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COTRADE: Confident Co-Training with

Data Editing
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Abstract—Co-training is one of the major semi-supervised
learning paradigms which iteratively trains two classifiers on two
different views, and uses the predictions of either classifier on
the unlabeled examples to augment the training set of the other.
During the co-training process, especially in initial rounds when
the classifiers have only mediocre accuracy, it is quite possible
that one classifier will receive labels on unlabeled examples
erroneously predicted by the other classifier. Therefore, the
performance of co-training style algorithms is usually unstable.
In this paper, the problem of how to reliably communicate
labeling information between different views is addressed by a
novel co-training algorithm named COTRADE. In each labeling
round, COTRADE carries out the label communication process
in two steps. Firstly, confidence of either classifier’s predictions
on unlabeled examples is explicitly estimated based on specific
data editing techniques. Secondly, a number of predicted labels
with higher confidence of either classifier are passed to the other
one, where certain constraints are imposed to avoid introducing
undesirable classification noise. Experiments on several real-
world data sets across three domains show that COTRADE can
effectively exploit unlabeled data to achieve better generalization
performance.

Index Terms—Machine learning, semi-supervised learning, co-
training, data editing, bias-variance decomposition.

I. INTRODUCTION

S
EMI-supervised learning is one of the prominent ways

to learn from both labeled and unlabeled data, which

automatically exploit unlabeled data in addition to labeled

data to improve learning performance without human inter-

vention [11], [50]. Roughly speaking, existing semi-supervised

learning algorithms can be categorized into several paradigms

[48], including generative parametric models, semi-supervised

support vector machines (S3VMs), graph-based approaches.

Specifically, Blum and Mitchell’s seminal work on co-training

[4] started the research on the fourth paradigm of semi-

supervised learning, i.e. disagreement-based semi-supervised

learning [48]. Standard co-training deals with tasks whose

input space has two different views (i.e. two independent

sets of attributes) and works in an iterative manner. In each

co-training round, two classifiers are trained separately on

the different views and the predictions of either classifier on
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unlabeled examples are used to augment the training set of the

other.

Following the work on standard co-training, a number

of relevant approaches have been developed under different

names [5], [6], [16], [25], [30], [45]–[47], [49]. Considering

that their key learning process is to maintain a large disagree-

ment between base learners, the name of disagreement-based

semi-supervised learning was then coined to characterize

their essential commonalities [48]. Standard co-training and

its variants have chosen to measure the labeling confidence

on unlabeled examples implicitly, e.g. by simply using the

classifier’s posteriori probability outputs [4], by repeatedly

performing cross-validation on the original labeled examples

[16], [44], or by additionally employing a third classifier [46].

In this paper, a new co-training style algorithm named CO-

TRADE, i.e. Confident cO-TRAining with Data Editing, is pro-

posed. Generally, data editing techniques aim to improve the

quality of the training set through identifying and eliminating

training examples wrongly generated in the labeling process,

which are incorporated into COTRADE to facilitate reliable

labeling information exchange between different views. Com-

parative experiments across three real-world domains clearly

validate the effectiveness of COTRADE in exploiting unlabeled

data to achieve strong generalization ability.

Generally, the major contributions of the proposed CO-

TRADE approach are two-fold. Firstly, in each co-training

round, COTRADE utilizes specific data editing techniques to

explicitly obtain reliable estimates of either classifier’s labeling

confidence on unlabeled examples. Specifically, on either

view, a weighted graph is constructed over the labeled and

unlabeled examples based on k-nearest neighbor criterion. The

labeling confidence for each unlabeled example is estimated

by resorting to the cut edge weight statistic [27], [51], which

reflects the manifold assumption [36] that examples with high

similarities in the input space should share similar labels.

Secondly, in each co-training round, COTRADE employs

certain mechanisms to sequentially augment the training set

of one classifier with labels predicted by the other one in the

order of descending labeling confidence. Specifically, labels

predicted by either classifier are assumed to come from

a classification process with random noise. The theoretical

results on learning from noisy examples [1] are adopted to

determine the appropriate amount of labeling information to

be communicated between different views, so as to prevent

performance degradation due to classification noise accumu-

lation.

The rest of this paper is organized as follows. Section II

reviews related work. Section III introduces basic notations
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and sketch of COTRADE. After that, Section IV presents

algorithmic details of COTRADE. Section V reports experi-

mental results on a number of real-world data sets. Section VI

further analyzes the underlying reasons for COTRADE’s good

performance. Finally, Section VII concludes and indicates

several issues for future work.

II. RELATED WORK

A great deal of research results have been achieved on semi-

supervised learning. In this section we will focus on reviewing

previous work related to co-training, while comprehensive

reviews on semi-supervised learning can be found in [11], [48]

and [50].

Standard co-training algorithm requires two sufficient and

redundant views, i.e. the input space can be naturally parti-

tioned into two sets of attributes, each of which is sufficient

for learning and is conditionally independent to the other given

the class label [4]. Dasgupta et al. [12] showed that when the

above requirement is met, the co-trained classifiers could make

few generalization errors by maximizing their agreement over

the unlabeled data. Later, Balcan et al. [3] proved that given

appropriately strong PAC [2] learners on each view, a weaker

“expansion” assumption on the underlying data distribution

is sufficient for iterative co-training to succeed. Wang and

Zhou [38] provided one sufficient condition for co-training

style algorithms to work, i.e. the two base learners should

have large difference. It presents the first theoretical support to

the success of some single-view co-training algorithms which

do not require two views. Later, they [40] further provided

the first sufficient and necessary condition for co-training to

succeed, and also established connection between two major

semi-supervised learning paradigms, i.e. graph-based methods

and disagreement-based methods. Wang and Zhou [39] also

showed that by combining co-training style algorithms with

active learning (as in the style of the SSAIRA method [45]),

the sample complexity can be improved further than pure semi-

supervised learning or pure active learning.

Besides those theoretical analyses, researchers have also

proposed several practical co-training style algorithms. Gold-

man and Zhou [16] presented an algorithm which does not

require two views on the input space but instead needs two

different supervised learning algorithms which can partition

the input space into a set of equivalence classes. Later, they

[44] extended this work by using a set of different algorithms

instead of two domain-partition algorithms and predicting

labels for unlabeled data by weighted majority voting. Zhou

and Li [46] exploited unlabeled data using three classifiers

and in each training round, an unlabeled example is labeled

for a classifier only if the other two classifiers agree on the

labeling. Thereafter, Li and Zhou [25] generalized their work

by including more base classifiers in the ensemble. Du et al.

[14] studied empirically on whether it is possible to discover

the existence of two views in a single-view data upon which

co-training can work reliably well, and showed that this is

very difficult when there are only a few labeled examples.

Currently, co-training style algorithms have been successfully

applied to many real-world tasks, such as natural language

processing [31], [33], [37], information retrieval [23], [45],

computer-aid medical diagnosis [25], email spam detection

[26], etc.

For any co-training style algorithm, one key to its success

lies in how to choose each classifier’s confident predictions on

unlabeled examples to augment the training set of the other.

Blum and Mitchell [4] employed classifiers capable of yielding

probabilistic outputs (e.g. NAÏVE BAYES) and simply treated

the classifier’s posteriori outputs as the labeling confidence.

However, it is quite possible that erroneous predictions would

also have large posteriori outputs especially when the classifier

has only moderate accuracy. Goldman and Zhou [16], [44]

measured the labeling confidence (and also classifier accuracy)

by frequently using ten-fold cross validation on the original

labeled set. However, the process of cross validation is rather

time-consuming and even may fail to obtain reliable estimates

when there are only a small number of labeled examples. Zhou

and Li [46] utilized a third classifier to help determine how

to choose unlabeled examples to label. However, the labeling

confidence is only implicitly qualified (instead of explicitly

quantified) by whether two classifiers agree on the labeling

or not. Furthermore, this method trains initial classifiers via

bootstrap sampling [15] from labeled data set, where the

training process could fail if only few labeled examples are

available, e.g. possibly encountering bootstrapped samples

with pure positive or negative examples.

In next two sections, we will present COTRADE which

is capable of explicitly and reliably estimating the labeling

confidence, and making use of them in an effective way.

