
A Novel Framework of Training Hidden Markov Support
Vector Machines from Lightly-Annotated Data

Deyu Zhou
School of Computer Science and Engineering

Southeast University, Nanjing, China
d.zhou@seu.edu.cn

Yulan He
Knowledge Media Institute

Open University, UK
y.he@open.ac.uk

ABSTRACT
Natural language understanding (NLU) aims to map sen-
tences to their semantic mean representations. Statistical
approaches to NLU normally require fully-annotated train-
ing data where each sentence is paired with its word-level
semantic annotations. In this paper, we propose a novel
learning framework which trains the Hidden Markov Sup-
port Vector Machines without the use of expensive fully-
annotated data. In particular, our learning approach takes
as input a training set of sentences labeled with abstract
semantic annotations encoding underlying embedded struc-
tural relations and automatically induces derivation rules
that map sentences to their semantic meaning representa-
tions. The proposed approach has been tested on the DARPA
Communicator Data and achieved 93.18% in F-measure, which
outperforms the previously proposed approaches of training
the hidden vector state model or conditional random fields
from unaligned data, with a relative error reduction rate of
43.3% and 10.6% being achieved.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Process-
ing—Text analysis

General Terms
Algorithms, Experimentation

Keywords
Hidden Markov support vector machines (HM-SVMs), Nat-
ural language understanding, Semantic parsing

1. INTRODUCTION
The natural language understanding problem can be con-

sidered as a mapping problem where the aim is to map a
sentence to its semantic meaning representation (or abstract
semantic annotation) such as the one shown below.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, UK.
Copyright 2011 ACM 978-1-4503-0099-5/10/10 ...$10.00.

I want to return to Dallas on Thursday.
RETURN(TOLOC(CITY(Dallas)) ON(DATE(Thursday)))

This is a structured classification task which predicts out-
put labels (semantic tag or concept sequences) C from in-
put sentences S where the output labels have rich internal
structures. It is a highly challenging problem because the
derivation from each sentence to its abstract semantic anno-
tation is not annotated in the training data and is consid-
ered hidden. Although a hierarchical hidden state structure
could be used to model embedded structural context in sen-
tences, such as the Hidden Vector State (HVS) model [4],
which learns a probabilistic push-down automaton, it can-
not include a large number of correlated lexical or syntac-
tic features in input sentences, and it cannot handle any
arbitrary embedded relations since it only supports right-
branching semantic structures. Other approaches learn se-
mantic parsers that map natural language sentences into a
formal meaning representation such as lambda calculus or
first-order logic [6, 2]. However these systems either require
a hand-built, ambiguous combinatory categorial grammar
template to learn a probabilistic semantic parser [6], or as-
sume the existence of an unambiguous, context-free gram-
mar of the target meaning representations [2].

Conditional Random Fields (CRFs) have been extensively
studied for sequence labeling. Most applications require the
availability of fully annotated data, i.e., an explicit align-
ment of sentence and word-level labels. Mann and McCal-
lum [5] use labeled features instead of fully labeled instances
to train linear-chain CRFs. Generalized expectation criteria
are used to express a preference for parameter settings in
which the model’s distribution on unlabeled data matches a
target distribution. They tested their approach on the clas-
sified advertisements data set (Classified) [3] and achieved
68.3% accuracy with only labeled features. Zhou and He [7]
proposed an iterative learning approach based on expecta-
tion maximization (EM) to train the CRFs from abstract
semantic annotations. They achieved 92% in F-measure on
the DARPA Communicator Data.

In this paper, we propose a novel learning approach to
train the HM-SVMs from unaligned data. It first computes
expectations using initial model parameters. Parsing results
are then filtered based on a measure describing the level of
agreement with the sentence abstract semantic annotations
and fed into model learning using the cutting-plane algo-
rithm. With the re-estimated parameters, the learning of
HM-SVMs goes to the next iteration until no more improve-
ments could be achieved. The rest of this paper is orga-
nized as follows. Section 2 introduces HM-SVMs. The pro-

posed learning procedure to train HM-SVMs from abstract
semantic annotations is presented in Section 3. Experimen-
tal setup and results are discussed in Section 4. Finally,
Section 5 concludes the paper.

2. HIDDEN MARKOV SUPPORT VECTOR
MACHINES (HM-SVMS)

Given a set of training data (Si, Ci), i = 1, . . . N , to learn a
function that assigns to a sequence of words S = (s1 · · · sT), si ∈
s, i = 1, . . . T , a sequence of semantic concepts or tags C =
(c1c2 . . . cT), ci ∈ c, i = 1, . . . T , a common approach is to
find a discriminant function F : S × C → R that assigns a
score to every input S ∈ S and every semantic tag sequence
C ∈ C. In order to obtain a prediction f(S) ∈ C, the func-
tion is maximized with respect to f(S) = argmax

C∈C
F (S,C).

