned
categories.

Fig. 3 illustrates the process of information extraction
on an example sentence by employing the typical methods
in the above three categories.

2.1. Computational linguistics-based methods

In general, computational linguistics-based methods
employ linguistic technology to grasp syntactic structures
or semantic meanings from sentences.

Techniques for analyzing a sentence and determining its
structure in computational linguistics are called parsing
techniques. Parsing the corpus firstly to obtain the mor-
phological and syntactic information for each sentence is
extremely important, and probably only after that, it would
be possible to fulfill sophisticated tasks such as identifying
the relationship between proteins and gene products in a
fully automatic way. However, it is well-known that pars-
ing unrestricted texts, such as those in the biomedical
domain, is extremely difficult.
d not have any significant effect on basal levels of  
  rather  ... 
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1 In linguistics and computer science, a CFG is a formal grammar in
which every production rule is of the form V ! w where V is a non-terminal
symbol and w is a string consisting of terminals and/or non-terminals. The
term ‘‘context-free’’ comes from the fact that the non-terminal V can always
be replaced by w, regardless of the context in which it occurs. Context-free
grammars are powerful to describe the structure of sentences, and also
simple enough to allow the construction of efficient parsing.
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The methods in this category can be further divided into
two types, based on the complexity of the linguistics meth-
ods, as shallow (or partial) parsing or deep (or full) pars-
ing. Shallow parsing techniques aim to recover syntactic
information efficiently and reliably from unrestricted text,
by sacrificing completeness and depth of analysis, while
deep parsing techniques analyze the entire sentence struc-
ture, which normally achieve better performance but with
increased computational complexity.

2.1.1. Shallow parsing approaches

Shallow parsers [49–53] perform partial decomposition of
a sentence structure. They first break sentences into none-
overlapping chunks, then extract local dependencies among
chunks without reconstructing the structure of an entire sen-
tence. Sekimizu et al. used shallow parser, EngCG, to generate
three kinds of tags, such as syntactic, morphological, and
boundary tags [49]. Based on the tagging results, subjects
and objects were recognized for the most frequently used
verbs in a collection of abstracts which were believed to
express the interactions between proteins, genes. Thomas
et al. [51] modified a preexisting parser based on the cascaded
finite state automata (FSA). Predefined templates were then
filled with information about protein interactions based on
the parsing results for three verbs: interact with, associate with,
bind to. Pustejovsky et al. [52] targeted ‘‘inhibit’’ relations in
the text and also built an FSA to recognize these relations.
Leroy et al. [53] used a shallow parser to automatically capture
the relationships between noun phrases in free text. The shal-
low parser is based on four FSAs to structure the relations
between individual entities and model generic relations not
limited to specific words. By elaborate design, the parser can
also recognize coordinating conjunctions and capture nega-
tion in texts, a feature usually ignored by others. The precision
and recall rates reported for shallow parsing approaches are
estimated at 50–80% and 30–70%, respectively.

2.1.1.1. An example. To delve into the mechanism of shal-
low parsing, the method reported in [53] is used to illustrate
the process of detecting relations from free text.

Consider that prepositions indicate different types of rela-
tions between phases and can be distinguished based on their
operative classes, the parser is based on four cascaded FSAs
with one FSA for basic sentences and the other three FSAs
dealing with the three top highly occurred prepositions (by,

of, in). Fig. 4 depicts an overview of the four FSAs.
The FSA for Basic Sentences (BS-FSA) is used to model

short basic sentence containing minimally two nouns or
noun phrases and a verb. The structure of BS-FSA and
an example is given in Fig. 4a.

The FSA for the preposition ‘‘of’’ (OF-FSA) deals with
structures surrounding one or two ‘‘of’s’’. It can handle
two subtypes of patterns. The simple pattern involves noun
phrases only, such as the example 1) shown in Fig. 4b-1.
The complex pattern contains nominalizations (turning a
verb or an adjective into a noun), such as the example 2)
shown in Fig. 4b-2.
The FSA dealing with the preposition ‘‘by’’ (BY-FSA)
can stand alone or can be cascaded with the OF-FSA.
When on its own, the FSA requires the presence of a verb
and two noun phrase or nominalizations, such as the exam-
ple shown in Fig. 4c.

The FSA dealing with the preposition ‘‘in’’ (IN-FSA)
can stand alone when there is a verb available, or it can
be combined with the OF- or BY-FSA. The structure of
the IN-FSA and an example is given in Fig. 4d.