III. PRELIMINARIES AND ALGORITHM SKETCH

Let X be the input space and Y = {0, 1} be the output

space. Under standard co-training setting, the input space is

partitioned into two different views X1 and X
2, i.e. X = X

1×
X

2. For any example x ∈ X, we use x1 and x2 to denote

its two portions under the first view X
1 and the second view

X
2 respectively, i.e. x = 〈x1, x2〉. Suppose L = {(vi, yi)|i =

1, 2, . . . , L} contains L labeled training examples and U =
{uj|j = 1, 2, . . . , U} contains U unlabeled training examples,

where vi = 〈v1i , v2i 〉 ∈ X, uj = 〈u1
j , u

2
j〉 ∈ X and yi ∈ Y.

The goal of COTRADE is to learn some hypothesis from

the training set L∪U to classify unseen examples. Generally,

the number of labeled examples in the training set is much

smaller than that of unlabeled ones, i.e. L ≪ U . Furthermore,

let L1 and U1 denote respectively the labeled and unlabeled

training set with respect to view X
1, i.e. L1 = {(v1i , yi)|i =

1, 2, . . . , L} and U1 = {u1
j |j = 1, 2, . . . , U}. The correspond-

ing sets L2 and U2 with respect to view X
2 can be defined in

similar ways.

Similar to standard co-training algorithm, COTRADE also

learns from the labeled and unlabeled training examples in an

iterative manner. In each co-training round, labels predicted

under each view are selected to augment the labeled training

set under another view to help update the current classifiers.

As for COTRADE, two core steps are employed to enable

effective communications of labeling information between

different views.
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The first core step is to utilize data editing techniques

to explicitly obtain reliable estimates of either classifier’s

labeling confidence on unlabeled examples. Most data editing

techniques rely on specific learning procedures to improve the

quality of the training set [9], [17], [20], [32], [41]. Recently,

different to learning-based data editing techniques, Muhlen-

bach et al. [27] proposed a statistical approach based on cut

edge weight statistic [51]. In this paper, COTRADE explicitly

evaluates the confidence of whether an example has been

correctly labeled from this cut edge weight statistic. Here, the

statistic is derived from a graph constructed over the labeled

and unlabeled examples based on k-nearest neighbor criterion.

Note that similar strategies have also been successfully used

to improve the self-training method [24].

The second core step is to appropriately choose a number

of predicted labels of either view to augment the labeled

training set of the other one. The predicted labels of either

view could be regarded as noisy labels as the current classifiers

used to make predictions are usually imperfect. In this paper,

COTRADE treats the task of updating classifier from the

augmented labeled training set as the process of learning

from examples with classification noise, where the theoretical

finding of Angluin and Laird [1] is adopted to optimize the

expected error rate of the updated classifier based on the

classification noise rate. Here, this rate is derived from the

labeling confidence of predicted labels used for training set

augmentation. Note that similar strategies have also been suc-

cessfully incorporated into other co-training style algorithms

[16], [46].

With the above two core steps in mind, the sketch of the

COTRADE algorithm can be summarized as follows:

• Initialize classifiers f i under view X
i based on Li (i =

1, 2);
• Repeat

– Apply classifier fi to predict labels of unlabeled

examples in Ui (i = 1, 2);
– Estimate labeling confidence of either classifier with

the help of data editing techniques (core step I);

– Choose an appropriate set of predicted labels of

either view to augment the labeled training set of

the other one (core step II);

– Update fi by learning from the augmented labeled

training set (i = 1, 2);

Until {Specified termination condition is satisfied}
• Return {f1, f2}.

IV. THE PROPOSED APPROACH

Detailed descriptions and analyses of the proposed algo-

rithm are scrutinized in this section. Firstly, the data editing

techniques employed by COTRADE are introduced (core step

I); Secondly, theoretical analyses on the labeling information

exchange of COTRADE are discussed (core step II); Finally,

the concrete learning procedure is outlined.

A. Data Editing

In each co-training round, COTRADE performs data editing

in two steps consecutively. In the first step, an undirected

neighborhood graph is constructed from a set of labeled

examples Z = {(zp, yp)|p = 1, 2, . . . , Z}, which expresses

the proximity between examples in feature space. There are

numerous ways to generate this kind of graphs from examples,

such as relative neighborhood graph, Gabriel graph, Delaunay

triangulation, minimal spanning tree, etc [51]. Rather than

using existing techniques, here we choose to construct the

desired graph by employing the k-nearest neighbor criterion.

Concretely, each example (zp, yp) ∈ Z corresponds to a

vertex in the graph GZ . There will be an edge p q connecting

the two vertices of zp and zq if either zp is among the k-

nearest neighbors zq or zq is among the k-nearest neighbors

of zp. In this way, one example is not only related to its

own neighbors, but also related to those ones which regard

it as their neighbors. Furthermore, a weight wpq ∈ [0, 1] is

associated to the edge p q computed as (1 + d(zp, zq))
−1,

where d(zp, zq) corresponds to the distance between zp and

zq. In this paper, d(zp, zq) is calculated with one of the most

commonly-used measures, i.e. EUCLIDEAN distance.

In the second step, COTRADE evaluates the confidence of

whether the label yp associated with zp is correct through

exploring information encoded in GZ ’s structure. The basic

assumption is that a correctly labeled example should possess

the same label to most of its neighboring examples, i.e. those

sharing an edge with it in GZ . Intuitively, this coincides with

the manifold assumption that examples with high similarity in

the input space would also have high similarity in the output

space [36]. An edge in GZ is called a cut edge if the two

vertices connected by it have different associated labels. Let

H0 be the null hypothesis that vertices of the graph are labeled

independently according to distribution D(Y) = {Pr(y =
1),Pr(y = 0)}. Here, Pr(y = 1) (Pr(y = 0)) denotes the

prior probability of an example being positive (negative),

which is usually estimated as the fraction of positive (negative)

examples in Z .

Then, the labeling confidence of each example (zp, yp) is

estimated based on the following cut edge weight statistic:

Jp =
∑

zq∈Cp

wpqIpq (1)

Here, Cp corresponds to the set of examples which are

connected with zp in GZ . Under the null hypothesis, each

Ipq corresponds to an i.i.d. Bernoulli random variable which

takes the value of 1 (indicating a cut edge) if yq is different

to yp. Accordingly, the probability of Pr(Ipq = 1) would

be 1 − Pr(y = yp). When the size of Cp is sufficiently

large, according to the central limit theorem, Jp can be

approximately modeled by a normal distribution with mean

µp|H0
and variance σ2

p|H0
:

µp|H0
= (1− P (y = yp))

∑

zq∈Cp

wpq (2)

σ2
p|H0

= P (y = yp)(1 − P (y = yp))
∑

zq∈Cp

w2
pq (3)

Then, the standardized Jp, i.e. Js
p = (Jp − µp|H0

)/σp|H0
,

turns out to be a random variable governed by standard normal

distribution N(0, 1).
Recall the manifold assumption encoded in the neighbor-

hood graph, correctly labeled examples tend to have few
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cut edges as its label should be consistent with most of its

connected examples. According to the definition in Eq.(1), it

is natural to assume that the smaller the value of Js
p , the higher

the confidence of yp being the correct label of zp. Therefore,

based on the left unilateral p-value of Js
p with respect to

N(0, 1), we can calculate the labeling confidence of (zp, yp)
as follows:

CFZ(zp, yp) = 1− Φ(Js
p ) (4)

Here Φ(Js
p ) = 1√

2π

∫ Js
p

−∞ e−
t2

2 dt denotes the p-value of Js
p

under standard normal distribution. In this paper, for any

labeled example (z, y) ∈ Z , its labeling confidence estimated

by conducting data editing on k-nearest neighborhood graph

GZ is denoted as CFZ(z, y).
Note that CFZ(z, y) represents only a heuristic way to

estimate the labeling confidence of (z, y) based on the p-value

of the cut edge weight statistic, which measures how smoothly

the labels change with respect to the nearest neighbor graph.

Although CFZ(z, y) should by no means be deemed to repre-

sent the ground-truth probability of y being the correct label

of z, experimental results reported in the following sections

validate the usefulness of this heuristic confidence estimation

strategy in discriminating correctly labeled examples from

incorrectly labeled ones.

B. Labeling Information Exchange

In each co-training round, COTRADE chooses to use the

predictions on the unlabeled examples of current classifier

under either view to augment the labeled training set of the

other. Let f1 be the current classifier under view X
1, whose

prediction f1(u
1) on an unlabeled example u1 ∈ U1 may be

communicated to the other view by generating a newly labeled

example (u2, f1(u
1)) (u2 ∈ U2). As f1 is usually away from

errorless, whose predicted labels on unlabeled examples would

be considered to be noisy.

