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Abstract. In this paper, we propose a learning approach to train conditional ran-
dom fields from unaligned data for natural language understanding where input to
model learning are sentences paired with predicate formulae (or abstract seman-
tic annotations) without word-level annotations. The learning approach resembles
the expectation maximization algorithm. It has two advantages, one is that only
abstract annotations are needed instead of fully word-level annotations, and the
other is that the proposed learning framework can be easily extended for train-
ing other discriminative models, such as support vector machines, from abstract
annotations. The proposed approach has been tested on the DARPA Communi-
cator Data. Experimental results show that it outperforms the hidden vector state
(HVS) model, a modified hidden Markov model also trained on abstract annota-
tions. Furthermore, the proposed method has been compared with two other ap-
proaches, one is the hybrid framework (HF) combining the HVS model and the
support vector hidden Markov model, and the other is discriminative training of
the HVS model (DT). The proposed approach gives a relative error reduction rate
of 18.7% and 8.3% in F-measure when compared with HF and DT respectively.

1 Introduction

One of the key tasks in natural language understanding is semantic parsing which maps
natural language sentences to complete formal meaning representations. For example,
the following sentence could be represented by the predicate formula (also called ab-
stract semantic annotation) as shown below:

I want to return to Dallas on Thursday.
RETURN(TOLOC(CITY(Dallas)) ON(DATE(Thursday)))

Early approaches to semantic parsing rely on hand-crafted semantic grammar rules
to fill slots in semantic frames using word pattern and semantic tokens. Such rule-based
approaches are typically domain-specific and often fragile. In contrast, statistical ap-
proaches are able to accommodate the variations found in real data and hence can
in principle be more robust. They can be categorized into three types: generative ap-
proaches, discriminative approaches and a hybrid of the two.

Generative approaches learn the joint probability model, P (W,C), of input sen-
tence W and its semantic tag sequence C, compute P (C|W ) using the Bayes rule,



and then take the most probable semantic tag sequence C. The hidden Morkov model
(HMM), being a generative model, has been predominantly used in statistical semantic
parsing. It models sequential dependencies by treating a semantic parse sequence as a
Markov chain, which leads to an efficient dynamic programming formulation for infer-
ence and learning. The hidden vector state (HVS) model [4] is a discrete HMM model
in which each HMM state represents the state of a push-down automaton with a finite
stack size. State transitions are factored into separate stack pop and push operations
constrained to give a tractable search space. The result is a model which is complex
enough to capture hierarchical structure but which can be trained automatically from
only lightly annotated data. Discriminative approaches directly model posterior proba-
bility P (C|W ) and learn mappings from W to C. Conditional random fields (CRFs),
as one representative example, define a conditional probability distribution over label
sequence given an observation sequence, rather than a joint distribution over both label
and observation sequences [5]. Another example is the hidden Markov support vector
machines (HM-SVMs) [1] which combine the flexibility of kernel methods with the
idea of HMMs to predict a label sequence given an input sequence. However, such dis-
criminative methods require fully annotated corpora for training which are difficult to
obtain in practical applications. On the other hand, the HVS model can be easily trained
from only lightly annotated corpora. However, unlike discriminative models such as the
CRFs, it cannot include a large number of correlated lexical or syntactic features in
input sentences. It is thus interesting to explore the feasibility to train CRFs from ab-
stract semantic annotations. It is a highly challenge task since the derivation from each
sentence to its abstract semantic annotation is not annotated in the training data and is
considered hidden.

In this paper, we propose a learning approach based on expectation maximization
(EM) to train the CRFs from abstract annotations. This approach works as follows,
the CRFs compute expectation based on initial parameters in first step. Based on the
expectation results, the CRFs are then constrainedly trained using some general learning
algorithms such as stochastic gradient descent (SGD). With re-estimated parameters,
the CRFs go to the next iteration until no more improvements could be achieved. Our
proposed learning approach has two advantages, one is that the CRFs can be trained
from abstract semantic annotations without expensive treebank style annotation data,
and the other is that the learning approach is applicable to other discriminative models
such as SVMs. To evaluate the performance of the proposed approach, we conducted
experiments on the DARPA Communicator Data. Experimental results show that our
proposed approach outperforms the HVS model trained also on abstract annotations.
Furthermore, the proposed approach outperforms the other two approaches, one is the
hybrid framework (HF) combing HVS and HM-SVMs, and the other is discriminative
training of the HVS model (DT). The proposed approach gives a relative error reduction
rate of 18.7% and 8.3% in F-measure when compared with HF and DT respectively.