When the parser reaches an end state successfully, the ori-
ginal relation is extracted to fill in the parser relation template
which contains up to five elements, such as relation negation,
left-hand side elements, connector modifier, connector, and
right-hand side elements. For example, the relation extracted
from the abstract title ‘‘Regulation of E2F1 activity by acetyla-
tion’’, is ‘‘acetylation (left-hand side elements), regulates (con-
nector), E2F1 (right-hand side elements)’’.

Obviously, shallow parsers perform well for capturing
relatively simple binary relationships between entities in a
sentence, but fail to recognize more complex relationships
expressed in various coordinating and relational clauses.
For sentences containing complex relations between three
or more entities, such approaches usually yield erroneous
results. Approaches based on full-sentence parsing tend
to be more precise.
2.1.2. Deep parsing approaches

Systems based on deep parsing deal with the structure of
an entire sentence and therefore are potentially more accu-
rate. Variations of the deep parsing-based approaches have
been proposed [10,54–63]. Based on the way of construct-
ing grammars, deep parsing-based approaches can be
divided into two types: rationalist methods and empiricist
methods. Rational methods define grammars by manual
efforts, while empiricist methods automatically generate
the grammar by some observations.
2.1.2.1. Rationalist methods. Yakushiji et al. [57] used a
general full parser with grammar for biomedical domain
to extract interaction events by filling sentences into slots
of semantic frames. Information extraction itself is done
using pattern matching on the canonical structure. Park
et al. [56] proposed bidirectional incremental parsing with
combinatory categorial grammar (CCG). This method first
localized target verbs, and then scanned the left and right
neighborhood of the verb respectively. The lexical and
grammatical rules of CCG are more complicated than
those of a general context-free grammar (CFG)1. The recall
and precision rate of the system were reported to be 48%
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and 80%. Temkin and Gilder [60] introduced a lexical ana-
lyzer and a CFG to extract protein, gene and small mole-
cule interactions with a recall rate of 63.9% and precision
rate of 70.2%. Ding et al. [61] investigated link grammar
parsing for extracting biochemical interactions. It can han-
dle many syntactic structures and is computationally rela-
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tively efficient. A better overall performance was achieved
compared to those biomedical term co-occurrence based
methods. Ahmed et al. [10] split complex sentences into
simple clausal structures made up of syntactic roles based
on a link grammar. Complete interactions were then
extracted by analyzing the matching contents of syntactic
roles and their linguistically significant combinations. In
GENIES [58], a parser and a semantic grammar consisting
of a large set of nested semantic patterns (incorporating
some syntactic knowledge) are used. Unlike other systems,
GENIES is capable of extracting a wide variety of different
relations between biological molecules as well as nested
chains of relations. However, the downside of the semantic
grammar-based systems such as GENIES is that they may
require complete redesign of the grammar in order to be
tuned for used in different domain.

2.1.2.2. An example. The process of using deep parsing based
on rationalist methods to detect protein–protein interactions
can be illustrated by the method proposed in [60], which
employs a predefined context-free grammar (CFG).
1 S  :=  Interactions

2
Interactions  :=  MolExpr
Interactions | MolExpr 

3 MolExpr  :=  Assignment|Relationshiop

4
Assignment  :=  Expr(Negator) ?  KEY
(Relationshiop _ Conj ) ? Expr  ( TRANSITIVE
KEY Expr)* Eoc

5 Eoc  :=  EOC

... ...

10
Expr  := ( Negator) ?  Molecular  (( Negator? )  
Molecule)*

11
Molecule  :=  MOL | MOL _ LONG   |  
MOL _ SHORT 

ARF binds 
targeting p 5
activity of M
and p 53 . 

ARFMOL _ SHO

prevents MD
for degrada
MDM 2 MOL _

MOL _ SHORT  a

Tags Discription

EOC End - of - sentence 

MOL
Entity names with their associated 
abbreviated names

MOL _ LONG Entity name with long form

MOL _ SHORT Entity name with abbreviated form

NEGATOR Words negating sentences

KEY Words for interactions

Expr(Negator) ?  KEY  ( R

(Negator) ?  Molecular  (( Negator? )  Molecule)*

MOL _ SHORT                          KEY         

ARF Interact

10

11

CFG rules

Results

... ...