In other words, f1(u
1) can be decomposed as f1(u

1) =
f∗
1 (u

1) + ζ(u1). Here, f∗
1 corresponds to the target function

which always yields the ground-truth label of each example,

and ζ(u1) ∈ {−1, 0, 1} is the random classification noise

which would affect the predicted label of f1. Therefore, to

update the current classifier by exploiting the noise-prone

labels communicated from the other view, the amount of

labeling information to be exchanged between either view

should be carefully controlled to avoid introducing too much

classification noise.

In this paper, we adopt the theoretical finding of Angluin

and Laird [1] on learning from noisy examples to facilitate

labeling information exchange. Conceptually speaking, their

results tackle the problem of PAC (Probably Approximately

Correct) learning [2] under the condition of random classifi-

cation noise. Next, we firstly describe the formal results of

Angluin and Laird’s finding, and then illustrate how to adopt

their results for help fulfill COTRADE’s labeling information

exchange.

Let Z be the instance space with probability distribution

function D, namely
∫

z∈Z
D(z) dz = 1. In addition, let H =

{Hi|i = 1, 2, . . . , N} be the finite hypothesis space of size N ,

where each hypothesis Hi maps from the input space Z to the

output space {0, 1}. Let Hθ ∈ H be the target (ground-truth)

hypothesis to be learned, and ρ = {(zp, yp)|1 ≤ p ≤ m} be a

sequence of m labeled instances with random classification

noise. Here, each zp is independently drawn from Z with

respect to distribution D. Each label yp is assumed to be

subject to a classification noise process with noise rate η, i.e.

yp takes the correct label Hθ(zp) with probability 1− η while

the wrong label 1−Hθ(zp) with probability η.

Let dis(Hi, Hθ) = Prz∼D{z|Hi(z) 6= Hθ(z)} denote the

error rate of Hi with respect to Hθ . Furthermore, let H∗ ∈ H
be the hypothesis which has minimum disagreement with the

sequence ρ, i.e. H∗ = argminHi∈H
∑m

p=1[[Hi(zp) 6= yp]].
1

Then, given the tolerance parameter ǫ, the confidence param-

eter δ, and the upper bound on the noise rate ηb (all smaller

than 0.5), the following theorem states the PAC property of

learning from noisy examples:

Theorem 1 (Angluin & Laird [1], 1988)

Given a sequence ρ of m independently drawn

labeled instances, when the sample size m satisfies:

m ≥ 2

ǫ2(1− 2ηb)2
ln

(

2N

δ

)

(5)

Then, the hypothesis H∗ which minimizes the dis-

agreement with ρ will have the PAC property:

Pr [dis(H∗, Hθ) ≥ ǫ] ≤ δ. (6)

Here Pr[·] is evaluated over all the possible se-

quences of ρ with length m.

In other words, under specific level of noise rate (i.e. ηb),

Eq.(5) specifies how many noisy labeled instances (i.e. m) are

needed to learn a classifier with expected low error rate ǫ at

high probability 1 − δ. Next we will show how this theorem

could be adopted to guide the process of COTRADE’s labeling

information exchange.

Given current classifiers f1 and f2 under view X
1 and view

X
2 respectively, let f◦(S) = {(s, f(s))|s ∈ S)} denote the

labeled set obtained by applying classifier f to predict labels of

the unlabeled examples in S. Accordingly, labeling confidence

of the newly labeled examples in f◦
1 (U1) and f◦

2 (U2) will be

explicitly estimated by conducting data editing on L1∪f◦
1 (U1)

and L2 ∪ f◦
2 (U2) respectively. After that, labels predicted by

one classifier can be successively used to augment the training

set of the other, in the order of descending labeling confidence.

Note that classification noise encoded in the predicted

labels would keep increasing when more and more labeling

information is exchanged between the classifiers. Therefore,

in order to prevent performance degradation caused by ac-

cumulated classification noise, COTRADE has to carefully

choose appropriate amount of labels to be transferred from

one classifier to the other.

Suppose f1 passes its predicted labels on a chosen subset

of examples U ′
1 ⊆ U1 to their counterparts U ′

2 ⊆ U2. Then, f2
will be updated to another classifier learned from L2∪f△

1 (U ′
1).

1For any predicate π, [[π]] = 1 if π holds. Otherwise, [[π]] = 0.
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Here, f△
1 (U ′

1) represents the set of labeled examples under

view X
2 through passing f1’s predictions on U ′

1 to U ′
2:

f△
1 (U ′

1) = {(u2, f1(u
1))|(u1, u2) ∈ X, u1 ∈ U ′

1, u
2 ∈ U ′

2} (7)

The set of labeled examples f△
2 (U ′

2) is defined in similar ways.

As f△
1 (U ′

1) usually contains noisy labels communicated

from f1, the task of updating f2 based on L2 ∪ f△
1 (U ′

1)
can be treated as the process of learning from examples

with classification errors. Resorting to Eq.(5), by fixing N ,

δ and let c = 2 ln(2N
δ
), the least accommodable hypothesis

classification error ǫ given m and ηb will be:

ǫ =

√

c

m(1 − 2ηb)2
(8)

When learning from L2 ∪ f△
1 (U ′

1), the sample size m as

shown in Eq.(8) becomes:

mU ′

1
= |L2 ∪ f△

1 (U ′
1)| = L+ |U ′

1| (9)

Furthermore, to make Eq.(8) be practical for the guidance of

labeling information exchange, the noise rate upper bound ηb

should be reasonably set. Here, we propose to heuristically

deriving ηb by utilizing current estimated labeling confidence:

ηbU ′

1

=
1

mU ′

1

∑

u1∈U ′

1

(

1− CFL1∪f◦

1
(U1)(u

1, f1(u
1))

)

(10)

Here, CFL1∪f◦

1
(U1)(u

1, f1(u
1)) corresponds to the labeling

confidence of a newly labeled example (u1, f1(u
1) ∈ L1 ∪

f◦
1 (U1) as defined in Eq.(4). Therefore, Eq.(10) reflects the

assumption that the higher the labeling confidence of an

example the lower the possibility of it being a noisy example.

Note that the original labeled set L2 is assumed to be noise-

free.

Substituting Eqs.(9) and (10) into Eq.(8), we can evaluate

the expected classification error ǫU ′

1
when f1’s predicted labels

on U ′
1 are used to augment the training set of f2:

ǫU ′

1
=

√
c ·

√

L+ |U ′
1|

L+ |U ′
1| − 2

∑

u1∈U ′

1

(

1− CFL1∪f◦

1
(U1)(u

1, f1(u1))
) (11)

By keeping class distribution in f◦
1 (U ′

1) the same as that

in L1, we can generate a series of candidate unlabeled data

sets Ξ1 = {Uξ
1 |ξ ∈ N} to constitute supplementary labeled

examples f△
1 (Uξ

1 ) for f2. Let γ be the ratio of the number of

negative examples to the number of positive examples in L1.

Without loss of generality, we can assume that γ is greater

than 1. Then, Uξ
1 is formed by choosing ξ examples in U1

with highest labeling confidence of being positive and ⌈γ ·
ξ⌉ examples in U1 with highest labeling confidence of being

negative, if exist. COTRADE identifies optimal choice U∗
1 ∈ Ξ1

for labeling information exchange which would yield smallest

expected classification error ǫ1:

U∗
1 = arg min

Uξ
1
∈Ξ1

ǫUξ
1

, ǫ1 = ǫU∗

1
(12)

Here ǫUξ
1

is calculated based on Eq.(11).

Thereafter, if ǫ1 is smaller than its previous value ǫ′1
determined in preceding round, f2 will be updated based on L2

TABLE I
THE COTRADE ALGORITHM.

