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Abstract—In this paper, we discuss how discriminative training can be applied to the hidden vector state (HVS) model in different task

domains. The HVS model is a discrete hidden Markov model (HMM) in which each HMM state represents the state of a push-down

automaton with a finite stack size. In previous applications, maximum-likelihood estimation (MLE) is used to derive the parameters of

the HVS model. However, MLE makes a number of assumptions and unfortunately some of these assumptions do not hold.

Discriminative training, without making such assumptions, can improve the performance of the HVS model by discriminating the

correct hypothesis from the competing hypotheses. Experiments have been conducted in two domains: the travel domain for the

semantic parsing task using the DARPA Communicator data and the Air Travel Information Services (ATIS) data and the

bioinformatics domain for the information extraction task using the GENIA corpus. The results demonstrate modest improvements of

the performance of the HVS model using discriminative training. In the travel domain, discriminative training of the HVS model gives a

relative error reduction rate of 31 percent in F-measure when compared with MLE on the DARPA Communicator data and 9 percent on

the ATIS data. In the bioinformatics domain, a relative error reduction rate of 4 percent in F-measure is achieved on the GENIA corpus.

Index Terms—Semantic parsing, information extraction, hidden vector state model, discriminative training.
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1 INTRODUCTION

SEMANTIC parsing, mapping an input sentence into a
structured representation of its meaning, can be applied

into several applications such as spoken language under-
standing, information extraction, etc. An example of seman-
tic parsing for extracting protein-protein interactions (PPI) is
given in Fig. 1. The original sentence is mapped to a semantic
parse tree from which the PPIs could be easily extracted.

Traditionally, research in the field of semantic parsing

can be divided into two categories: rule-based approaches

and statistical approaches. Based on handcrafted semantic

grammar rules, rule-based approaches fill slots in semantic

frames using word pattern and semantic tokens [1], [2].

Such rule-based approaches are typically domain specific

and often fragile. Statistical approaches are generally based

on stochastic models. Given a model and an observed word

sequence W ¼ ðw1 � � �wT Þ, semantic parsing can be viewed

as a pattern recognition problem and statistical decoding

can be used to find the most likely semantic representation.

If we assume that the hidden data take the form of a

semantic parse tree C, then the model should be a push-

down automata that can generate the pair hW;Ci through

some canonical sequence of moves D ¼ ðd1 � � � dT Þ. That is

P ðW;CÞ ¼
YT
t¼1

P ðdtjdt�1 � � � d1Þ: ð1Þ

Decision sequences are usually steps in some top-down or
bottom-up derivation of trees. For the general case of an
unconstrained hierarchical model, D will consist of three
types of probabilistic move:

1. popping semantic category labels off the stack,
2. pushing one or more nonterminal semantic category

label onto the stack, and
3. generating the next word.

In practice, conditional independence can be used to
reduce the number of parameters needed to manageable
proportions. As in conventional statistical language model-
ing, this involves defining an equivalence function �, which
groups move sequences into equivalent classes. Thus, the
final generic parsing model is

P ðW;CÞ ¼
YT
t¼1

P ðdtj�ðdt�1 � � � d1ÞÞ: ð2Þ

The above is essentially the history-based model [3], [4]
where the probability of each parser action is conditioned
on the history of previous actions in the parse or some
partially built structure.

Traditionally, the parsing models have been trained to
have the maximum likelihood (ML) P ðW;CÞ. However, the
goal of training the parsing models is to find the correct
semantic representation C, i.e., minimize the recognition
error. Although a maximum probability is often correlated
with a better recognition performance, the correlation is not
perfect and is not proved. We can provide some examples
with high likelihood but without a better recognition rate.
Furthermore, ML estimation (MLE) makes some assump-
tions on the model, such as the model correctly represents
the underlying stochastic process, the amount of training
data is infinite, and the true global maximum of the
likelihood can be found. When assumptions made about
the model are incorrect and the training data are not
sufficient, MLE yields a suboptimal solution.
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Previous research has shown that the performance of the
hidden Markov model (HMM) trained using MLE can often
be improved further using discriminative training. Dis-
criminative training methods based on different criteria
such as maximum mutual information (MMI), minimum
classification error (MCE), etc, have been tried. In particu-
lar, MMI estimation has been studied for speech recogni-
tion, and substantial gains in performance have been
reported [5], while discriminative training based on MCE
[6], [7], [8], [9] has also been applied for speech recognition.

An early example of a purely statistical approach to
semantic parsing is the finite state semantic tagger used in
AT&T’s CHRONUS system [10]. In this system, utterance
generation is modeled by an HMM-like process in which
the hidden states correspond to semantic concepts and the
state outputs correspond to the individual words. This
model is sometimes referred to as the flat-concept model to
emphasize its inability to represent a hierarchical structure.
For the constrained case of the flat concept model, the stack
is effectively depth one, and hW;Ci is built by repeatedly
popping one label off the stack, pushing one new label onto
the stack and then generating the next word. This kind of
model is unable to capture long-distance dependencies.
This inability of representing hierarchical structures can be
overcome by allowing the state stack to grow without limit
and more than one new semantic label to be pushed onto
the stack. This is essentially analogous to using stochastic
phrase structure rules and extends the class of supported
languages from regular to context free. The Hidden Under-
standing Model (HUM) model [11], [12], [13], [14] is an
early example of such an SCFG model, which uses fully
annotated corpora to simplify the parameter estimation
problem that is otherwise complex due to the recursive
nature of hierarchical parse trees.