In particular, the function F (S,C) is assumed to be linear
in some combined feature representation of S and C in HM-
SVMs [1], F (S,C) := ⟨w,Φ(S,C)⟩. The parameters w are
adjusted so that the true semantic tag sequence Ci scores
higher than all other tag sequences C ∈ Ci := C\Ci with a
large margin. To achieve the goal, the following optimization
problem is solved instead:

min
ξi∈R,w∈F

Cons
∑
i

ξi +
1

2
∥w∥2 (1)

s.t. ⟨w,Φ(S,Ci)⟩ − ⟨w,Φ(S,C)⟩ ≥ 1− ξi,

∀i = 1, . . . N and C ∈ C\Ci

where ξi is non-negative slack variables allowing one to in-
crease the global margin by paying a local penalty on some
outlying examples, and Cons dictates the desired trade off
between margin size and outliers. To solve Equation 1, the
dual of the equation is solved instead. The solution ŵ can
be written as

ŵ =

N∑
i=1

∑
C∈C

αi(C)Φ(Si, C), (2)

where αi(C) is the Lagrange multiplier of the constraint
associated with example i and Ci.

3. TRAINING HM-SVMS FROM ABSTRACT
SEMANTIC ANNOTATIONS

To train HM-SVMs from abstract semantic annotations,
we extended the use of expectation maximization (EM) al-
gorithm to estimate model parameters. The EM algorithm
is an efficient iterative procedure to compute the maximum
likelihood (ML) estimate in the presence of missing or hid-
den data. The EM algorithm is divided into two steps. In
the E-step, the missing data are estimated given the ob-
served data and current estimate of model parameters. In
the M-step, the likelihood function is maximized under the
assumption that the missing data are known. We summarize
the procedure of learning HM-SVMs from abstract semantic
annotations in Figure 3. The details of each step are given
in the subsequent sections.

3.1 Initialization
Given a sentence labeled with an abstract semantic anno-

tation as shown in Table 1, we first expand the annotation
to the flattened semantic tag sequence as in Table 1(a). In

Input: A set of sentences S = {Si, i = 1, . . . , N} and
their corresponding semantic annotations A =
{Ai, i = 1, . . . , N}

Output: The trained HM-SVMs with parameters Θ
Procedure:

1. Initialization:
For each Ai, expand the annotation to the flat-
tened semantic tag sequence Ci.
Estimate the initial model parameters Θ0 using
S and the flattened semantic tag sequences C =
{Ci, i = 1, . . . , N}.
Set Θ = Θ0.

2. Expectation:
For each Si, generate the semantic tag sequence
Ĉi using the HM-SVMs with the current model
parameters Θ.

3. Filtering:

For the generated semantic tag sequences Ĉ =
{Ĉi, i = 1, . . . , N}, filter Ĉ based on a score
function which measures the agreement of the
generated semantic tag sequences with the ac-
tual flattened semantic tag sequences C.

4. Maximization:
Re-estimate model parameters Θ′ using the fil-
tered Ĉ and set Θ =Θ′.

5. If converged, Output Θ.
Else go to Step 2.

Figure 1: Procedure of learning HM-SVMs from ab-
stract semantic annotations.

order to cater for irrelevant input words, a DUMMY tag is
introduced in the preterminal position. Hence, the flattened
semantic tag sequence is finally expanded to the semantic
tag sequence as in Table 1(b).

Table 1: Abstract semantic annotation and its flat-
tened semantic tag sequence.
Sentence: I want to return to Dallas on Thursday.
Annotation: RETURN(TOLOC(CITY(Dallas))

ON(DATE(Thursday)))

(a) Flattened semantic tag list:
RETURN RETURN+TOLOC RETURN+TOLOC+CITY(Dallas)

RETURN+ON RETURN+ON+DATE(Thursday)

(b) Expanded semantic tag list:
RETURN RETURN+DUMMY RETURN+TOLOC RETURN+TOLOC+DUMMY

RETURN+TOLOC+CITY(Dallas)

RETURN+TOLOC+CITY(Dallas)+DUMMY

RETURN+ON RETURN+ON+DUMMY RETURN+ON+DATE(Thursday)

RETURN+ON+DATE(Thursday)+DUMMY

3.2 Expectation
We first need to calculate the most likely semantic tag se-

quence Ĉ for each sentence S = (s1 · · · sT), Ĉ = argmax
C∈C

F (S,C)

where F : S × C → R is a discriminant function and can be
decomposed into two components, F (S,C) = F1(S,C) +

F2(S,C), where

F1(S,C) =
∑

σ∈c,τ∈c

δ(σ, τ)

T∑
l=1

[[cl−1 = σ ∧ cl = τ]] (3)