[f1, f2] = COTRADE(L1, L2, U1, U2, Learner, k)

Inputs:

L1: labeled set {(v1
i
, yi)|1 ≤ i ≤ L} under view X1

L2: labeled set {(v2
i
, yi)|1 ≤ i ≤ L} under view X2

U1: unlabeled set {uj
1
|1 ≤ j ≤ U} under view X1

U2: unlabeled set {uj
2
|1 ≤ j ≤ U} under view X

2

Learner : the learning procedure which takes a labeled training set and

induces a binary classifier

k : the number of nearest neighbors considered in neighborhood

graph construction

Outputs:

f1: the returned classifier under view X
1

f2: the returned classifier under view X
2

Process:

1 f ′
1
← Learner(L1);

f ′
2
← Learner(L2); % initializing classifiers

2 e′
1
←MeasureError(f ′

1
,L1);

e′
2
←MeasureError(f ′

2
,L2); % measuring predictive error

3 ǫ′
1
← 1/

√
L; ǫ′

2
← 1/

√
L;

4 Iter ← 1;

While (Iter ≤ 50) do

5 Generate f ′◦
1
(U1) and f ′◦

2
(U2);

% making predictions on unlabeled data

6 Construct neighborhood graphs from L1 ∪ f ′◦
1
(U1) as well as

L2 ∪ f ′◦
2
(U2), and estimate the labeling confidence based on

the constructed graphs; % core step I

7 Identify optimal choices (U∗
1
, ǫ1) and (U∗

2
, ǫ2) for labeling

using Eq.(12); % core step II

8 f1 ← Learner(L1 ∪ f ′△

2
(U∗

2
))

f2 ← Learner(L2 ∪ f ′△

1
(U∗

1
));

9 e1 ←MeasureError(f1,L1);

e2 ←MeasureError(f2,L2);

10 if (e1 > e′
1
|| e2 > e′

2
) then GOTO 15;

11 if (ǫ1 ≥ ǫ′
1

&& ǫ2 ≥ ǫ′
2

) then GOTO 15;

12 Iter ← Iter + 1;

13 if (ǫ1 < ǫ′
1

) then ǫ′
1
← ǫ1; f ′

1
← f1;

14 if (ǫ2 < ǫ′
2

) then ǫ′
2
← ǫ2; f ′

2
← f2;

End of While

15 f1 ← f ′
1
; f2 ← f ′

2
;

together with the identified optimal choice, i.e. L2 ∪ f△
1 (U∗

1 ).
Note that in Eq.(11), the constant term

√
c will have no

impact on COTRADE’s training procedure and thus is dropped

from the numerator. The initial value of ǫ1 before COTRADE

launches its co-training iteration is set to be 1/
√
L (i.e. ǫ∅).

Similar notations and statements can be made when analyzing

how f2 uses its predictions to augment the training set of f1.

Note that the theoretical results of Theorem 1 hold for the

case of finite hypothesis space, while analysis for the case

of infinite hypothesis space can be conducted with the help

of Vapnik-Chervonenkis (VC) dimension [22]. Although the

hypothesis space studied in this paper is actually infinite, we

still choose to adopt the finite version of Theorem 1 due to its

clarity and simplicity. Furthermore, this choice is also inspired

by previous success in applying Theorem 1 to design co-

training style algorithms which deal with infinite hypothesis

space too [16], [46].
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C. Iterative Procedure

To sum up, Table I presents the pseudo-code of the pro-

posed algorithm. As for input parameters, L1, L2 U1, and

U2 correspond to the labeled and unlabeled data sets under

either view, Learner specifies the learning procedure used to

induce binary classifier from labeled training set, and k sets

the number of nearest neighbors used for neighborhood graph

construction; As for output parameters, f1 and f2 return the

trained classifiers under either view.

As shown in Table I, COTRADE initializes itself on the

labeled training sets L1 and L2 (steps 1 to 4), and then

iteratively refines two classifiers by confidently exchanging

labeling information between each other (steps 5 to 15). The

co-training process automatically stops when either classifier’s

predictive error on original labeled set increases (step 10), or

the expected predictive errors of both classifiers won’t decrease

(step 11). The maximum number of co-training rounds is set to

50, while empirical results show that in most cases COTRADE

terminates within no more than 10 iterations.

Note that traditional co-training procedures permanently

add pseudo-labeled examples in each round to the labeled

examples, which may be problematic as classification noise in

those pseudo-labels may be undesirably accumulated round by

round. Therefore, in COTRADE we choose not to progressively

grow the labeled training set with those predicted labels on

unlabeled examples, while useful information conveyed by

the predicted labels of each round is implicitly passed to the

subsequent learning process via the updated classifiers.

V. EXPERIMENTS

A. Data Sets

To evaluate the performance of COTRADE, we employ six

data sets derived from the following three real-world domains,

where each data set is associated with two naturally partitioned

or artificially generated views:

• Web page classification: This problem focuses on 1,051

home pages collected from web sites of Computer Science

departments of four universities: Cornell University, University

of Washington, University of Wisconsin and University of

Texas2. These pages have been manually labeled into a number

of categories such as student, faculty, staff, course, etc., among

which the category course home page is regarded as the target.

That is, course home pages (22%) correspond to positive

examples while all the other pages are negative examples.

Each page has a page-based view (words appearing in the page

itself) and a link-based view (words appearing in hyperlinks

pointing to it), and the task is to predict whether it is a course

page or not. The resultant data set associated with page-based

view and link-based view is referred as the course data in the

rest of this paper.

• Advertisement image filtering: This problem is investigated

by Kushmerick [21] in his work of automatically removing

advertising images in web pages. Each image is described

from multiple views, such as image properties (height, width,

2Data available at http://www.cs.cum.edu/afs/cs/project/theo-11/www/
wwkb/

aspect ratio, etc.), image caption (words enclosed in 〈A〉
tag), image url (words occurring in the image source’s url),

base url (words occurring in the affiliated web page’s url),

destination url (words occurring in the image anchor’s url),

etc. Specifically, using any two out of the three url-based views

(i.e. 1-image url, 2-base url, 3-destination url), we create three

ads data sets named ads12, ads13 and ads23. For any ads data

set, each image is associated two different views and the task

is predict whether it is a advertisement or not.

• Newsgroup postings categorization: This problem is con-

sidered by Muslea et al. [28], [29] in their study of robust

multi-view learning. A total of 16 newsgroups postings from

the Mini-Newsgroup data are used3, and each consists of

100 postings randomly drawn from the 1,000 postings in the

original 20-Newsgroup data [18]. The 16 chosen newsgroups

are divided into four groups, denoted as A1 − A4, B1 − B4,

C1−C4 and D1−D4
4. The first two groups form the first view

while the last two groups form the second view. Following this

strategy, two co-training data sets are created as follows:

1) NG1: A positive example is generated by randomly

paring one example from A1 − A4 to another example

from C1 − C4. Correspondingly, a negative example

is generated by randomly paring one example from

B1 −B4 to another example from D1 −D4.

2) NG2: A positive example is generated by randomly par-

ing one example from A1−A2 to another example from

C1−C2, or randomly paring one example from A3−A4

to another example from C3 − C4. Correspondingly,

a negative example is generated by randomly paring

one example from B1 − B2 to another example from

D1−D2, or randomly paring one example from B3−B4

to another example from D3 −D4.

For the first four data sets, i.e. course, ads12, ads13 and

ads23, each example in them bears textual representation.

Accordingly, examples are described as feature vectors in

feature space F based on Boolean weighting [34], where

features of F correspond to words in the vocabulary. Each

feature of one example is set to be 1 if the the example

contains the corresponding word and set to be 0 otherwise.

Furthermore, dimensionality reduction techniques based on

gain ratio [43] are performed and 10% of the original features

are retained. In addition to Boolean representation, for the

other two data sets, i.e. NG1 and NG2, examples are described

as numerical feature vectors based on tf-idf weighting [43].

Furthermore, dimensionality reduction techniques based on

document frequency [43] are performed and 2% of the original

features are retained. Table II summarizes the characteristics

of the experimental data sets used in this paper.

For each data set, 25% of the data are kept as test examples

while the rest are used as training examples, i.e. L∪U . Class

3Data available at http://www.cs.cmu.edu/afs/cs/project/theo-11/www/
naive-bayes/mini newsgroup.tar.gz

4{A1: comp.os.ms-windows.misc, A2: comp.sys.ibm.pc.hardware, A3:
rec.autos, A4: rec.sport.baseball}; {B1 : sci.crypt, B2: sci.space, B3:
talk.politics.guns, B4: talk.politics.misc}; {C1 : comp.windows.x, C2:
comp.sys.mac.hardware, C3: rec.motorcycles, C4: rec.sport.hockey};
{D1: sci.electronics, D2: sci.med, D3: talk.politics.mideast, D4:
talk.religion.misc}
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TABLE II
CHARACTERISTICS OF THE DATA SETS.