Fig. 5. A parsing exa
To develop a concise set of grammar production of rules
allowing for the detection of protein, gene, and small mol-
ecule (PGSM) interactions, a large corpus of 500 non-topic
specific scientific abstracts pulled from PubMed [1] con-
taining various representations of interaction data in
unstructured text is manually analyzed. Biochemists read
and highlighted the abstracts for relevant sentences
describing interactions that were then used to derive the
production rules. Fig. 5 shows the parsing process using
the defined CFG.
2.1.2.3. Empiricist methods. Many empiricist methods
[59,62] have been proposed to automatically generate the
language model to mimic the features of unstructured sen-
tences. For example, Seymore et al. [54] used Hidden Mar-
kov Model (HMM) for extracting important fields from
the headers of computer science research papers. Following
the trend, Ray and Craven [55] applied HMM to the bio-
medical domain to describe the structure of sentences. Sko-
unakis et al. [64] proposed an approach that is based on
hierarchical HMMs to represent the grammatical structure
directly to MDM 2  ,  and prevents MDM 2  from  
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of the sentences being processed. Firstly, shallow parser to
construct a multi-level representation of each sentence
being processed was used. Then hierarchical HMMs to
capture the regularities of the parses for both positive
and negative sentences were trained. In [65], a broad-cover-
age probabilistic dependency parser was used to identify
sentence level syntactic relations between the heads of the
chunks. The parser used a hand-written grammar com-
bined with a statistical language model that calculates lex-
icalized attachment probabilities. Recently, Katrin et al.
[66] proposed RelEx based on the dependency parse trees
to extract relations in biomedical texts. It was applied on
one million MEDLINE abstracts to extract gene and pro-
tein relations. About 150,000 relations were extracted with
an estimated performance of both 80% precision and 80%
recall. Rinaldi et al. [67] also employed a probabilistic
dependency parser, Pro3Gres, to output functional depen-
dency structures. Based on these structures, functional rela-
tions (e.g. interactions between proteins and genes) were
extracted. Experiments were conducted on tow different
corpora, the GENIA corpus and the ATCR corpus. Preci-
sion values range from 52% to 90% and recall values range
from 40% to 60% based on different evaluation methods.
2.1.2.4. An example. To show the way of using empiricist
deep parsing to extract protein–protein interactions, the
method proposed in [66] is used, which employs the Stand-
ford Lexicalized Parser2 to generate dependency parse
trees. The parser is based on the unlexicalized probabilistic
context-free grammars (PCFGs) [68]. Usually, two data
sets are employed to train the parser, one is the standard
LDC Penn Treebank WSJ secs 2–21 and the other is an
augmented one, better for questions, commands, and text
from different genres.

The whole process can be divided into three steps, pre-
processing, extracting and postprocessing. In the prepro-
cessing step, a dependency parse tree is generated for
each sentence by the Standford lexicalized parser. Also,
gene and protein names are recognized based a synonym
dictionary. Moreover, noun-phase chunks are identified
and combined with the dependency parse trees to generate
chunk dependency parse trees. Based on the chunk depen-
dency parse trees, pathes connecting pairs of proteins are
identified in the extracting step based on the three prede-
fined rules. These rules describe the most frequently used
constructs for depicting relations, such as effector-rela-
tion-effectee (e.g. ‘‘IL-4 suppressed IL-2 and IFN-gamma
mRNA levels in primary human T cells, and addition of
anti-CD28 antibodies relieved this suppression’’), relation-
of-effectee-by-effector (e.g. ‘‘Taken together, these results
indicate that IL-6 and IL-8 release by protein I/II-activated
FLSs is regulated by FAK independently of Tyr-397 phos-
phorylation’’), and relation-between-effector-and-effectee
(e.g. ‘‘In human AM, Pc promoted direct interaction of MR
2 http://nlp.stanford.edu/downloads/lex-parser.shtml
and TLR2, IL-8 release was reduced markedly upon. . .’’).
Candidate relations are created for each sentence base on
these extracted paths. These candidate relations are filtered
in the postprocessing step. The filtration consists of nega-
tion check (excluding negated relations) and restricting to
focus domain (excluding the relations which do not contain
any word in a set of predefined relation restriction terms).
After filtration, effector and effectee detection and enumer-
ation resolution are performed. For a given sentence, Fig. 6
shows the internal results in each step. It can be observed
that this method depends highly on the precision of depen-
dency parse tree generated by the Stanford lexicalized
parser.