A general SCFG model is computationally expensive to
train. However, computational tractability issues may be
tackled by imposing certain constraints on the SCFG model
itself. The hierarchical HMM (HHMM) model [15] con-
strains the level of hierarchies or the state stack depth to be
a bounded depth; it is nevertheless still complex as its state
inference takes OðT 3Þ time, where T is the sequence length.
Murphy and Paskin convert an HHMM into a dynamic
Bayesian network [16] such that the inference can be done
using the junction tree algorithm, which only takes OðT Þ
time empirically, provided that the HHMM hierarchy depth
and the number of states at each level of hierarchy are
bounded to some relatively small values.

The weakness of nonlexicalized SCFG models such as
HUM and HHMM can be avoided by associating a
headword to each nonterminal in the parse tree. Examples
of lexicalized SCFG models such as the immediate-head
parsing model [17] achieved 6 percent reduction in recall
error and 5 percent reduction in precision error compared

to a general nonlexicalized model when tested on Penn WSJ
treebank data [18].

Chelba and Mahajan’s structured language model (SLM)
[19] does not impose a constraint on the state stack depth,
but it does constrain the pushing of at most one new tag (a
POStag in this case, not a semantic tag) into the stack. As
opposed to the conventional SCFG models where each
parser action is only conditioned on the immediately
preceding nonterminal tag being expanded, a parser action
in the SLM is conditioned on the two previously exposed
headwords. However, Chelba and Mahajan’s SLM has the
limitation that it is not able to capture dependencies
between nonheadwords due to its headword percolation
rules, for example, less and than as in less people join the
society this month than last month, where neither less nor than
are headwords of this phrase.

The flat-concept model is simple and robust to estimate.
However, it cannot represent nested structured information.
On the other hand, the hierarchical structured models are
able to capture long-distance dependencies but require fully
annotated treebank data for training, which are difficult to
obtain in practice. A hidden vector state (HVS) model [20]
has been proposed, which extends the flat-concept HMM
model by expanding each state to encode the stack of a push-
down automaton. This allows the model to efficiently
encode hierarchical context. At the same time, such a model
can be trained using only lightly annotated data.

In this paper, we propose a discriminative approach
based on parse error measure to train the HVS model. To
adjust the HVS model to achieve the minimum parse error,
the generalized probabilistic descent (GPD) algorithm [21]
was used. Experiments have been conducted in two
domains: the travel domain for the semantic parsing task
using the DARPA Communicator data and the Air Travel
Information Services (ATIS) data and the bioinformatics
domain for the information extraction tasks using the
GENIA corpus. The results demonstrate modest improve-
ments of the performance of the HVS model using
discriminative training. In the travel domain, discriminative
training of the HVS model gives a relative error reduction
rate of 31 percent in F-measure when compared with MLE
on the DARPA Communicator data and 9 percent on the
ATIS data. In the bioinformatics domain, a relative error
reduction rate of 4 percent in F-measure is achieved on the
GENIA corpus.

The rest of the paper is organized as follows: Section 2
surveys related work. In Section 3, we briefly describe the
HVS model and how it can be trained in a discriminative
way. The experimental setup is discussed in Section 4, and
the experimental results are presented in Section 5. Finally,
Section 6 concludes the paper and gives future directions.

2 RELATED WORK

Discriminative training was initially proposed as an alter-
native training technique for the speech recognition pro-
blem. Historically, the predominant training technique has
been MLE. However, it turns out that MLE gives optimal
estimates only if the following three conditions are satisfied:

. The model correctly represents the stochastic process.

. An infinite amount of training data are available.

. The true global maximum of the likelihood can be
found.
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Fig. 1. An example of semantic parsing for PPI extraction.



In practice, none of the above conditions is satisfied. This
is the motivation for discriminative training. Discriminative
training attempts to optimize the correctness of a model by
formulating an objective function that in some way penalizes
parameter sets that are liable to confuse correct and incorrect
answers. Many discriminative training schemes have been
proposed based on different objective functions such as
MMI, minimum word error (MWE), minimum phone error
(MPE), MCE, etc.

From an information-theoretic standpoint, MMI, which is
shared between X and Y , is the reduction of X’s uncertainty
due to the knowledge of Y . Given the observation O, the
speech recognizer should choose a word sequence W to
make sure that the correct answer has the minimal amount
of uncertainty. The IBM speech recognition group was the
first to report results with MMI estimation [22]. They
obtained an 18 percent lower recognition error rate in a
speaker-dependent isolated word recognition system using
gradient descent. After that, improvements were reported in
[23] using MMI estimation for isolated word recognition.
Since gradient descent for MMI estimation does not
guarantee convergence and is computationally expensive,
an alternative strategy is to use the extended Baum-Welch
(EBW) [24]. In [5], a reduction of the string error rate by close
to 50 percent was reported using EBW on the TI/NIST
connected digit database. Later, lattice-based discriminative
training was proposed to optimize the parameters of a
continuous-density HMM-based large vocabulary recogni-
tion system using MMI criterion [25].