F2(S,C) =
∑
σ∈c

T∑
l=1

γ(sl, σ)[[cl = σ]] (4)

Here, δ(σ, τ) is considered as the co-efficient for the tran-
sition from state (or semantic tag) σ to state τ while γ(sl, σ)
can be treated as the co-efficient for the emission of word sl

from state σ. They are defined as follows,

δ(σ, τ) =
∑
i,C

αi(C)

|C|∑
m=1

[[cm−1 = σ ∧ cm = τ]] (5)

γ(sl, σ) =
∑
i,m

∑
C

[[cm = σ]]αi(C)k(sl, smi) (6)

where k(sl, smi) = ⟨Ψ(sl),Ψ(smi)⟩ describes the similarity of
the input patterns Ψ between word sl and word smi , the
mth word in the training example i, αi(C) is a set of dual
parameters or Lagrange multiplier of the constraint asso-
ciated with example i and semantic tag sequence C as in
Equation 2. Using the results derived in Equations 5 and
6, Viterbi decoding can be performed to generate the best
semantic tag sequence.
To incorporate the constraints as defined in the abstract

semantic annotations, the values of δ(σ, τ) and γ(sl, σ) are
modified for each sentence,

δ(σ, τ) =

{
0, when g(σ, τ) = 1∑

i,C αi(C)
∑

m[[cm−1 = σ ∧ cm = τ]], otherwise

γ(sl, σ) =

{
0, when h(σ, sl) = 1∑

i,m

∑
C [[c

m = σ]]αi(C)k(sl, smi), otherwise

where g(σ, τ) and h(σ, sl) are defined as follows,

g(σ, τ) =

{
1, τ is not in the allowable semantic tag list
0, otherwise

h(σ, sl) =

{
1, σ is not of class type and sl is of class type
0, otherwise

g(σ, τ) and h(σ, sl) in fact encodes the two constraints im-
plied from abstract annotations. Firstly, state transitions
are only allowed if both incoming and outgoing states are
listed in the semantic annotation defined for the sentence.
Secondly, if there is a lexical item attached to a preterminal
tag of a flattened semantic tag, that semantic tag must ap-
pear bound to that lexical item in the training annotation.
For example, in the annotation shown in Table 1, ‘Dallas’ be-
longs to a lexical class ‘CITY’. Hence, it can only be tagged
with semantic tags containing a preterminal tag ‘CITY’.

3.3 Filtering
For each sentence, the semantic tag sequences generated

in the Expectation step are further processed based on a
measure on the agreement of the semantic tag sequence
T = {t1, t2, ..., tn} with its corresponding abstract seman-
tic annotation A. The score of T is defined as

Score(T) = 2 ∗ Srecall ∗ Sprecision

Srecall + Sprecision
, (7)

where Sprecision = Nr/n,SRecall = Nr/p. Here, Nr is the
number of the semantic tags in T which also occur in A, n
is the number of semantic tags in T , and p is the number
of semantic tags in the flattened semantic tag sequence for
A. The score is similar to the F-measure which is the har-
monic mean of precision and recall. It essentially measures
the agreement of the generated semantic tag sequence with
the abstract semantic annotation. We filter out sentences
with their score below certain predefined threshold and the
remaining sentences together with their generated semantic
tag sequences are fed into the next Maximization step. In
our experiments, we empirically set the threshold to 0.1.

3.4 Maximization
Given the filtered training examples from the Filtering

step, the parameters w are adjusted so that the true se-
mantic tag sequence Ci scores higher than all the other tag
sequences C ∈ Ci := C\Ci with a large margin. To achieve
the goal, the optimization problem as stated in Equation 1 is
solved using an online learning approach as described in [1].
In short, it works as follows, a pattern sequence Si is pre-
sented and the optimal semantic tag sequence Ĉi = f(Si) is

computed by employing Viterbi decoding. If Ĉi is correct,
no update is performed. Otherwise, the weight vector w is
updated based on the difference from the true semantic tag
sequence ∆Φ = Φ(Si, Ĉi)− Φ(Si, Ci).

4. EXPERIMENTS
Experiments have been conducted on the DARPA Com-

municator data1 which were collected in 461 days. From
these, 46 days were randomly selected for use as test set
data and the remainder were used for training. After clean-
ing up the data, the training set consist of 12702 utterances
while the test set contains 1178 utterances.

The abstract semantic annotations used for training only
list a set of valid semantic tags and the dominance rela-
tionships between them without considering the actual real-
ized semantic tag sequence or attempting to identify explicit
word/concept pairs. Thus, it avoids the need for expensive
tree-bank style annotations. For example, for the sentence
“Show me flights from Boston to New York”, the abstract an-
notation would be
FLIGHT(FROMLOC(CITY) TOLOC(CITY)).