Full-parsing methods analyze the structure of an entire
sentence in order to achieve higher accuracy. However,
they still cannot handle all kinds of sentences, especially
those with complex structures. Moreover, analyzing the
whole sentence structure incurs higher computational and
time complexity.

2.2. Rule-based approaches

In rule-based approaches [6,7,9,12,69–77], a set of rules
need to be defined which may be expressed in forms of reg-
ular expressions over words or part-of-speech (POS) tags.
Based on the rules, relations between entities that are rele-
vant to tasks such as proteins, can be recognized.

Ng and Wong [69] defined five rules based on the word
form, such as <A>. . .<fn>. . .<B> in which the symbols
A, B refer to protein names while the symbol fn refers to
the verb which describes the interaction relationship. Obvi-
ously, such rules are too simple to produce satisfactory
results. Ono et al. [72] manually defined a set of rules based
on syntactic features to preprocess complex sentences, with
negation structures considered as well. It achieves good
performance with a recall rate of 85% and precision rate
of 84% for Saccharomyces cerevisiae (yeast) and Esche-

richia coli. Blaschke and Valencia [7] induced a probability
score to each predefined rule depending on its reliability
and used it as a clue to score the interaction events. Sen-
tence negations and the distance between two protein
names were also considered. In [74], gene-gene interactions
were extracted by scenarios of patterns which were con-
structed manually. For example, ‘‘gene product acts as a
modifier of gene’’ is a scenario of the predicate act, which
can cover a sentence such as: ‘‘Egl protein acts as a repressor
of BicD’’. Egl and BicD can be extracted as an argument of
an event for the predicate acts. Leroy and Chen [73]
employed preposition-based parsing to generate templates.
It achieved a template precision of 70% when processing
the literature abstracts.

Using predefined rules can generate nice results. It is
however not feasible in practical applications as it requires
heavy manual processing to define patterns when shifting
to another domain.

Huang et al. [75] tried to automatically construct the
protein–protein interaction patterns. At first, part-of-

http://nlp.stanford.edu/downloads/lex-parser.shtml
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Fig. 6. An example employing the Stanford Lexicalized Parser to generate chunk dependency parse tree.
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speech tagging was employed. Then dynamic programming
to automatically extract similar patterns from sentences
based on POS tags was used. Based on the automatically
constructed patterns, protein–protein interactions can be
identified. Their results gave precision of 80.5% and recall
of 80.0%. Phuong et al. [78] used some sample sentences,
which were parsed by a link grammar parser, to learn
extraction rules automatically. By incorporating heuristic
rules based on morphological clues and domain specific
knowledge, the method can remove the interactions that
are not between proteins.

2.2.1. An example

In this section, we illustrate the process of employing the
rule-based method proposed in [72] to detect protein–pro-
tein interactions. The whole process can be divided into
three steps:

2.2.1.1. Identification of protein names. Protein names were
first identified from sentences based on a predefined bio-
medical entity dictionary.

2.2.1.2. Preprocessing compound or complex sentences. Sen-
tences were firstly parsed by employing POS tagging. Then
predefined rules based on the generated POS tags were
applied to split those complex sentences. For example, the
sentence ‘‘The gap1 mutant blocked stable association of
Ste4p with the plasma membrane, and the ste18 mutant
blocked stable association of Ste4p with both plasma mem-
branes and internal membranes’’ is split into two parts, one
is ‘‘The gap1 mutant blocked stable association of Ste4p with
the plasma membrane’’, the other is ‘‘the ste18 mutant
blocked stable association of Ste4p with both plasma mem-
branes and internal membranes’’, when applying the rule
below:

If a sentence matches the pattern P1 [(,CCDT)j(,IN)j: j;]
P2, where CC denotes coordinating conjunction and DT
denotes determiner, then the sentence can be split into P1
and P2.

2.2.1.3. Recognition of the protein–protein interaction. A set
of word patterns was defined for the recognition of protein–
protein interactions. For example, the defined word patterns
could be ‘‘A interact with B’’, ‘‘interaction of A (with—and)
B’’, ‘‘interaction (betweenjamong) A and B’’ and so on. A
and B here indicate protein names. For the sentence ‘‘We
define a Nab2p sequence that binds to Kap104p’’, the interac-
tion ‘‘bind: Nab2p, Kap104p’’ can be extracted using the pre-
defined rule Abind toB. To process negative sentences, which
describe a lack of interaction, several pattern of regular
expression were constructed, such as PROTEIN1.* not
(interactjassociatejbindjcomplex).*PROTEIN2.