The MCE objective function is designed to directly
minimize the errors made by the recognizer on the training
set. In [9], experiments were conducted on several key speech
recognition tasks, and the MCE method provided a
significant reduction of the recognition error rate. In [26],
the MWE and MPE objective functions were proposed. The
MWE objective function attempts to minimize the number of
word-level errors. Instead of maximizing the word accuracy
in the MWE approach, the MPE approach maximizes the
phone-level accuracy.

All the discriminative methods described above were
applied in the speech recognition domain. However, there
has been little work in extending them to semantic parsing.
To the best of our knowledge, [27] is the only work
estimating the probabilities for a neural network statistical
parser using the discriminative training criterion. Experi-
ments were conducted to compare the performance of three
statistical parsers: one generative, one discriminative, and
one generative but using the discriminative training
criterion. Results showed that the last parser outperforms
the previous two and achieves 90.1 percent in F-measure on
the Penn Treebank data.

In this paper, we propose an discriminative training
approach based on the minimum parse error for the HVS
model. Here, the minimum parse error is similar to MCE and
is used to describe the error of semantic parsing on the
training set. To adjust the HVS model parameters to achieve
the minimum parse error, the GPD algorithm [21] is used to
minimize a smoothed function of the parsing error along the
steepest direction.

3 METHODOLOGIES

3.1 Hidden Vector State Model

All the parser models described in Section 1 apply

constraints in one way or another to the general framework

described in (2). In particular, when considering a con-

strained form of automata where the stack is of finite depth

and hW;Ci is built by repeatedly popping 0 to n labels off

the stack, pushing exactly one new label onto the stack, and

then generating the next word, it defines the HVS model in

which conventional grammar rules are replaced by three

probability tables.
Given a word sequence W , a concept vector sequence C,

and a sequence of stack pop operations N , the joint

probability of P ðW;C; NÞ can be decomposed as

P ðW;C; NÞ ¼
YT
t¼1

P ðntjct�1Þ�

P ðct½1�jct½2 � � �Dt�Þ � P ðwtjctÞ;
ð3Þ

where ct, the vector state at word position t, is a vector of

Dt semantic concept labels (tags), i.e., ct ¼ ½ct½1�; ct½2�; ::ct½Dt��,
where ct½1� is the preterminal concept label and ct½Dt� is the

root concept label, nt is the vector stack shift operation at

word position t and take values in the range 0; . . . ; Dt�1, and

ct½1� ¼ cwt is the new preterminal semantic tag assigned to

word wt at word position t.
Thus, the HVS model consists of three types of

probabilistic move, each move being determined by a

discrete probability table:

1. popping semantic labels off the stack—P ðnjcÞ,
2. pushing a pre-terminal semantic label onto the

stack—P ðc½1�jc½2 � � �D�Þ, and
3. generating the next word—P ðwjcÞ.
This constrained form of automata implements a right-

branching parser that has some very convenient proper-

ties. It is left to right, and it has complexity OðTQDÞ,1 yet

it can still model a hierarchical structure.

3.2 Maximum Likelihood Training of the HVS Model

In the HVS-based semantic parser, the purpose of training is

to find the HVS parameter set � ¼ fC; Ng, which will result

in the decoder with the lowest possible recognition error

rate. This is done by maximizing some objective function

Rð�Þ. By far, the most commonly used parameter estimation

technique is MLE. The objective function typically used in

MLE, given the observations W ¼ fW1;W2; . . . ;WIg, is

Rð�Þ ¼ fMLð�Þ ¼ log
YI
r¼1

P ðWr; �Þ ¼
XI
r¼1

logP ðWr; �Þ: ð4Þ

MLE attempts to maximize the likelihood of the training

data. Thus, we need to compute the � that best explains the

data, i.e.,
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�� ¼ arg max
�

XI
r¼1

logP ðWr; �Þ: ð5Þ

The most obvious quality of MLE is the existence of a

reestimation formula fð�Þ such that if �̂ ¼ fð�Þ, then we will

have Rð�̂Þ � Rð�Þ, with equality only when � is a local

maximum (or, possibly, a saddle point) of Rð�Þ. It can be

quickly trained using the globally convergent Baum-Welch

algorithm [28].
The reestimation formulas derived are [20]:

P �ðnjc0Þ ¼
P

t P ðnt ¼ n; ct�1 ¼ c0jW;�kÞP
t P ðct�1 ¼ c0;W j�kÞ

; ð6Þ

P �ðc½1�jc½2::D�Þ ¼
P

t P ðct;W j�kÞP
t P ðct½2::D� ¼ c½2::D�jW;�kÞ ; ð7Þ

P �ðwjcÞ ¼
P

t P ðct ¼ c; wt ¼ wj�kÞP
t P ðct ¼ c;W j�kÞ : ð8Þ

MLE makes a number of assumptions: observation are

from a known family of distribution, training data are

unlimited, and the global maximum of the likelihood can be

found. Unfortunately, in general, none of these assumptions

holds. Given that MLE’s assumptions are in general not

satisfied, it is not guaranteed to produce optimal results.