To evaluate the performance of the model, a reference
frame structure was derived for every test set sentence con-
sisting of slot/value pairs. An example of a reference frame
is:

Show me flights from Boston to New York.
Frame: FLIGHT
Slots: FROMLOC.CITY = Boston

TOLOC.CITY = New York

Performance was then measured in terms of F-measure
on slot/value pairs, which combines the precision (P) and
recall (R) values with equal weight and is defined as F =
(P +R)/2PR. We modified the open source SVMhmm2 to
train and test the HM-SVMs on abstract annotations.

1http://www.bltek.com/spoken-dialog-systems/
cu-communicator.html
2http://www.cs.cornell.edu/people/tj/svm_light/
svm_hmm.html

1 2 3 4 5 6 7 8 9 10
0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

Training iterations

F
−

m
ea

su
re

Window Size =0
Window Size =1
Window Size =2
Window Size =3

Figure 2: Comparison of performance on models
learned with feature sets chosen based on different
window sizes.

1 2 3 4 5 6 7 8 9 10
0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

Training iterations

F
−

m
ea

su
re

With Filtering Step
Without Filtering Step

Figure 3: Comparisons of performance with or with-
out the Filtering stage.

We employed word features (such as current word, previ-
ous word, and next word, etc) and part-of-speech (POS) fea-
tures (such as current POS tag, previous one, and next one,
etc) for training. To explore the impact of the choices of fea-
tures, we explored with feature sets comprising of words or
POS tags occurring before or after the current word within
some predefined window size. Figure 2 shows the perfor-
mance of our proposed approach with the window size vary-
ing between 0 and 3. Surprisingly, the model learned with
feature set chosen by setting window size 0 gives the best
overall performance. Varying window size between 1 and 3
only impacts the convergence rate and does not lead to any
performance difference at the end of the learning procedure.

In a second set of experiments, we compare the perfor-
mance with or without the Filtering step as discussed in
Section 3.3. Figure 3 shows that the Filtering step is indeed
crucial as it boosted the performance by nearly 3%.
We compare the performance of HM-SVMs with HVS and

CRFs, all trained on abstract semantic annotations. The

HVS model [4] was previously proposed based on the hy-
pothesis that a suitably constrained hierarchical model may
be trainable without treebank data whilst simultaneously
retaining sufficient ability to capture the hierarchical struc-
ture need to robustly extract task domain semantics. Such
a constrained hierarchical model can be conveniently im-
plemented using the HVS model which extends the HMM
model by expanding each state to encode the stack of a
push-down automaton. While it is hard to incorporate arbi-
trary input features to HVS learning, both HM-SVMs and
CRFs have the capability to deal with overlapping features.
A learning approach of training CRFs from abstract anno-
tations was previously proposed in [7]. Table 2 shows that
HM-SVMs outperforms both HVS and CRFs with a relative
error reduction of 43.3% and 10.6% being achieved respec-
tively. The superior performance of HM-SVMs over CRFs
shows the advantage of HM-SVMs on learning non-linear
discriminant functions via kernel functions.

Table 2: Overall comparison with other models.
Measurement HVS CRFs HM-SVMs
Recall (%) 87.81 92.27 92.04
Precision (%) 88.13 92.48 94.36
F-measure (%) 87.97 92.37 93.18

5. CONCLUSIONS
In this paper, we proposed an effective learning approach

which can train HM-SVMs without the expensive annotated
data. It takes as input a training set of sentences labeled
with abstract semantic annotations encoding underlying em-
bedded structural relations and automatically induces deriva-
tion rules that map sentences to semantic meaning repre-
sentation. We evaluated the performance of our proposed
learning approach on the DARPA Communicator Data and
showed that it outperforms two other models, HVS and
CRFs, also trained on abstract annotations.

6. REFERENCES
[1] Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden

Markov Support Vector Machines. In ICML, pages
3–10, 2003.

[2] R. Ge and R. Mooney. Learning a Compositional
Semantic Parser using an Existing Syntactic Parser. In
ACL, pages 611–619, 2009.

[3] T. Grenager, D. Klein, and C. D. Manning.
Unsupervised learning of field segmentation models for
information extraction. In ACL, pages 371–378, 2005.

[4] Y. He and S. Young. Semantic processing using the
hidden vector state model. Computer Speech and
Language, 19(1):85–106, 2005.

[5] G. S. Mann and A. Mccallum. Generalized expectation
criteria for semi-supervised learning of conditional
random fields. In ACL, pages 870–878, 2008.

[6] L. Zettlemoyer and M. Collins. Learning to map
sentences to logical form: Structured classification with
probabilistic categorial grammars. In UAI, 2005.

[7] D. Zhou and Y. He. Learning conditional random fields
from unaligned data for natural language
understanding. In ECIR, pages 283–288, 2011.