2.2.2. Discussion

Rule-based approaches have been found to be overall lim-
iting in the set of interactions that can be extracted by the
extent of the recognition rules that were implemented, and
also by the complexity of sentences being processed. Specif-
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ically, complicated cases such as interaction descriptions
that span several sentences of text are often missed by these
approaches. The shortcoming of such approaches is their
inability to correctly process anything other than short,
straightforward statements, which are quite rare in informa-
tion-saturated biomedical literature. They also ignore many
important aspects of sentence construction such as mood,
modality, and sometimes negation, which can significantly
alter or even reverse the meaning of the sentence.

2.3. Machine-learning and statistical approaches

Many machine-learning (ML) methods have been pro-
posed ranging from simple methods such as deducing rela-
tionship between two terms based on their co-occurrences
to complicated methods which employ NLP technologies.
Approaches combing machine learning and NLP have
been discussed in Section 2.1.2. Here we focus on the meth-
ods without employing NLP techniques.

A variety of machine-learning and statistical techniques
based on the discovery of co-occurrence of protein names
have been applied for protein–protein information extrac-
tion [79–86,8,87–91]. They can be further divided into dif-
ferent types based on the mining units, such as abstracts,
sentences and so on.

Approaches proposed in Andrade and Valencia [79] and
Marcottle et al. [85] aim to extract protein–protein interac-
tions from a set of abstracts. Andrade and Valencia [79] used
a group of relevant documents against a set of random doc-
uments to extract domain specific information such as gene
functions and interactions. Marcottle et al. [85] was only
interested in retrieving a large number of documents that
probably contained information about protein–protein
interactions. We will discuss it in detail in Section 2.3.1.

The first machine-learning sentence-based information
extraction system in molecular biology was described in
Craven and Kumlien [81]. They developed a Bayesian clas-
sifier which, given a sentence containing mentions of two
items of interest, returns a probability that the sentence
asserts some specific relations between them. Later systems
have applied other technologies, including hidden Markov
models and support vector machines, to identify sentences
describing protein–protein interactions.

Other approaches [82–84,8] focus on a pair of proteins
and detect the relations between them using probability
scores. Stapley and Benoit [82] used fixed lists of gene
names and detected relations between these genes by means
of co-occurrences in MEDLINE abstracts. A matrix that
contains distance dissimilarity measurement of every pair
of genes based on their joint and individual occurrence sta-
tistics was constructed based on a user-defined threshold.
Stephens et al. [83] furthered the method to discover rela-
tionships using more complicated computation on co-
occurrences. Jenssen et al. [84] used a similar approach to
find relations between human gene clusters obtained from
DNA array experiments. Donaldson et al. [8] constructed
PreBIND and Textomy—an information extraction system
that uses support vector machines to evaluate the impor-
tance of protein–protein interactions.

2.3.1. An example

In this section, we illustrate the process of detecting pro-
tein–protein interactions using the method proposed in
[85]. The whole process can be divided into three steps.

2.3.1.1. Build the training and testing corpora. The training
corpus contains 260 papers cited by the Database of Inter-
acting Proteins (DIP). Testing data which are denoted as
Yeast MEDLINE were obtained from MEDLINE by que-
rying the PubMed using the term ‘‘Saccharomyces cerevisi-

ae’’ in the title, abstract, or MESH terms.

2.3.1.2. Construct discriminating words. The discriminating
words are defined as those words which may be useful for
discriminating the training abstracts from other abstracts.
A dictionary was constructed containing the frequencies
of the 60,000 most common words used more than three
times in the Yeast MEDLINE abstracts. For each word
in the training abstracts, the probability PðnjN ; f Þ of find-
ing the observed number of times n given the known dictio-
nary frequency f and the total number of words N in the
training abstracts, was calculated from the Poisson distri-
bution as

PðnjN ; f Þ � e�Nf ðNf Þn

n!

In practice, the log of the probability was calculated as
ln PðnjN ; f Þ � �Nf þ n ln Nf � ln n!. The 500 words in
the training abstracts with the most negative log probabil-
ity scores were selected as discriminating words.