Also, MLE is suboptimal as it only aims to maximize the

correct model and ignores the impact of other incorrect

competing models. This has led researchers to explore the

feasibility and efficiency of using discriminative training.

3.3 Discriminative Training of the HVS Model

Normally, MLE is used for generative statistical model

training in which only the correct model needs to be

updated during training. It is believed that improvement

can be achieved by training the generative model based on a

discriminative optimization criterion [29] in which the

training procedure is designed to maximize the conditional

probability of the parses given the sentences in the training

corpus. That is, not only the likelihood for the correct model

should be increased but also the likelihood for the incorrect

models should be decreased.
Given a word sequence W , a semantic parser needs to

compute the most likely set of embedded concepts Ĉ by

maximizing the following equation:

P ðCjWÞ ¼ P ðW jCÞP ðCÞ
P ðWÞ : ð9Þ

For a given W , P ðWÞ is a constant, and therefore

Ĉ ¼ arg max
C

P ðW jCÞP ðCÞ; ð10Þ

where P ðW jCÞ is called the lexical model, and P ðCÞ is

called the semantic model.
Traditionally, semantic parsing models have been

trained to have the ML P ðCÞ. Although a higher P ðCÞ is

often related with a better performance, the correlation is

not perfect. Discriminative training based on the minimum

parse error is therefore proposed here.

Assuming the most likely semantic parse tree is Ĉ ¼ Cj
and there are altogether M semantic parse hypotheses for a

particular sentence W , a parse error measure [6], [7], [8] can

be defined as

dðWÞ ¼ � logP ðW;CjÞ þ log
1

M � 1

X
i;i 6¼j

P ðW;CiÞ�
" #1

�

; ð11Þ

where � is a positive number and is used to select

competing semantic parses. When � ¼ 1, the competing

semantic parse term is the average of all the competing

semantic parse scores. When � !1, the competing

semantic parse term becomes max
i:i 6¼j

P ðW;CiÞ, which is the

score for the top competing semantic parse result. By

varying the value of �, we can take all the competing

semantic parses into consideration. dðW Þ > 0 implies a

classification error, and dðWÞ � 0 implies a correct decision.
The sigmoid function can be used to normalize dðWÞ in a

smooth zero-one range, and the loss function is thus

defined as [6]:

‘ðWÞ ¼ sigmoidðdðWÞÞ; ð12Þ

where

sigmoidðxÞ ¼ 1

1þ e��x : ð13Þ

Here, � is a constant that controls the slope of the sigmoid

function.
For a given training data set consisting of I samples

fW1; . . . ;WIg, the empirical probability measure PI defined

on the training data set is a discrete probability measure

that assigns equal mass at each sample. The empirical loss,

on the other hand, is thus expressed as

L0ð�Þ ¼
1

I

XI
j¼1

XM
i¼1

‘iðWj; �Þ ¼
Z
‘ðW;�ÞdPI: ð14Þ

The expected loss is defined as

Lð�Þ ¼ EWf‘ðW;�Þg: ð15Þ

It has been shown that the empirical loss defined on the

I independent training samples will converge to the

expected loss, as the sample size I increases.
The update formula is given by

�kþ1 ¼ �k � �kr‘ðWi; �
kÞ; ð16Þ

where �k is the step size.
Using the definition of ‘ðWi; �

kÞ and after working out

the mathematics, the following update formulas can be

obtained:

logP ðnjc0Þð Þ�¼ logP ðnjc0Þ � ��‘ðdiÞð1� ‘ðdiÞÞ

� �IðCj; n; c0Þ þ
X
i;i 6¼j

IðCi; n; c0Þ
P ðWi;Ci; �Þ�P
i;i 6¼j P ðWi;Ci; �Þ�

" #
;

ð17Þ
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logP ðc½1�jc½2::D�Þð Þ�¼ logP ðc½1�jc½2::D�Þ

� ��‘ðdiÞð1� ‘ðdiÞÞ �
"
� IðCj; c½1�; c½2::D�Þ

þ
X
i;i 6¼j

IðCi; c½1�; c½2::D�Þ
P ðWi;Ci; �Þ�P
i;i 6¼j P ðWi;Ci; �Þ�

#
;

ð18Þ

logP ðwjcÞð Þ�¼ logP ðwjcÞ � ��‘ðdiÞð1� ‘ðdiÞÞ

� �IðCj; w; cÞ þ
X
i;i 6¼j

IðCi; w; cÞ
P ðWi;Ci; �Þ�P
i;i 6¼j P ðWi;Ci; �Þ�

" #
;

ð19Þ

where IðCi; n; c0Þ denotes the number of times of the
operation of popping up n semantic tags at the current
vector state c0 in the Ci parse tree, IðCi; c½1�; c½2::D�Þ denotes
the number of times of the operation of pushing the
semantic tag c½1� at the current vector state c½2::D� in the
Ci parse tree, and IðCi; w; cÞ denotes the number of times of
emitting the word w at the state c in the parse tree Ci.