Number of View content Dimensionality Class proportion
Data set

examples view 1 view 2 view 1 view 2 positive negative

course 1,051 page itself links to the page 344 42 21.88% 78.12%
ads12 983 image URL base URL 45 49 14.04% 85.96%
ads13 983 image URL destination URL 45 47 14.04% 85.96%
ads23 983 base URL destination URL 49 47 14.04% 85.96%
NG1 800 groups A1 to B4

4 groups C1 to D4
4 303 334 50.00% 50.00%

NG2 800 groups A1 to B4
4 groups C1 to D4

4 303 334 50.00% 50.00%
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Fig. 1. Classification error rate of COTRADE (on the course data set) changes
as the number of nearest neighbors used (i.e. k) increases. Each sub-figure
reports the experimental results with different classifier inducers, from left to
right: NAÏVE BAYES, CART and LIBSVM.

distribution of L, U and the test set are similar to that of the

original data set. To simulate real-world cases where labeled

examples are rarely available, L is set to contain only a small

number of examples. For the course data set, we have created

L with ten different configurations {αpβn|β = 3α, α =
1, 2, . . . , 10}, where αpβn denote that α positive examples

and β negative examples are selected; For any of the three ads

data sets, we have created L with ten different configurations

{αpβn|β = 5α, α = 1, 2, . . . , 10}; Finally, for either of the

newsgroup data sets, we have also created L with ten different

configurations {αpβn|β = α, α = 2, 4, . . . , 20}.

B. Experimental Setup

The performance of COTRADE is compared with three

semi-supervised learning algorithms. The first comparing al-

gorithm is the standard co-training algorithm (STDCOTRAIN)

[4]. Furthermore, COTRADE is compared with another well-

known semi-supervised learning algorithm SELFTRAIN [30].

Unlike STDCOTRAIN, SELFTRAIN initially trains a classifier

on labeled data and then iteratively augment its labeled training

set by adding several newly labeled unlabeled examples with

most confident predictions of its own (instead of the other

classifier). In addition to SELFTRAIN, COTRADE is further

compared with SETRED [24], which is a variant of SELF-

TRAIN incorporated with data editing techniques5.

For any comparing algorithm, several kinds of learning ap-

proaches are employed to perform classifier induction, aiming

to investigate how each comparing algorithm behaves along

with base learners bearing diverse characteristics. Specifi-

5Note that the other two co-training style algorithms reported in [16] and
[46] are not included here for comparison, as when the number of labeled
examples is quite few (e.g. |L|=4 for the course data), both of them would fail
to function due to the embedded cross-validation [16] or bootstrap sampling
[46] procedures on L.
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(f) NG2

Fig. 2. Classification error rate of each comparing algorithm changes as
the number of labeled training examples increases, where NAÏVE BAYES is
utilized as the classifier inducer.

cally, the Bayesian-style method of NAÏVE BAYES, nonmetric-

style method of decision trees (CART implementation [8])

and kernel-style method (LIBSVM implementation [10]) are

utilized. Note that besides NAÏVE BAYES which can yield

probabilistic outputs, CART and LIBSVM are also triggered

to give probability estimates in order to incorporate them

with STDCOTRAIN, SELFTRAIN and SETRED. Concretely,

CART employs the proportion of dominating class in leaf

node as probabilistic output. LIBSVM is configured to give

probabilistic estimates by using the training option “-b 1”6.

For STDCOTRAIN, the same training strategy as used by

Blum and Mitchell [4] is adopted. Concretely, in each co-

training round, one classifier’s labeled training set is incre-

mentally enlarged using the “most confident” outputs (labels

with highest posteriori estimates) of its own and the other

classifier. SELFTRAIN and SETRED also update two classifiers

in their iterative training process, while in each round the

“most confident” outputs of one classifier is only used as

candidates to enlarge the labeled training set of its own. To

avoid introducing too much noise, in each training round, each

classifier of STDCOTRAIN, SELFTRAIN and SETRED only

selects 1p3n examples for the course data, 1p5n examples for

6For NAÏVE BAYES, the class prior probabilities are calculated based on
frequency counting, and the class conditional probabilities are estimated by
frequency counting for binary features while by fitting normal distributions
for numerical features; For CART, the Gini’s diversity index is used as the
splitting criterion for classification tree building; For LIBSVM, kernel type is
radial basis function for course and ads data sets while linear function for
newsgroup data sets.
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Fig. 3. Classification error rate of each comparing algorithm changes as the
number of labeled training examples increases, where CART is utilized as the
classifier inducer.

the ads data, and 1p1n examples for the newsgroup data. These

algorithms terminate when no more examples are available for

labeling or the number of training rounds reaches 50.

Furthermore, we have also included two baseline algorithms

named TRAINORG and TRAINALL for reference purpose.

TRAINORG trains classifiers on only the initial labeled train-

ing examples while TRAINALL trains classifiers on labeled

examples together with unlabeled ones assuming that their

ground-truth labels are available. Conceptually, TRAINORG

and TRAINALL would serve as the lower and upper bound

respectively for performance comparison. For any comparing

algorithm, classifiers finally learned on two different views

are combined to make predictions using the same method as

in [4], i.e. choosing one of the two classifiers’ outputs with

higher posteriori estimate.

C. Experimental Results

For each comparing algorithm equipped with any classifier

inducer, 100 independent runs are performed under every

configuration of L. In each run, a number of training examples

are randomly chosen to constitute the desired labeled set L and

the rest training examples are used to constitute the unlabeled

set U . For COTRADE (as shown in Table I), when the training

examples (L1, L2, U1, U2) and classifier inducer (Learner)

are fixed, the parameter remained to be specified is k, i.e.

number of nearest neighbors used in graph construction. Fig.

1 gives the performance of COTRADE on the course data set

with different base learners, where k gradually varies from 1

to 15. Each point in the plot gives the average classification

error rate of COTRADE out of 100 independent runs.

As shown in Figs. 1(a) to 1(c), in most cases, the perfor-

mance of COTRADE slightly improves in the initial increasing

phase of k (k ≤ 3), and tends to level up (i.e. do not

significantly change) in subsequent increasing phase of k
(k ≥ 5). Therefore, in the rest of this paper, all reported

experimental results of COTRADE are obtained with k = 10.

Fig. 2 to Fig. 4 illustrate how each comparing algorithm

performs with different classifier inducers, as the number of

labeled training examples in L increases. Each point in the
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6 12 18 24 30 36 42 48 54 60
0.05

0.07

0.09

0.11

0.13

0.15

0.17

Number of labeled training examples

E
rr

o
r 

ra
te

 

 

CoTrade

StdCoTrain

SelfTrain

Setred

TrainOrg

TrainAll

(d) ads23
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Fig. 4. Classification error rate of each comparing algorithm changes as the
number of labeled training examples increases, where LIBSVM is utilized as
the classifier inducer.

plot gives the average classification error rate of the comparing

algorithm out of 100 independent runs.

As shown in Fig. 2 to Fig. 4, in most cases, few compar-

ing algorithms (except TRAINALL which serves as the per-

formance upper bound) consistently outperforms COTRADE.

Concretely, on the course data set (plot (a) of each fig-

ure), COTRADE is consistently superior to STDCOTRAIN,

SELFTRAIN, SETRED and TRAINORG when either NAÏVE

BAYES or CART is incorporated as the classifier inducer. With

LIBSVM, COTRADE consistently outperforms SELFTRAIN,

SETRED and TRAINORG and is only inferior to STDCOTRAIN

as the number labeled training examples exceeds 16.

On the ads12 data set (plot (b) of each figure), COTRADE

is less distinguishable from SETRED and TRAINORG

with all classifier inducers. It is consistently superior to

SELFTRAIN with LIBSVM and consistently superior to

STDCOTRAIN with CART and LIBSVM. Note that the

two views associated with this data set, i.e. image url

and base url, may be strongly correlated due to the co-

occurrence of domain names. For instance, for a tiger image,

the image url and base url would probably correspond to

“http://www.base-domain.com/images/tiger.jpg”

and “http://www.base-domain.com/index.html”.

The high correlation between two views may weaken the

benefits of labeling information exchange brought by co-

training style algorithms, as the two classifiers trained on

different views would be quite similar. This may be the

reason that COTRADE does not evidently differ from some

comparing algorithms on ads12.

On the ads13 and ads23 data sets (plots (c) and (d) of each

figure), COTRADE consistently outperforms STDCOTRAIN,

SELFTRAIN, SETRED and TRAINORG with all classifier

inducers; On the NG1 and NG2 data sets (plots (e) and

(f) of each figure), COTRADE is inferior to STDCOTRAIN

with NAÏVE BAYES, superior to STDCOTRAIN with CART,

and nearly indistinguishable to STDCOTRAIN with LIBSVM.