2.3.1.3. Score each abstract in Yeast MEDLINE by its

likelihood of discussing protein–protein interaction. Assume
that an abstract has N words, the discriminating word set
D has M distinct words, ni denotes the number of occur-
rences of the discriminating word di. At first, modeling
the PðnijAbstractSetÞ with a Poisson distribution gives

PðnijInteractionAbstractÞ ¼ e�NfI ;iðNfI;iÞni

ðniÞ!

PðnijNonInteractionAbstractÞ ¼ e�NfN ;iðNfN ;iÞni

ðniÞ!

where the fI ;i is the frequency of the discriminating word i

in the training abstracts, fN ;i is the dictionary frequency of
the discriminating word i. Based on the Bayesian form, the
following equation can be obtained:

PðInactionAbstractjniÞ
PðNonInactionAbstractjniÞ

¼ e�NfI ;iðfI ;iÞni

e�NfN ;iðfN ;iÞni

� PðInteractionAbstractÞ
PðNonInteractionAbstractÞ

The score is deduced as following:
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Likehood ¼
YM
i¼1

PðInactionAbstractjniÞ
PðNonInactionAbstractjniÞ

� �

¼
YM
i¼1

e�NfI;iðfI ;iÞni

e�NfN ;iðfN ;iÞni

� �

� PðInteractionAbstractÞ
PðNonInteractionAbstractÞ

� �M

As the ratio between P(InteractionAbstract) and P(NonIn-
teractionAbstract) is constant, it can be omitted from the
log calculation.

Score ¼
XM

i

ni ln
fI;i

fN ;i
� N � ðfI ;i � fN ;iÞ

� �
4 Ontologies, structured lists of terms, are often used by NLP technol-
ogies to establish the semantic function of a word in a document. The
simplest form of ontology is a lexicon or a list of terms that belong to a
particular class. A lexicon usually consists of specialized terms and
2.3.2. Discussion

Simple statistical methods such as those based on pro-
tein co-occurrence information can not precisely describe
the relations between proteins and therefore tend to gener-
ate high false negative error rate. On the contrary, complex
statistical models need a large amount of training data in
order to reliably estimate model parameters, which is usu-
ally difficult to obtain in practical applications. Recently,
the hidden vector state model (HVS) which was previously
proposed for spoken language understanding has been
applied to extract protein–protein interactions [92] to strike
the balance. The HVS model explores the embedded sen-
tence structures using only lightly annotated corpus, unlike
other statistical parsers which need fully annotated tree-
bank data for training. Also the hierarchical information
is embedded into the HVS model, which enable the HVS
model extract the relations between proteins precisely.

2.4. Performance comparison of existing approaches

The performance of the existing protein–protein interac-
tion extraction methods along with the data corpora they
used are listed in Table 2.

As in the area of extracting information about pro-
tein–protein interactions, competitive evaluations have
played important roles in pushing the fields of IE and
NLP. Several evaluations have been held in recent years.
BioCreAtIvE (Critical Assessment of Information Extrac-
tion systems in Biology) [93]3 began in 2004 and pro-
vided two common evaluation tasks to assess the state
of the art methods for text mining applied to biological
problems. The first task dealt with extraction of gene
or protein names from text, and their mappings into
standardized gene identifiers for three model organism
databases (fly, mouse, yeast). The second task [94]
addressed issues of functional annotation, requiring sys-
tems to identify specific text passages that supported
Gene Ontology annotations for specific proteins, given
full text articles. Later on, the second BioCreAtIvE chal-
3 http://biocreative.sourceforge.net/
lenge was held in 2006, focusing on gene mention tagging
(finding the mentions of genes and proteins in sentences
drawn from MEDLINE abstracts), gene normalization
(producing a list of the EntrezGene identifiers for all
the human genes/proteins mentioned in a collection of
MEDLINE abstracts), and extraction of protein–protein
interactions from text (identifying protein–protein inter-
actions from full text papers, including extraction of
excerpts from those papers that describe experimentally
derived interactions). Genic Interaction Extraction Chal-
lenge [95] was associated with Learning Language in
Logic Workshop (LLL05). The challenge focuses on
information extraction of gene interactions in Bacillus

subtilin, a model bacterium. It was reported that the best
F-measure achieved with the balanced recall and preci-
sion is around 50%.

As annotated corpora are important to the development
as well as the evaluation of protein–protein extraction sys-
tems, some online available annotated corpora are listed in
Table 3.

