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Abstract

Multi-instance multi-label learning (MIML) deals with
the problem where each training example is associated with
not only multiple instances but also multiple class labels.
Previous MIML algorithms work by identifying its equiva-
lence in degenerated versions of multi-instance multi-label
learning. However, useful information encoded in training
examples may get lost during the identification process. In
this paper, a maximum margin method is proposed for MIML

which directly exploits the connections between instances
and labels. The learning task is formulated as a quadratic
programming (QP) problem and implemented in its dual
form. Applications to scene classification and text catego-
rization show that the proposed approach achieves superior
performance over existing MIML methods.

1. Introduction

Multi-instance multi-label learning (MIML) is a newly
proposed framework, where each example in the training
set is associated with multiple instances as well as multiple
labels [32, 33]. Many real-world problems involving am-
biguous objects can be properly formalized under MIML.
For instance, in image classification, an image generally
contains several naturally-partitioned patches each can be
represented as an instance, while such an image can corre-
spond to multiple semantic classes simultaneously, such as
clouds, grassland and lions; In bioinformatics, an gene se-
quence generally encodes a number of segments each can be
expressed as an instance, while this sequence may be asso-
ciated with several functional classes, such as metabolism,
transcription and protein synthesis; In text categorization,
each document usually consists of several sections or para-
graphs each can be regarded as an instance, while the docu-
ment may be assigned to a set of predefined topics, such as
sports, Beijing Olympics and even torch relay.

The traditional supervised learning, i.e. single-instance
single-label learning (SISL), can be viewed as a degener-
ated version of MIML. In SISL, each example is restricted
to have only one instance and only one label. Existing ap-
proaches solve MIML problem by identifying its equiva-
lence in SISL via problem reduction. Although this kind
of identification strategy is feasible, the performance of the
acquired algorithm may suffer from the loss of information
incurred during the reduction process. Therefore, one open
problem for MIML is that whether this learning framework
can be tackled directly by exploiting connections between
the instances and the labels of an MIML example [32].

In this paper, a novel algorithm named M3MIML, i.e.
Maximum Margin Method for Multi-Instance Multi-Label
learning, is proposed. Briefly, M3MIML assumes a linear
model for each class, where the output on one class is set
to be the maximum prediction of all the MIML example’s
instances with respect to the corresponding linear model.
Subsequently, the outputs on all possible classes are com-
bined to define the margin of the MIML example over the
classification system. Obviously, each instance is involved
in determining the output on each possible class and the cor-
relations between different classes are also addressed in the
combination phase. Therefore, the connections between the
instances and the labels of an MIML example are explicitly
exploited by M3MIML.

The rest of this paper is organized as follows. Section 2
gives the formal definition of MIML and reviews the related
works. Section 3 proposes the new MIML approach. Sec-
tion 4 reports experimental results on two real-world MIML
data sets. Finally, Section 5 concludes and indicates several
issues for future work.

2. Related Work

Let X = Rd denote the input space of instances and
Y = {1, 2, . . . , Q} the set of class labels. The task of MIML
is to learn a function fMIML : 2X → 2Y from a set of



MIML training examples {(Xi, Yi)|1 ≤ i ≤ N}, where
Xi ⊆ X is a bag of instances {xi
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is a set of labels {yi
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} associated with Xi. Here

ni is the number of instances in Xi and li the number of
labels in Yi. The MIML framework is closely related to the
learning frameworks of multi-instance learning [10], multi-
label learning [18, 21] and traditional supervised learning.

Multi-instance learning [10], or multi-instance single-
label learning (MISL), was coined by Dietterich et al. in
their investigation of drug activity prediction problem. The
task of MISL is to learn a function fMISL : 2X → {+1,−1}
from a set of MISL training examples {(Xi, yi)|1 ≤ i ≤
N}, where Xi ⊆ X is a bag of instances {xi

1,x
i
2, . . . ,x

i
ni
}

and yi ∈ {+1,−1} is the binary label of Xi. After the sem-
inal work of Dietterich et al. [10], numerous MISL learning
algorithms have been proposed [2, 8, 16, 19, 25, 26, 29] and
successfully applied to many applications especially in im-
age categorization and retrieval [6, 7, 17, 30]. More works
on MISL can be found in [31].

Multi-label learning [18, 21], or single-instance multi-
label learning (SIML), originated from the investigation of
text categorization problems. The task of SIML is to learn
a function fSIML : X → 2Y from a set of SIML training ex-
amples {(xi, Yi)|1 ≤ i ≤ N}, where xi ∈ X is an instance
and Yi ⊆ Y is a set of labels {yi

1, y
i
2, . . . , y

i
li
} associated

with xi. A number of SIML learning algorithms have been
proposed by exploiting the relationships between different
labels [5, 12, 15, 28, 34]. SIML techniques have been suc-
cessfully applied to applications including text and image
categorization [3, 14, 18, 21, 24]. More works on SIML can
be found in [23].