The rest of this paper is organized as follows. Section 2 introduces CRFs and the pa-
rameter estimation and inference procedures of training CRFs. Our proposed learning
procedure to train CRFs from abstract annotations is presented in Section 3. Experi-
mental setup and results are discussed in Section 4. Finally, Section 5 concludes the
paper.



2 Conditional Random Fields

Linear-chain conditional random fields (CRFs), as a discriminative probabilistic model
over sequences of feature vectors and label sequences, have been widely used to model
sequential data. This model is analogous to maximum entropy models for structured
outputs. By making a first-order Markov assumption on states, a linear-chain CRF de-
fines a distribution over state sequence y = y1, y2, . . . , yT given an input sequence
x = x1, x2, . . . , xT (T is the length of the sequence) as

p(y|x) =
ΠtΦt(yt−1, yt,x)

Z(x)
(1)

where the partition function Z(x) is the normalization constant that makes the proba-
bility of all state sequences sum to one.

2.1 Inference

The most probable labeling sequence can be calculated by argmaxY P (Y |X;Θ). It can
be efficiently calculated using the Viterbi algorithm. Similar to the forward-backward
procedure for HMM, the marginal probability of states at each position in the sequence
can be computed as,

P (yt = s|x) =
αt(yt = s|x)βt(yt = s|x)

Z(x)
(2)

where Z(x) =
∑

y αt(y|x).
The forward values αt(yt = s|x) and backward values βt(yt = s|x) are defined in

iterative form as follows,

αt(yt = s|x) =
∑

y′
αt−1(yt−1 = y′|x) exp

∑

k

θkfk(yt−1 = y′, yt = s,x) (3)

βt(yt = s|x) =
∑

y′
βt+1(yt+1 = y′|x) exp

∑

k

θkfk(yt+1 = y′, yt = s,x) (4)

3 Training CRFs from Abstract Annotations

To train CRFs from abstract annotations, the expectation maximization (EM) algorithm
can be extended to efficiently estimate model parameters. The EM algorithm is an ef-
ficient iterative procedure to compute the maximum likelihood (ML) estimate in the
presence of missing or hidden data [3]. The EM algorithm is divided into two-step iter-
ations: The E-step, and the M-step. The missing data are estimated given the observed
data and current estimate of the model parameters in E-step. In the M-step, the likeli-
hood function is maximized under the assumption that the missing data are known. We
now explain how to train CRFs from abstract annotations.

Given a sentence labeled with an abstract semantic annotation as shown in Table 1,
we first expand the annotation to the flattened semantic tag sequence as in Table 1(a).



Table 1. Abstract semantic annotation.

Sentence: I want to return to Dallas on Thursday.
Abstract annotation: RETURN(TOLOC(CITY(Dallas)) ON(DATE(Thursday)))
(a) Flattened semantic tag list:
RETURN RETURN+TOLOC RETURN+TOLOC+CITY(Dallas) RETURN+ON
RETURN+ON+DATE(Thursday)
(b) Expanded semantic tag list:
RETURN RETURN+DUMMY RETURN+TOLOC RETURN+TOLOC+DUMMY
RETURN+TOLOC+CITY(Dallas) RETURN+TOLOC+CITY(Dallas)+DUMMY
RETURN+ON RETURN+ON+DUMMY RETURN+ON+DATE(Thursday)
RETURN+ON+DATE(Thursday)+DUMMY

In order to cater for irrelevant input words, a DUMMY tag is allowed everywhere in
preterminal positions. Hence, the flattened semantic tag sequence is finally expanded to
the semantic tag sequence as in Table 1(b).

We first calculate the log likelihood of L(Θ) with expectation over the abstract
annotation as follows,

L(Θ;Θt) =
∑M

i

∑
Y u

i
P (Y u

i |Xi;Θt) log P (Y u
i |Xi;Θ)

=
∑M

i

∑
Y u

i
P (Y u

i |Xi;Θt)
∑

t

∑
k θkfk(y′, y, Xi)−

∑k
i log Z(Xi)

, where Y u
i is the unknown semantic tag sequence of the i-th word sequence, and

Z(Xi) =
∑

y

exp(
∑

t

∑

k

θkfk(yt−1, yt, Xi)) (5)

. It can be optimized using the same optimization method as in standard CRFs training.
Then, to infer the word-level semantic tag sequences based on abstract annotations,

Equations 3 and 4 are modified as shown in Equations 6 and 7,

αt(yt = s|x) =





0, when g(s, xt) = 1∑
y′

{
αt−1(yt−1 = y′|x)

exp
∑

k θkfk(yt−1 = y′, yt = s,x)
}

, otherwise
(6)