COTRADE is also less distinguishable to SELFTRAIN, SE-

TRED and TRAINORG with either NAÏVE BAYES or CART,

while is slightly superior to them with LIBSVM. Reasons
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TABLE III
THE WIN/TIE/LOSS COUNTS FOR COTRADE AGAINST STDCOTRAIN, SELFTRAIN, SETRED AND TRAINORG UNDER DIFFERENT DATA SETS AND

CLASSIFIER INDUCERS.

COTRADE Base learner (win/tie/loss [min. p-value, max. p-value, ave. p-value])

Data set against NAÏVE BAYES CART LIBSVM

STDCOTRAIN 10/0/0 [2e-59, 3e-5, 9e-6] 10/0/0 [7e-40, 2e-26, 2e-27] 3/2/5 [5e-14, 7e-1, 1e-1]

course SELFTRAIN 10/0/0 [2e-64, 3e-34, 7e-35] 9/1/0 [4e-19, 6e-2, 1e-2] 10/0/0 [2e-37, 6e-7, 6e-8]

SETRED 10/0/0 [1e-25, 4e-11, 4e-12] 6/4/0 [2e-7, 9e-2, 3e-2] 10/0/0 [8e-19, 2e-3, 2e-4]

TRAINORG 10/0/0 [1e-64, 1e-25, 1e-26] 10/0/0 [4e-19, 3e-2, 7e-3] 10/0/0 [4e-19, 4e-5, 5e-6]

STDCOTRAIN 1/1/8 [3e-46, 8e-2, 1e-2] 10/0/0 [2e-38, 1e-5, 1e-6] 9/1/0 [2e-48, 6e-1, 6e-2]

ads12 SELFTRAIN 3/2/5 [2e-47, 6e-1, 7e-2] 5/4/1 [6e-6, 9e-1, 3e-1] 9/1/0 [7e-34, 5e-1, 5e-2]

SETRED 2/5/3 [1e-25, 5e-1, 1e-1] 3/7/0 [2e-3, 9e-1, 4e-1] 8/2/0 [7e-34, 5e-1, 5e-2]

TRAINORG 10/0/0 [2e-49, 2e-4, 2e-5] 4/5/1 [6e-6, 9e-1, 3e-1] 4/6/0 [5e-3, 8e-1, 2e-1]

STDCOTRAIN 10/0/0 [9e-66, 3e-5, 3e-6] 10/0/0 [7e-56, 7e-25, 7e-26] 10/0/0 [2e-40, 3e-8, 3e-9]

ads13 SELFTRAIN 10/0/0 [6e-80, 4e-54, 4e-55] 6/3/1 [1e-21, 3e-1, 7e-2] 10/0/0 [2e-32, 3e-5, 3e-6]

SETRED 10/0/0 [6e-27, 9e-12, 9e-13] 7/3/0 [8e-10, 6e-1, 1e-1] 10/0/0 [1e-12, 2e-3, 3e-4]

TRAINORG 10/0/0 [2e-83, 4e-32, 6e-33] 7/3/0 [1e-21, 3e-1, 7e-2] 10/0/0 [7e-14, 3e-4, 5e-5]

STDCOTRAIN 10/0/0 [7e-50, 8e-24, 8e-25] 10/0/0 [3e-55, 9e-17, 9e-18] 10/0/0 [4e-55, 2e-6, 2e-7]

ads23 SELFTRAIN 10/0/0 [2e-102, 6e-75, 6e-76] 10/0/0 [5e-21, 4e-2, 4e-3] 10/0/0 [4e-33, 1e-5, 10e-6]

SETRED 10/0/0 [3e-37, 2e-15, 2e-16] 9/1/0 [5e-9, 8e-2, 1e-2] 10/0/0 [1e-10, 5e-4, 6e-5]

TRAINORG 10/0/0 [3e-92, 3e-41, 3e-42] 10/0/0 [3e-21, 4e-3, 4e-4] 10/0/0 [9e-12, 1e-2, 2e-3]

STDCOTRAIN 0/2/8 [1e-36, 8e-1, 1e-1] 8/0/2 [3e-6, 6e-3, 2e-3] 2/8/0 [5e-5, 8e-1,3e-1]

NG1 SELFTRAIN 5/5/0 [4e-5, 8e-1, 2e-1] 1/7/2 [1e-3, 8e-1,3e-1] 7/1/2 [5e-9, 7e-1,7e-2]

SETRED 6/1/3 [4e-5, 7e-2, 1e-2] 2/6/2 [2e-2, 9e-1,3e-1] 6/4/0 [2e-24, 3e-1,3e-2]

TRAINORG 6/1/3 [4e-5, 7e-2, 1e-2] 2/8/0 [2e-2, 9e-1,4e-1] 9/1/0 [3e-27, 1e-1,1e-2]

STDCOTRAIN 1/1/8 [6e-39, 7e-1, 7e-2] 8/0/2 [2e-5, 1e-3, 3e-4] 1/9/0 [8e-3, 8e-1, 3e-1]

NG2 SELFTRAIN 4/6/0 [1e-4, 9e-1, 2e-1] 0/8/2 [3e-2, 5e-1, 2e-1] 8/2/0 [6e-6, 4e-1, 6e-2]

SETRED 4/4/2 [5e-5, 2e-1, 7e-2] 0/8/2 [4e-2, 4e-1, 2e-1] 8/2/0 [1e-20, 1e-1,1e-2]

TRAINORG 4/4/2 [5e-5, 2e-1, 8e-2] 2/8/0 [4e-2, 4e-1, 2e-1] 9/1/0 [6e-23, 5e-1,5e-2]

on why COTRADE achieves less impressive performance on

the newsgroup data sets are unclear here while worth further

investigation.

From Fig. 2 to Fig. 4, in most cases, the gain of COTRADE

over other comparing algorithms is more remarkable when

there is relatively few examples in L. This property of CO-

TRADE is very attractive as when solving real-world semi-

supervised learning problems, we will frequently encounter

the difficulty of insufficient labeled training data. In addition,

note that when STDCOTRAIN is implemented with stable

learners7 such as NAÏVE BAYES (Figure 2), the classification

noise introduced in each round may not strongly affect its

performance. However, when it is implemented with unstable

learners such as CART (Figure 3), STDCOTRAIN would be

severely impaired by the accumulated labeling noise and even

be inferior to TRAINORG. On the other hand, the performance

gaps between COTRADE and the other two semi-supervised

learning algorithms, i.e. SELFTRAIN and SETRED, seem to

be less sensitive to the choice of stable or unstable learners.

In addition to Figs. 2 to 4, we have also quantitatively

examined the significance level of performance difference

between COTRADE and other comparing algorithms. Note

that given two comparing algorithms A and B, when the

number of labeled training examples and classifier inducer are

fixed, 100 independent runs are performed for each algorithm.

Therefore, we choose to evaluate the significance level of the

performance gap between two algorithms based on two-tailed

pairwise t-tests. Concretely, the p-value returned by the two-

tailed pairwise t-test can be used as a reasonable measure of

how much difference between two algorithms’ performance.

The smaller the p-value is, the higher the level of performance

7Stable learner refers to the learning procedure where a small change in
the training set will not result in large changes in its induced model [7].

difference is. Generally speaking, a significant difference is

deemed to occur if the returned p-value is less than .05 (i.e.

5e-2).

Table III reports the win/tie/loss counts based on statis-

tical tests (TRAINALL is not included in the table as its

performance surpasses all the other algorithms without any

surprise.). For each data set and classifier inducer, a win (or

loss) is counted (i.e. p<5e-2) when COTRADE is significantly

better (or worse) than the comparing algorithm out of 100

runs, under a specific number of labeled training examples (i.e.

|L|). Otherwise, a tie is recorded. In addition, the maximum,

minimum, and average p-values across different configurations

of |L| are also summarized for reference purpose along with

the win/tie/loss counts.

As shown in Table III, it is clear that COTRADE is superior

or at least comparable to STDCOTRAIN and SELFTRAIN

in most cases. Furthermore, either SETRED or TRAINORG

seldom outperforms COTRADE. In summary, COTRADE is

statistically superior to STDCOTRAIN, SELFTRAIN, SETRED

and TRAINORG in around 68%, 71%, 67% and 76% cases,

and is only inferior to them in around 18%, 7%, 7% and 3%
cases.

D. Auxiliary Results

1) Supplementary Comparing Algorithms: In this subsec-

tion, the effectiveness of COTRADE is further evaluated against

some other related learning approaches:

• CO-EM SVM [5]: CO-EM is one of the famous multi-

view semi-supervised learning algorithms, which combines

multi-view learning with the probabilistic EM procedure [30].