3. Challenges and possible solutions

The continuing growth and diversification of the scien-
tific literature, a prime resource for accessing worldwide
scientific knowledge, will require tremendous systematic
and automated efforts to utilize the underlying informa-
tion. In the near future, tools for knowledge discovery
will play a pivotal role in systems biology. The increasing
fervor on the field of biomedical information extraction
gives the evidence. IE in biomedicine has been studied
for approximately ten years. Over these years, IE systems
in biomedicine have grown from simple rule-based pat-
tern matcher to sophisticated, hybrid parser employing
computational linguistics technology. But, until now,
there are still several severe obstacles to overcome as
listed below.

• Poor performance. Biomedical IE methods generate
poorer results compared with other domains such as
newswire. In general, biomedical IE methods are scored
with F-measure, with the best methods scoring about
0.85 without considering the limitation of test corpus,
which is still far from users’ satisfaction. The main rea-
son is that information from ontologies4 or terminolo-
gies is not well used. Until recently, most biomedical
IE systems do not make use of information from ontol-
ogies or terminologies. Hence, ontologies together with
terminological lexicons are prerequisites for advanced
(optionally) their definitions. Another form of ontology is a thesaurus, a
collection of terms and their synonyms which are of immense utility for
NLP. A popular ontology in biomedicine is Gene Ontology (GO) [96,97].

http://biocreative.sourceforge.net/


Table 2
Performance of existing protein–protein interaction extraction methods and the data corpora used

Category Result (%) Corpus Ref.

Recall Precision

Shallow parsing — 73 34,343 sentences from abstracts retrieved from MEDLINE using
keywords ‘‘leucine zipper’’, ‘‘zinc finger’’, ‘‘helix loop helix motif’’

[49]

29 69 2,565 unseen abstracts extracted from MEDLINE with the
keywords molecular, interaction and protein for year 1,998 (560k
words)

[51]

57 90 Training set consists of 500 abstracts from MEDLINE. Evaluation
set consists of 56 abstracts collected using search strings ‘‘protein’’
and ‘‘inhibit’’

[52]

62 89 26 abstracts [53]

Deep parsing 48 80 492 sentences out of 250,000 abstracts on cytosine in MEDLINE [56]
63.9 70.2 The test corpus consists of 100 randomly selected scientific

abstracts from MEDLINE
[60]

— 96 Articles from cell containing 7790 words revealing 51 binary
relations

[58]

21 91 3.4 million sentences from approximately 3.5 million MEDLINE
abstracts dated after 1,988 containing at least one notation of a
human protein

[62]

26.94 65.66 229 abstracts from MEDLINE correspond to 389 interactions
from the DIP database

[10]

Rule based 47 70 474 sentences from 50 abstracts retrieved using ‘‘E2F1’’ [73]
86.8 Yeast, 82.5
Escherichia

94.3 Yeast, 93.5
Escherichia

834 and 752 sentences containing at least two protein names and
one relation keyword for yeast and E.coli obtained by a
MEDLINE search using the following keywords, ‘‘protein
binding’’ as a MESH term and ‘‘yeast’’, ‘‘E. coli’’, ‘‘protein’’, and
‘‘interaction’’

[72]

39.7 44.9 Five different sets of abstracts were used:
1. 1435 MEDLINE abstracts directly referenced from each of the
Drosophila Swiss-prot entries
2. 4109 MEDLINE abstracts referenced directly from Fly Base
3. 111,747 abstracts retrieved by extending the set (2) with the
Neighbors utility
4. 518 MEDLINE abstracts containing any of the protein names
(related with cell cycle control) and Drosophila in the MESH list of
terms
5. 6278 MEDLINE abstracts by expanding set (4) using Neighbors
to identify all related abstracts

[70,7]

60 87 3343 abstracts were obtained by querying MEDLINE with the
following keywords: ‘‘Saccharomyces cerevisiae’’, ‘‘protein’’, and
‘‘interaction’’. The abstracts were filtered and 550 sentences were
retained containing at least one of four keywords ‘‘interact’’,
‘‘bind’’, ‘‘associate’’, ‘‘complex’’ or one of their inflections

[78]

80.0 80.5 The top 50 biomedical papers were retrieved from the Internet by
querying using the keyword ‘‘protein–protein interaction’’. Full
texts were segmented into 65,536 sentences and the sentences with
fewer than two protein names were discarded. The final corpus
consists of about 1200 sentences

[75]
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biomedical IE. Since different ontologies are employed
in different systems currently, unification seems neces-
sary and impendent. Also, biomedical text needs to be
semantically annotated and actively linked to
ontologies.