βt(yt = s|x) =





0, when g(s, xt) = 1∑
y′

{
βt+1(yt+1 = y′|x)

exp
∑

k θkfk(yt+1 = y′, yt = s,x)
}

, otherwise
(7)

where g(s, xt) is defined as follows,

g(s, xt) = max





1, s is not in the allowable semantic tag list of x
1, s is not of class type and xt is of class type
0, otherwise

(8)

g(s, xt) in fact encodes the two constraints implied from abstract annotations. Firstly,
state transitions are only allowed if both incoming and outgoing states are listed in the



semantic annotation defined for the sentence. Secondly, if there is a lexical item at-
tached to a preterminal tag of a flattened semantic tag, that semantic tag must appear
bound to that lexical item in the training annotation.

4 Experiments

Experiments have been conducted on the DARPA Communicator data [2] which are
available for public download. The data contain utterance transcriptions and the seman-
tic parse results from the rule-based Phoenix parser. After cleaning up the data, the
training set consist of 12702 utterances while the test set contains 1178 utterances. The
abstract annotation used for training and the reference annotation needed for testing
were derived by hand correcting the Phoenix parse results. For example, for the sen-
tence “Show me flights from Boston to New York”, the abstract annotation would
be FLIGHT(FROMLOC(CITY) TOLOC(CITY)). Such an annotation need only list
a set of valid semantic concepts and the dominance relationships between them with-
out considering the actual realized concept sequence or attempting to identify explicit
word/concept pairs. Thus, it avoids the need for expensive tree-bank style annotations.

In all the subsequent experiments, the proposed learning approach is implemented
by modifying the source code of the CRF suite3. The features such as word features
(current word, previous word, next word and so on) and POS features (current POS
tag, previous one, next one and so on) are employed. To estimate the parameters of
CRFs, the stochastic gradient descent (SGD) iterative algorithm [6] was employed. As
discussed in Section 1 that while CRFs can easily incorporate arbitrary features into
training, HVS model cannot include a large number of correlated lexical or syntactic
features in input sentences. It would be interested to see how CRFs compared to HVS
when both are trained from abstract annotations. The proposed CRFs learning approach
achieved 92.37% of F-measure, which significantly outperforms HVS. Employing SGD
gives a relative error reduction of 36.6%, when compared with the performance of the
HVS model where only 87.97% was achieved.

We further compare our proposed learning approach with two other methods. One
is a hybrid generative/discriminative framework (HF) [7] which combines HVS with
HM-SVMs so as to allow the incorporation of arbitrary features as in CRFs. The same
features as listed above were used in HF training. The other is a discriminative approach
(DT) based on parse error measure to train the HVS model [8]. The generalized proba-
bilistic descent (GPD) algorithm was employed for adjusting the HVS model to achieve
minimum parse error rate. Table 2 shows that our proposed learning approach outper-
forms both HF and DT. Training CRFs on abstract annotations allows the calculation
of conditional likelihood and hence results in direct optimization of the objective func-
tion to reduce the error rate of semantic labeling. In the contrary, the hybrid framework
firstly uses the HVS parser to generate full annotations for training HM-SVMs. This
process involves the optimization of two different object functions (one for HVS and
another for HM-SVMs). Although DT also uses an objective function which aims to
reduce the semantic parsing error rate. It is in fact employed for supervised re-ranking
where the input is the N -best parse results generated from the HVS model.

3 http://www.chokkan.org/software/crfsuite/



Table 2. Performance comparison between the proposed approach and the two other approaches.

Measurement
Performance Relative Error Reduction

HF DT Our Approach Compared with HF Compared with DT
Recall (%) 90.99 91.47 92.27 14.2 9.4
Precision (%) 90.25 91.87 92.48 22.9 7.5
F-measure (%) 90.62 91.68 92.37 18.7 8.3

5 Conclusions and Future Work

In this paper, we proposed an effective learning approach which can train the con-
ditional random fields without the expensive treebank style annotation data. Instead,
it trains the CRFs from only abstract annotations in a constrained way. Experimen-
tal results show that 36.6% relative error reduction in F-measure was obtained using
the proposed approach on the DARPA Communicator Data when compared with the
performance of the HVS model. Furthermore, the proposed learning approach also out-
performs two other methods, one is the hybrid framework (HF) combining both HVS
and HM-SVMs, and the other is discriminative training (DT) of the HVS model, with
a relative error reduction rate of 18.7% and 8.3% being achieved when compared with
HF and DT respectively.
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