A full derivation of the update formulas is given in the
Appendix.

3.4 Framework of Discriminative Training

Fig. 2 shows the overall discriminative training procedure for
the HVS model. The model is originally trained by the MLE
criteria. The MLE-trained model is then used to parse the
sentences from the lightly annotated training corpus. For
each training sentence, the parse results are output as a parse
lattice. An example is shown in Fig. 3, where the correct parse
path is highlighted with the bold line. For each individual
word, the count relating to the correct parse decision is
increased, while the count to the incorrect parse decisions is
decreased.2 Thus, the model is trained to separate the correct
parse from those incorrect parses. The discriminatively
trained model is then used to parse the training sentences
again, and the whole training procedure repeats until no
significant error reduction is observed in the held-out set.

4 EXPERIMENTAL SETUP

Experiments have been conducted on the three corpora in
the two domains: the DARPA Communicator data and the
ATIS data in the travel domain and the GENIA corpus in

the bioinformatics domain. Table 1 gives the overall
statistics of these three corpora. The following describes
the experimental setup, as well as the evaluation metric
used in the experiments.

4.1 DARPA Communicator Data

The DARPA Communicator data [30] are available to the
public as open source download. The data contain utterance
transcriptions and the semantic parse results from the rule-
based Phoenix parser.3 The DARPA Communicator data
were collected in 461 days and consist of 2,211 dialogues or
38,408 utterances in total. From these, 46 days were
randomly selected for use as test set data, and the
remainder were used for training. After cleaning up the
data, the training data consist of 12,702 utterances, while the
test set contains 1,178 utterances. Since in our discriminative
training framework, the held-out set is needed, we split the
test set into two parts with the same size: one is used as the
held-out set and the other is used to evaluate the
performance of discriminative training.

The abstract annotation used for training and the
reference annotation needed for testing were derived by
hand correcting the Phoenix parse results. An example of a
reference frame is presented as follows:

Performance was then measured in terms of the
F-measure on slot/value pairs, which combines the preci-
sion and recall with equal weights and is defined as
2� Recall� Precision=ðRecallþ PrecisionÞ. Recall measures
how much relevant information the method has extracted.
It is defined as the percentage of correct answers given by
the method over the total actual correct answers. Precision
measures how much of the information the system
extracted is correct. It is defined as the percentage of
correct answers given by the method over all the answers
extracted by the method.
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2. In our implementation, we use the top N competing parses instead of
all the incorrect parses presented in the lattice. 3. http://communicator.colorado.edu/phoenix.

Fig. 2. The discriminative training procedure.

Fig. 3. An example of a semantic parse lattice.

TABLE 1
Statistics of the Three Corpora Used



4.2 ATIS

The ATIS corpus [31] contains air travel information data.
The ATIS training set consists of 4,978 utterances selected
from the Class-A (context-independent) training data in the
ATIS-2 and ATIS-3 corpora, while the ATIS test set contains
both the ATIS-3 NOV93 and DEC94 data sets. Abstract
semantics for each training utterance were derived semi-
automatically from the SQL queries provided in ATIS-3.
After the parse results have been generated for the test sets,
postprocessing is performed to extract relevant slot/value
pairs and convert them into a format compatible with the
reference frames.

4.3 GENIA Corpus

PPIs referring to the associations of protein molecules are
crucial for many biological functions. A major challenge in
text mining for biomedicine is automatically extracting PPIs
from the vast amount of biomedical literature since most
knowledge about them still hides in biomedical publica-
tions. We have constructed an information extraction
system based on a semantic parser employing the HVS
model for PPIs [32].

GENIA [33] is a collection of 2,000 research abstracts
selected from the search results of the MEDLINE database
using keywords (MESH terms) “human, blood cells, and
transcription factors.” All these abstracts were then split into
sentences, and those containing more than two protein
names and at least one interaction keyword were kept.
Altogether 3,533 sentences were left, and 2,500 sentences
were sampled to build our data set.

Abstract annotation were derived manually. An example
of such an annotation, together with the PPI information
embedded, is presented as follows:

The evaluation of the experimental results is based on
the values of true positive (TP), false positive (FP), and false

negative (FN). TP is the number of correctly extracted

interactions. ðTPþ FNÞ is the number of all interactions in

the test set, and ðTPþ FPÞ is the number of all extracted

interactions.
The F-measure is computed using the following formula:

F-measure ¼ 2 � Recall � Precision

Recallþ Precision
; ð20Þ

where Recall is defined as TP=ðTPþ FNÞ, and Precision is

defined as TP=ðTPþ FPÞ.