However, traditional CO-EM is confined to base learners

which are capable of estimating posteriori probabilities such as
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TABLE IV
THE PREDICTIVE ERROR (MEAN± STD. DEVIATION) OF COTRADE AND OTHER COMPARING ALGORITHMS UNDER DIFFERENT NUMBER OF LABELED

TRAINING EXAMPLES.

Number of labeled training examples (|L| = 4α for course and newsgroup; |L| = 6α for ads)

Data set Algorithm α = 1 α = 2 α = 3 α = 4 α = 5 α = 6 α = 7 α = 8 α = 9 α = 10
COTRADE .17±.08 .10±.08 .09±.07 .07±.05 .07±.04 .06±.04 .06±.03 .06±.03 .06±.03 .05±.03

CO-EM SVM .08±.01 .07±.01 .07±.02 .07±.01 .07±.02 .07±.02 .07±.02 .07±.02 .07±.01 .06±.02

course CO-MR .20±.06 .19±.05 .19±.05 .21±.05 .21±.06 .21±.05 .21±.06 .22±.07 .21±.06 .20±.05

CO-GRAPH-1NN .24±.09 .22±.06 .22±.05 .21±.05 .21±.05 .20±.04 .20±.04 .19±.03 .19±.03 .18±.02

CO-GRAPH-3NN .22±.00 .22±.05 .21±.02 .21±.02 .21±.03 .21±.03 .20±.01 .20±.02 .20±.02 .20±.01

COTRADE .14±.03 .13±.03 .11±.03 .10±.03 .10±.02 .09±.01 .09±.01 .09±.01 .09±.01 .09±.01

CO-EM SVM .19±.20 .13±.03 .12±.01 .12±.01 .12±.02 .11±.01 .11±.01 .11±.01 .11±.01 .11±.01

ads12 CO-MR .21±.07 .23±.07 .28±.03 .29±.02 .29±.02 .29±.02 .29±.02 .29±.02 .29±.02 .29±.01

CO-GRAPH-1NN .73±.04 .73±.04 .73±.04 .74±.03 .74±.03 .74±.03 .74±.03 .75±.03 .75±.02 .75±.03

CO-GRAPH-3NN .14±.00 .69±.04 .69±.04 .71±.04 .72±.04 .72±.04 .72±.04 .72±.03 .73±.03 .73±.04

COTRADE .11±.04 .10±.04 .08±.02 .08±.02 .08±.02 .07±.02 .07±.02 .08±.01 .07±.01 .07±.01

CO-EM SVM .08±.01 .08±.01 .08±.01 .08±.01 .08±.01 .08±.01 .08±.01 .08±.01 .08±.01 .08±.01

ads13 CO-MR .24±.03 .26±.03 .28±.02 .28±.02 .28±.02 .28±.02 .28±.01 .27±.01 .27±.02 .27±.01

CO-GRAPH-1NN .75±.05 .75±.04 .75±.04 .75±.03 .75±.03 .75±.03 .75±.03 .76±.03 .75±.03 .75±.03

CO-GRAPH-3NN .14±.00 .71±.05 .73.±04 .73±.04 .74±.04 .74±.03 .74±.03 .74±.03 .75±.03 .75±.03

COTRADE .11±.03 .10±.04 .09±.03 .09±.02 .08±.03 .08±.02 .08±.01 .08±.01 .07±.01 .07±.01

CO-EM SVM .12±.01 .12±.01 .11±.01 .11±.01 .11±.01 .11±.01 .11±.01 .11±.01 .11±.01 .11±.01

ads23 CO-MR .24±.05 .26±.04 .27±.02 .28±.02 .28±.02 .28±.02 .28±.02 .28±.02 .28±.02 .28±.02

CO-GRAPH-1NN .71±.04 .72±.04 .72±.03 .72±.03 .72±.03 .73±.03 .73±.03 .73±.03 .73±.03 .74±.03

CO-GRAPH-3NN .14±.00 .68±.03 .68±.04 .70±.04 .70±.04 .71±.03 .71±.04 .72±.03 .72±.03 .72±.03

COTRADE .49±.04 .50±.07 .49±.05 .42±.06 .41±.06 .42±.07 .39±.06 .36±.06 .38±.07 .37±.07

CO-EM SVM .43±.06 .41±.06 .41±.05 .39±.05 .40±.05 .40±.05 .40±.05 .39±.04 .38±.04 .38±.04

NG1 CO-MR .47±.05 .45±.05 .43±.05 .43±.06 .42±.06 .42±.06 .43±.06 .41±.05 .41±.05 .42±.06

CO-GRAPH-1NN .48±.02 .47±.02 .46±.02 .46±.02 .45±.02 .45±.03 .44±.02 .43±.03 .43±.03 .43±.03

CO-GRAPH-3NN .49±.02 .48±.02 .47±.02 .47±.02 .47±.02 .46±.03 .46±.03 .45±.03 .45±.03 .45±.03

COTRADE .50±.03 .49±.05 .50±.05 .42±.07 .43±.07 .44±.08 .39±.07 .35±.05 .40±.09 .35±.07

CO-EM SVM .39±.08 .36±.06 .34±.06 .32±.05 .33±.06 .33±.06 .33±.06 .33±.06 .33±.06 .33±.05

NG2 CO-MR .47±.04 .44±.04 .42±.04 .43±.05 .42±.06 .42±.05 .43±.06 .42±.05 .43±.06 .43±.06

CO-GRAPH-1NN .48±.01 .47±.02 .47±.02 .46±.02 .45±.02 .45±.02 .43±.03 .43±.03 .43±.02 .43±.03

CO-GRAPH-3NN .49±.02 .48±.02 .47±.02 .47±.02 .47±.03 .46±.03 .45±.03 .45±.03 .45±.03 .45±.03

NAÏVE BAYES. Brefeld and Scheffer [5] broke this restriction

by incorporating support vector machines into the CO-EM

framework. The proposed CO-EM SVM algorithm is found

to be highly competitive to other semi-supervised SVM ap-

proaches, and achieves the state-of-the-art performance on the

course data (less than 1% error rate). In this subsection, CO-

EM SVM is re-implemented and compared with COTRADE.

Specifically, linear support vector machines are used as the

base learners and the number of CO-EM iterations is set to

15.

• CO-MR [36]: Recall that COTRADE estimates the labeling

conference on unlabeled data based on the cut edge weight

statistic, which is essentially to impose the manifold assump-

tion on the constructed weighted graph. Interestingly, this is

very similar in spirit to another family of algorithms which

also combine the manifold smoothness assumptions with mul-

tiple views [35], [36]. Actually, the CO-MR approach [36]

derives a co-regularization kernel by exploiting two RKHSs

(Reproducing Kernel Hilbert Spaces) defined over the same

input space X, one on the “ambient representation” in X and

another on the “intrinsic representation” in a neighborhood

graph. In this subsection, CO-MR is re-implemented and

compared with COTRADE. Specifically, each data set adopts

an unified representation by merging the two views, and the

regularization parameters γ1, γ2 varied on a grid of values

(10−6, 10−4, 10−2, 1, 10, 100) where the results from optimal

configurations are reported.

• CO-GRAPH: As shown in Subsection V-C, COTRADE

achieves highly comparable performance over the comparing

algorithms, especially when the number of labeled training

examples is few. One may wonder that with few labeled train-

ing examples, the weighted k-nearest neighbor graph is really

doing most of the work for COTRADE, while the base learner

(i.e. Learner in Table I) is just a way to get a convenient

out-of-sample prediction function. To verify whether this is

the case, a simple algorithm named CO-GRAPH is designed

which makes prediction solely based on the graph structure.

Concretely, for each test example x, a weighted graph is

constructed over L∪U∪{x}, and the nearest labeled neighbors

for x are identified. Here the distance between two examples

is the graph distance, i.e. the sum of weights along the shortest

path between them. Two implementations of CO-GRAPH are

studied, i.e. to predict the label of the nearest labeled neighbor

(CO-GRAPH-1NN) or the majority vote of 3 nearest labeled

neighbors (CO-GRAPH-3NN). For each data set, results from

the view with better performance are reported.

Considering that both CO-EM SVM and CO-MR are kernel-

based approaches and CO-GRAPH doesn’t involve any specific

learning procedure, we choose to compare their performance

with COTRADE implemented with LIBSVM. Furthermore, due

to the distinctions in data pre-processing and experimental

setup, the performance of CO-EM SVM reported here would

be a bit different from those reported in literature [5].