• Changeable relations between biological entities. Rela-
tions between biological entities, such as proteins or
genes are conditional and may change when the same
entities are considered in a different functional context.
As a consequence, every relation between entities should
be linked with the functional context in which the rela-
tion was observed. Moreover, without considering the
observed context, it is meaningless and impossible to
make general statements whether a relation detected
by the literature mining is a ‘‘yes’’ or a ‘‘no’’ relation.
Obviously, to overcome this obstacle, in-depth analysis
based on more elaborately constructing grammars or
rules in sentence or phrase level is requisite. Hopefully,
it will result in the increase of performance.

• Gap between biologists and computational scientists.
Bridging the gap between biologists and computational
scientists seems to be crucial to the success of biomedical
IE. Currently, this field is dominated by researchers with
computational background; however, the biomedical



Table 3
Online annotated corpora for the extraction of protein–protein interactions

Corpus name Description URL

GENIA GENIA corpus version 3.0 consists of 2,000 MEDLINE abstracts with more than 400,000
words and almost 100,000 annotations for biological terms

www-tsujii.is.s.u-
tokyo.ac.jp/GENIA/

Apex It consists of two collections, training collection consisting of 99 abstracts with 1745 protein
names, test collection consisting of 101 abstracts with 1966 protein names. The protein names in
all the abstracts were annotated manually

www.sics.se/humle/projects/
prothalt/

Penninite The corpus consists of 2258 MEDLINE abstracts in two domains: (1) the molecular genetics of
oncology (1158 abstracts); (2) the inhibition of enzymes of the CYP450 class (1100 abstracts)

bioie.ldc.upenn.edu/

LLL05 challenge
Corpus

There are 80 sentences in the training set, including 106 examples of genic interactions without
coreferences and 165 examples of interactions with coreferences

genome.jouy.inra.fr/texte/
LLLchallenge/

BioCreAtIvE II Task
3 Corpus

The corpus consists of four parts of data, for four different subtasks. Overall, the training data
was derived from the content of the IntAct and MINT databases. The data files of both
databases are freely accessible for download and are compliant with the HUPO PSI Molecular
Interaction Format. The test set collection will consist of a collection of PubMed article
abstracts in a format compliant with the training collection format

biocreative.sourceforge.net/
index.html
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knowledge is only possessed by biologists. That is cru-
cial for defining standards for evaluation; for identifica-
tion of specific requirements, potential applications and
integrated information system for querying, visualiza-
tion and analysis of data on a large scale; for experimen-
tal verification to facilitate the understanding of
biological interactions. Hence, to attract more biologists
into the field, it is important to design simple and
friendly user interfaces that make the tools accessible
to non-specialists.

• Self-contradictory extracted knowledge. The knowledge
extracted from the literature may contradict itself under
different environment, conditions, or because of
author’s errors, experimental errors or other issues.
Although the contradictory knowledge may occupy
minor part of the whole interaction network, it is worth
more attention. To handle this challenge, one way is to
categorize the corpora and define the confidence value
for each category. For contradictory knowledge, the
decision can be made based on these confidence values.
The solution can also be applied to handling different
parts of an article, such as the abstract, introduction,
references and so on, which obviously are of different
confidences.

• Obstacles in NLP. Some problems exist not only in the
field of biomedical IE, but also in the field of NLP.
Two of them are: (1) Dealing with negative sentences,
which constitutes a well-known problem in language
understanding [98]. (2) Resolving coreferences, the rec-
ognition of implicit information in a number of sen-
tences may contain key information, e.g. protein
names, that later are used implicitly in other sen-
tences. Results in LLL challenge 05 show that F-mea-
sure can only achieve 25% when considering
coreferences.

• Development of gold standard for evaluation systems. The
development of the gold standard for evaluation systems
is still under way, far from maturity, which requires
more concerted efforts. The experience in the newswire
domain shows that the construction of evaluation
benchmarks in the face of common challenges contrib-
ute greatly to the rapid development of IE. Thus it is
crucial to attach importance to evaluate systems devel-
opment in biomedicine. Also, efforts will be required
to focus on linking the knowledge in the databases with
text sources available. It is believed that in the future,
biomedical IE might provide new approaches for rela-
tion discovery that exploit efficiently indirect relation-
ships derived from bibliographic analysis of entities
contained in biological databases.
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