5 EXPERIMENTAL RESULTS

This section presents the evaluation results in details.

5.1 Results Based on MLE Training of the
HVS Model

First, experiments were conducted to find the smoothing

technique that yielded the best result. For the data in the

bioinformatics domain, experiments were further con-

ducted to find the proper size of the training data to

generate the best performance since in the GENIA corpus,

the size of the training set is not predefined and it is crucial

for statistical model training.

5.1.1 Smoothing Techniques

The performances of the HVS models on the three corpora

using different smoothing techniques are listed in Table 2. It

can be observed that the best performance was achieved

using Witten-Bell for both the stack shift operation and

output probabilities.

5.1.2 GENIA Corpus

To explore the best performance of the HVS model on the

GENIA corpus, we need to determine the proper size of the

training data. Experiments have been conducted as follows:

The corpus was first randomly split into the training set and

the test set at the ratio of 9 : 1. The test set consists of

250 sentences, and the remaining 2,250 sentences were used

as the training set. The split were conducted 10 times with

different training and test data in each round. For each split,

100 sentences were randomly selected from the training set

to build an initial HVS model, which was then tested on the

test set. Then, another 100 sentences were added from the

training set to build a new HVS model, and its performance

was analyzed again. This procedure was repeated until all

the 2,250 sentences were added into the training set. Fig. 4

illustrates the performance at each stage.
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TABLE 2
Performance Comparison of MLE Training of the HVS Model Using Various Smoothing Techniques



It shows that the model performance gradually improves
when adding more training data. It saturates when the size
of the training data reaches 1,600. At this point, the average
F-measure value obtained is 61.47 percent with the balanced
recall and precision values. This implies that for the GENIA
corpus, 1,600 sentences would be sufficient to train the HVS
model. Thus, the training set size of 1,600 is fixed for
discriminative training in the subsequent experiments.

5.2 Results Based on Discriminative Training of the
HVS Model

Experiments have been conducted on the DARPA Com-
municator data, the ATIS data, and the GENIA corpus by
discriminatively training the HVS model based on the
update formulas (17), (18), and (19). The following para-
meters were used: � ¼ 0:5, � ¼ 0:1, and � ¼ 0:5.

5.2.1 Optimal Size of Training Data

The size of the training set for discriminative training is
highly correlated with the performance of the resulted HVS
model. In our experiments, the size of training set is
determined by the parameters: N , the number of semantic
parse hypotheses, and I, the number of utterances in the
training data. To reveal the relationship between the
performance of discriminative training and the size of the
training data, experiments were conducted in the following
way on the DARPA Communicator data:

. Set I ¼ 12;702 (the size of the whole training data),
5,000 (almost half of the size of the whole training
data), 1,000, 500, 200, 100.

. After fixing the value of I, randomly sample
I utterances from the whole training set (12,702 utter-
ances) 10 times. At each time � , a training set S� with
a size of I was constructed. We only sampled once for
I ¼ 12;702 and sampled 10 times for all the other
values of I.

. For each training set S� , � ¼ 1; . . . 10, discrimina-
tive training was conducted when setting
N ¼ 5; 10; 20; 30; 40.

Table 3 lists the best performance among the experi-
ments for various I and N on the DARPA Communicator
data. It can be observed that the best performance of the

HVS model using discriminative training is achieved when
I ¼ 1; 000 and N ¼ 30. It should be noted that a filtering
method has been employed to construct the training set by
selecting sentences with semantic parse probabilities ex-
ceeding a certain threshold. This is to reduce the possible
errors introduced to discriminative training since only
abstract annotation is provided for each sentence instead
of the word-level annotation or the full semantic parse path.

To examine the performance of the HVS model in each
sampling in more detail, Fig. 5 gives the boxplot of the
performance of the HVS model in each sampling, showing
the variation of the performance of the resulted HVS model
as a function of N and I on the DARPA Communicator
data. It shows that when I ¼ 1;000 and N ¼ 30, this size of
the training set gives the best and balanced performance
among all the candidate training sets.

For the ATIS data, experiments were conducted in a
similar way. Table 4 lists the best performance among the
experiments for various I and N on the ATIS data. It can be
observed that the best performance using discriminative
training is achieved when I ¼ 100 and N ¼ 5 or 10.

For the GENIA corpus, the whole training data
(1,600 utterances) were split into eight nonoverlapping sets
with each set consisting of 200 sentences. The training set
size of 200 was chosen empirically, as the performance of
the HVS model would degrade if the training set size is set
to 100 or 500.

To explore the convergence rate of discriminative
training, we further analyzed the experiments on the
DARPA Communicator data. Fig. 6 gives the histogram of
the iteration numbers on the experiments we have con-
ducted to find the optimal size of the training data. As
described above, overall experiments were conducted 4�
5� 10þ 5� 2þ 5 ¼ 215 times. In Fig. 6, we can see that
almost half of the experiments converged before iteration 3.
This shows the fast convergence rate of the discriminative
training method.