Table IV reports the error rate (mean±std. deviation) of

each comparing algorithm under different number of labeled

training examples. When the data set and the number of

labeled training examples are fixed, the performance of one

algorithm is shown in boldface if it significantly outperforms

all the other algorithms (two-tailed pairwise t-test at .05

significance level).

As shown in Table IV, COTRADE achieves close perfor-
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Fig. 5. Classification error rate of COTRADE with different distance measures
(on the course and ads12 data sets) changes as the number of labeled training
examples increases.

mance to CO-EM SVM while outperforms CO-MR in most

cases. In addition, COTRADE is also superior to CO-GRAPH-

1NN and CO-GRAPH-3NN in almost all cases, and the two

implementations of CO-GRAPH totally fail on the three ads

data sets. In summary, COTRADE is statistically superior to

CO-EM SVM, CO-MR, CO-GRAPH-1NN and CO-GRAPH-

3NN in around 40%, 82%, 88% and 88% cases, and is only

inferior to them in around 32%, 12%, 10% and 8% cases.

2) Graph Distance Measure: In Subsection V-C, EU-

CLIDEAN distance is employed to construct COTRADE’s k-

nearest neighborhood graph. In this subsection, we further

investigate how COTRADE performs with other forms of

distance measures. Given two d-dimensional feature vectors

a = (a1, a2, . . . , ad)
T and b = (b1, b2, . . . , bd)

T, the follow-

ing four distance measures are considered here:

• CITYBLOCK distance dC(a, b) =
∑d

j=1 |aj − bj |, which is

actually the first order Minkowski distance and also known as

MANHATTAN distance;

• MAHALANOBIS distance dM(a, b) =
√

(a− b)T · S−1·
(a− b), here “S” is the covariance matrix of the feature

vectors;

• HAMMING distance dH(a, b) = (1−a)Tb+a
T(1−b)

d
, which

measures the percentage of binary features that differ. Here,

“1” represents the d-dimensional vector with all ones.

• JACCARD distance dJ(a, b) = (1−a)Tb+a
T(1−b)

aT1+ bT1−aTb
, which

measures the percentage of binary features that differ out of

all features that are nonzero in both vectors.

Fig. 5 illustrates how COTRADE performs under various

distance measures as the number of labeled training examples

increases. Without loss of generality, results on the course and

ads12 data sets are reported. Each point in the plot gives the

average classification error rate of the comparing measure out

of 100 independent runs.

As shown in Fig. 5, EUCLIDEAN distance yields superior or

at least comparable performance to MAHALANOBIS distance

in most cases, and is almost indistinguishable to CITYBLOCK

and HAMMING distances. Note that although JACCARD dis-
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Fig. 6. Estimated confidence of COTRADE (on the course data set) for
unlabeled examples which are correctly predicted (drawn in blue and denoted
as C) and wrongly predicted (drawn in brown and denoted as W).

tance has behaved quite well on the ads12 data set (second

row), its performance is nearly the worst on the course data

set (first row). These results show that although it seems

hard to tell which distance measure could be the best choice,

EUCLIDEAN distance is at least a relatively robust choice for

neighborhood graph construction.

Here we choose to employ EUCLIDEAN distance as the

distance measure mainly based on its simplicity and empirical

evidences, while justifying this choice from theoretical point of

view may provide more insightful explanations for the success

of COTRADE. Generally, the problem of choosing the best

distance measure for a specific learning task is very difficult,

and a number of efforts have been made towards tackling this

problem under the name of distance metric learning [42]. How

to identify or learn the optimal distance measure for COTRADE

and how does it affect the performance of the algorithm are

worth further investigation.

VI. DISCUSSION

In this section, the underlying reasons for COTRADE’s

good performance is further explored. The exploration is

accomplished in two different ways: one is to closely inspect

the labeling confidence estimated by COTRADE on unlabeled

examples (as defined in Eq.(4)), and the other is to conduct

bias-variance (BV) decomposition [13] on the comparing

algorithms.

Fig. 6 gives the estimated labeling confidence for unlabeled

examples on COTRADE’s first round of co-training on the

course data. Similar conclusions can be drawn based on the

results on other data sets, which are not reported here for

brevity. When the number of labeled training examples and

classifier inducer are fixed, each point in the plot corresponds

to the average confidence value of newly labeled examples

over 100 runs.

It is obvious from Fig. 6 that on either view of each data

set, when the classifier inducer is fixed, COTRADE will give

much larger confidence estimates to labels correctly predicted

than those wrongly predicted. Two-tailed pairwise t-test at .05

significance level reveals that in nearly all cases (>99%), the

labeling confidence estimated for correctly labeled examples

are significantly larger than those estimated for wrongly la-

beled examples.

Note that as stated in Subsection IV-A, the use of labeling

confidence should not be regarded as an estimate for the proba-

bility of an example being correctly or wrongly labeled. While

on the other hand, recall that COTRADE conducts labeling
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information exchange between each classifier in the order of

descending confidence values, the apparent gaps between the

labeling confidence of correct and incorrect predictions in the

first round will definitely benefit the following training process

of COTRADE.

In addition to the above discussion, we further investigate

the properties of COTRADE by exploiting techniques of BV

decomposition, which is a rather useful tool to understand

the behavior of machine learning algorithms [13]. Roughly

speaking, this technique decomposes the expected error of

one learning algorithm (under fixed training set size) into

three terms, i.e. the intrinsic noise corresponding to the

expected loss of Bayesian optimal classifier, the (squared)

bias measuring the degree of match between the algorithm’s

average output and the target, and the variance measuring the

sensitivity of the learning algorithm w.r.t. different training

sets. For a specific problem, the smaller the values of bias and

variance, the better the performance of the learning algorithm.

We have conducted BV decomposition analysis between

two algorithms, i.e. COTRADE and STDCOTRAIN, on the

course and ads data. For brevity, results on the other compar-

ing algorithms are not included here but won’t affect the major

conclusions of our analysis. As our algorithm makes binary

predictions, in this paper, the popular BV decomposition

approach proposed by Kohavi and Wolpert for zero-one loss

function [19] is used.

Concretely, let X be the instance space with probability

distribution function D. Furthermore, let Pθ(y|x) be the pos-

teriori probability of example x ∈ X having label y ∈ {0, 1}
for the target function f , and P (y|f,m, x) be the posteriori

probability of example x being predicted with label y given

the target function f and a training set with size m. Then, the

expected error of a learning algorithm A can be decomposed

as follows:

E(A) =

∫

x∈X

(

σ2
x + bias2x + variancex

)

·D(x) dx, where

σ2
x ≡ 1

2

(

1−
∑

y∈{0,1}
Pθ(y|x)2

)

bias2x ≡ 1

2

∑

y∈{0,1}
[Pθ(y|x)− P (y|f,m, x)]

2

variancex ≡ 1

2

(

1−
∑

y∈{0,1}
P (y|f,m, x)2

)

(13)

Here, σ2
x represents the intrinsic noise of f , and the remain-

ing bias and variance terms, i.e. bias2x and variancex, are

estimated via a frequency-based procedure [19]. Accordingly,

Fig. 7 illustrates the scatter plots between COTRADE and

STDCOTRAIN in terms of bias and variance. Each marker ’×’

in the scatter plots is derived based on 100 runs.

As shown in the first row of Fig. 7, most points are under

the diagonal indicating that COTRADE performs better than

STDCOTRAIN in terms of bias. On the contrary, as shown in

the second row of Fig. 7, most points are above the diagonal

indicating that COTRADE performs worse than STDCOTRAIN

in terms of variance. Therefore, we suppose that compared

to other co-training style algorithms, COTRADE can largely

reduce the algorithm’s bias, at the cost of slightly increasing
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Fig. 7. Scatter plots between COTRADE and STDCOTRAIN in terms of bias

(first row) and variance (second row).

the variance by a smaller magnitude (about 1/5 ∼ 1/2). This

would be one of the possible explanations for the success of

our proposed approach.

VII. CONCLUSION

For co-training style algorithms, one key factor for their

success is how to choose predictions with authentic high

confidence for labeling information communication. In this

paper, based on particular data editing techniques, we propose

the COTRADE algorithm which can explicitly and reliably

estimate the labeling confidence of the classifiers’ outputs.

Experiments show that our algorithm can effectively exploit

unlabeled data in training, especially when few labeled exam-

ples are available. Possible explanations for COTRADE’s good

performance are also discussed.

In the future, it is very important to conduct more insight-

ful theoretical analyses on the effectiveness of COTRADE.

Furthermore, designing other kinds of methods to effectively

estimate labeling confidence is also worth studying.
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