5.3 Comparison of Discriminative Training with
MLE

The results using MLE and discriminative training are listed
in Table 5. For the DARPA Communicator data, N and I

were set to 30 and 1,000, respectively, and the discrimina-
tively trained HVS model outperforms the ML-trained HVS
model by 4.2 percent, while on the ATIS data, when N ¼ 5
and I ¼ 100, discriminative training achieves an F-measure
of 91.87 percent. For the more complex task on the GENIA
corpus, discriminative training improves on the MLE by
2.5 percent, where N and I are set to 5 and 200, respectively.
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Fig. 4. Performances of the HVS model trained on the increasingly

added training data.

TABLE 3
The Best Performance of 10-Time Sampling Experiments on

Various I and N on the DARPA Communicator Data



Fig. 7 shows the performance of the HVS model versus
the training iterations on the three corpora. It can be
observed that discriminative training can quickly achieve
the best performance on the HVS model. The best
performance on the DARPA Communicator data, the ATIS
data, and the GENIA corpus is achieved at iterations 3, 4,
and 1, respectively.

5.4 Semantic Parsing Based on the Results of the
Speech Recognizer Output

The aforementioned experiments conducted in the travel
domain used the reference transcriptions derived from the
speech utterances as inputs to the semantic parser. That is, it
was assumed that the speech recognizer gives 0 percent
word error rate. Since the air travel data was originally
derived from speech, a more interesting comparison would
be conducted by performing semantic parsing based on the
results of the speech recognizer output. As we do not have
the access to the DARPA Communicator speech data,
experiments were only conducted on the ATIS corpus.

For the ATIS corpus, the training data set consists of
4,978 utterances, as mentioned in Section 4.2. The ATIS-3
DEC94 test set was used as our test set. The word error rate
given by the speech recognizer built from the HTK toolkit
[34] is 2.7 percent. Table 6 shows the results using MLE and
discriminative training when performing semantic parsing

directly on the speech recognizer output. The discrimina-
tively trained HVS model outperforms the ML trained
model by 12 percent.

5.5 Discussion

Comparing the experimental results in the travel domain on
the DARPA Communicator data and the ATIS data, we
found that the discriminative training approach gives the
relative improvement, measured in F-measure, of 4.2 percent
on the DARPA Communicator data. However, the relative
improvement is only 0.8 percent on the ATIS data. One
possible reason is that the ATIS data are relatively simple,
while the DARPA Communicator data are more complex.
Thus, MLE achieves better performance on ATIS than on the
DAPRA Communicator data. As a consequence, the possible
range of improvement would be smaller for ATIS. Incorpor-
ating discriminative training gives a similar performance on
both corpora with the F-measure value of 91.78 percent
obtained from ATIS and 91.68 percent obtained from the
DARPA Communicator data.
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TABLE 4
The Best Performance of 10-Time Sampling Experiments on

Various I and N on the ATIS Data

Fig. 5. Boxplot of the performance on the DARPA Communicator data using discriminative training with different N and I. (a) I ¼ 100. (b) I ¼ 200.

(c) I ¼ 500. (d) I ¼ 1; 000. (e) I ¼ 5; 000.

Fig. 6. Histogram of the number of experiments versus the iterations

required for convergence on the DARPA Communicator data.



Comparing the performance of discriminative training in

the travel domain and the bioinformatics domain, the

discriminative training approach achieves a relative
2.5 percent improvement on the GENIA corpus compared
to the 4.2 percent improvement on the DARPA Commu-
nicator Data. The main reason leading to the above result is
that the F-measure metric was used in different ways to
evaluate the model performance. In the GENIA corpus, the
F-measure was used to evaluate the performance of PPI
extraction. To correctly extract a PPI, two protein names, one
protein interaction keyword, and the hierarchical relations
among these three terms must all be identified correctly and
simultaneously. That would be only considered as one
correct entry in F-measure calculation. Thus, the relative
improvement in F-measure in the GENIA corpus is not
directly comparable to the improvement in the DARPA
Communicator data.

When viewing the experimental results as relative
reductions in the error rate, we found that reductions of
about 30.9 percent and 9 percent were achieved in the
DARPA Communicator data and the ATIS data, respec-
tively. However, for the GENIA corpus, the relative error
reduction rate is only 4 percent. It is therefore important to
test the significance levels of the performance improvement.
For this purpose, we conducted the statistical test on the
three corpora.

For all the three corpora, we constructed 10 models
based on the different training data using discriminative
training and evaluated their performance on their corre-
sponding test data sets. t-test was employed for the
significance test. Table 7 lists the t values for each
experiments. The probabilities of the results, assuming the
NULL hypothesis, are also shown in the table. To further
compare the statistical difference between the performance
of MLE and that of discriminative training on the GENIA
corpus, we constructed two HVS models using MLE and
discriminative training, respectively, and evaluated the two
models on 10 different test data sets. Paired Student’s t-test
was used. Table 7 shows the significance test results. It can
be observed that the reduction error rate of 4 percent
between MLE and discriminated training for the GENIA
corpus is indeed statistically significant.
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TABLE 5
Performance Comparison of MLE versus Discriminative Training

Fig. 7. Performance of the discriminatively trained HVS model versus

training iterations. (a) DARPA Communicator ðN ¼ 30; I ¼ 1; 000Þ.
(b) ATIS ðN ¼ 5; I ¼ 100Þ. (c) GENIA corpus ðN ¼ 5; I ¼ 200Þ.

TABLE 6
Performance Comparison of MLE versus Discriminative

Training on the ATIS Speech Recognizer Output



6 CONCLUSION AND FUTURE WORK

This paper has described how to apply discriminative

training to the HVS model on the two different domains:

semantic parsing on the DARPA Communicator data and

the ATIS data in the travel domain and PPI extraction on the

GENIA corpus in the bioinformatics domain. The objective

function is based on the minimum parse error criterion. The

GDP algorithm is used for estimating the parameters.

Experimental results show that the proposed approach

exhibits the following advantages:

. Fast convergence rate. It can achieve the best perfor-
mance using only a small amount of training data
and converge within three iterations.

. Improved performance. It achieves modest improve-
ment compared to the ML training of the HVS model.

In future work, we plan to apply other objective functions

to discriminatively train the HVS model. Also, instead of

using the N-best parse results, we will explore applying

discriminative training on the parse lattices directly.

APPENDIX

DERIVATIONS OF THE UPDATE FORMULAE FOR

DISCRIMINATIVE TRAINING

To calculate the gradient of the loss functionr‘ðWi; �Þ, we

break it into two parts and it becomes

r‘ ¼ @‘i
@di

@dðWi; �Þ
@�

: ð21Þ

Computing the two parts separately, we get

@‘i
@di
¼ �

1þ e��di
e��di

1þ e��di ¼ �‘ðdiÞð1� ‘ðdiÞÞ; ð22Þ

@dðWi; �Þ
@�

¼ � 1

P ðWi;Cj; �Þ
@P ðWi;Cj; �Þ

@�
þ

P
i;i 6¼j P ðWi;Ci; �Þ��1 @P ðWi;Ci;�Þ

@�P
i;i 6¼j P ðWi;Ci; �Þ�

:

ð23Þ

We can take the partial derivatives with respect to each of

the log probability parameters. Let � ¼ logP ðnjc0Þ, we get

@P ðWi;Ci; �Þ
@ logP ðnjc0Þ ¼ @

n
P ðnjc0ÞIðCi;n;c

0Þ YT
t¼1;nt 6¼n&&ct�1 6¼c0

P ðntjct�1ÞP ðct½1�jct½2::Dt�ÞP ðwtjctÞ
o

=@ logP ðnjc0Þ
¼ IðCi; n; c0ÞP ðWi;Ci; �Þ;

ð24Þ

where IðCi; n; c0Þ denotes the number of times of the

operation popping up n semantic tags at the current vector

state c0 in the Ci parse tree.
Thus,

@dðWi; �Þ
@ logP ðnjc0Þ ¼ �

1

P ðWi;Cj; �Þ
IðCj; n; c0ÞP ðWi;Ci; �Þ

þ
P

i;i 6¼j P ðWi;Ci; �Þ�IðCi; n; c0ÞP
i;i 6¼j P ðWi;Ci; �Þ�

¼ � IðCj; n; c0Þ

þ
X
i;i6¼j

IðCi; n; c0Þ
P ðWi;Ci; �Þ�P
i;i6¼j P ðWi;Ci; �Þ�

;

where Cj is the known correct parse tree.
In a similar way, we can get

@P ðWi;Ci; �Þ
@ logP ðc½1�jc½2::D�Þ ¼ IðCi; c½1�; c½2::D�ÞP ðWi;Ci; �Þ; ð25Þ

@P ðWi;Ci; �Þ
@ logP ðwjcÞ ¼ IðCi; w; cÞP ðWi;Ci; �Þ; ð26Þ

where IðCi; c½1�; c½2::D�Þ denotes the number of times the

operation of pushing the semantic tag c½1� at the current

vector state c½2::D� in the Ci parse tree and IðCi; w; cÞ
denotes the number of times of emitting the w at the state c

in the parse tree Ci.
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TABLE 7
Statistical Test on the Three Corpora, Where p Denotes the Probability of the Result, Assuming the NULL Hypothesis



And, finally,

@dðWi; �Þ
@ logP ðc½1�jc½2::D�Þ ¼ �IðCj; c½1�; c½2::D�Þ

þ
X
i;i 6¼j

IðCi; c½1�; c½2::D�Þ
P ðWi;Ci; �Þ�P
i;i 6¼j P ðWi;Ci; �Þ�

;
ð27Þ

@dðWi; �Þ
@ logP ðwjcÞ ¼ � IðCj; w; cÞ

þ
X
i;i 6¼j

IðCi; w; cÞ
P ðWi;Ci; �Þ�P
i;i 6¼j P ðWi;Ci; �Þ�

:
ð28Þ

Based on the above deductions, we can get the update

formulas.
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