According to the above definitions, it is clear that tra-
ditional supervised learning (SISL) can be regarded as a
degenerated version of either MISL or SIML. Further-
more, SISL, MISL and SIML are all degenerated versions
of MIML. Therefore, an intuitive way of solving MIML
problem is to identify its equivalence in SISL, using either
MISL or SIML as the bridge. Actually, while formalizing
the MIML framework, Zhou and Zhang [32] adopted this
strategy and proposed two MIML algorithms named MIML-
BOOST and MIMLSVM.

MIMLBOOST reduces the MIML problem into an SISL
one using MISL as the bridge. Specifically, MIMLBOOST
firstly transforms the original MIML task into an MISL one
by converting each MIML example (Xi, Yi) into |Y| num-
ber of MISL examples {([Xi, y],Φ[Xi, y]) |y ∈ Y}. Here,
[Xi, y] contains ni instances {(xi

1, y), . . . , (xi
ni

, y)} formed
by concatenating each of Xi’s instance with label y, while
Φ[Xi, y] = +1 if y ∈ Yi and −1 otherwise. After that,
MIMLBOOST solves the derived MISL problem by employ-
ing a specific algorithm named MIBOOSTING [26]. This
algorithm deals with MISL problem by reducing it into an
SISL one under the assumption that each instance in the bag

contributes equally and independently to a bag’s label.
In contrast to MIMLBOOST, MIMLSVM reduces the

MIML problem into an SISL one using SIML as the bridge.
Firstly, MIMLSVM transforms the original MIML task into
an SIML one by converting each MIML example (Xi, Yi)
into an SIML example (τ(Xi), Yi). Here, the function τ(·)
maps a bag of instances Xi into a single instance zi using
constructive clustering [32], where k-medoids clustering is
performed on Λ = {X1, X2, . . . , XN} at the level of bags
and components of zi correspond to the distances between
Xi and the medoids of the clustered groups. After that,
MIMLSVM solves the derived SIML problem by employ-
ing a specific algorithm named MLSVM [3]. This algorithm
deals with SIML problem by decomposing it into multiple
SISL problems (one per class), where instance xi associ-
ated with label set Yi will be regarded as positive instance
when building classifier for class y ∈ Yi while regarded as
negative instance when building classifier for class y /∈ Yi.

Obviously, the above approaches solve the MIML prob-
lem by reformulating it into its degenerated versions, while
useful information encoded between instances and labels
may get lost during the reduction process. Next we will
present the M3MIML algorithm which explicitly exploit the
connections between instances and labels.

3. The Proposed Approach

3.1. Primal form

Given an MIML training example (Xi, Yi), let ~Yi de-
note the category vector for Xi whose l-th component ~Yi(l)
equals +1 if l ∈ Yi and −1 otherwise. Suppose the classifi-
cation system is composed of Q linear models {(wl, bl)|l ∈
Y}, each corresponding to a possible class label. Here,
wl ∈ Rd is the weight vector for the l-th class and bl ∈ R
is the corresponding bias.

M3MIML assumes that the system’s output for (Xi, Yi)
on the l-th class is determined by the maximum prediction
of Xi’s instances with respect to (wl, bl). Note that this
kind of strategy has been successfully employed to handle
objects with multi-instance representations [1, 16]. There-
fore, for an unseen bag X ⊆ X , its associated label set is
determined via:

Y = {l|max
x∈X

(〈wl,x〉+ bl) ≥ 0, l ∈ Y} (1)

Based on the output, we define the margin of (Xi, Yi) on
the l-th class as:

~Yi(l) · max
x∈Xi

(〈wl,x〉+ bl)

‖wl‖ (2)

Here, 〈·, ·〉 calculates the dot product between two vectors
and ‖ · ‖ denotes the vector norm. Then, the margin of



(Xi, Yi) with respect to the classification system is set to
be the minimum margin of (Xi, Yi) over all classes:

min
l∈Y

~Yi(l) · max
x∈Xi

(〈wl,x〉+ bl)

‖wl‖ (3)

Consequently, the margin of the whole training set S =
{(Xi, Yi)|1 ≤ i ≤ N} (denoted as ∆S) with respect to the
classification system corresponds to:

∆S = min
1≤i≤N

min
l∈Y

~Yi(l) · max
x∈Xi

(〈wl,x〉+ bl)

‖wl‖ (4)

Suppose that all training examples in S can be perfectly
classified by the classification system, we can normalize the
parameters {(wl, bl)|l ∈ Y} such that ∀ i ∈ {1, . . . , N}
and l ∈ Y , the following conditions are satisfied:

~Yi(l) · max
x∈Xi

(〈wl,x〉+ bl) ≥ 1 (5)

Furthermore, for each l ∈ Y , the equality will hold for at
least one i ∈ {1, . . . , N}. Based on this, Eq.(4) can be
rewritten as follows:

∆S = min
1≤i≤N

min
l∈Y

~Yi(l) · max
x∈Xi

(〈wl,x〉+ bl)

‖wl‖

= min
l∈Y

min
1≤i≤N

~Yi(l) · max
x∈Xi

(〈wl,x〉+ bl)

‖wl‖
= min

l∈Y
1

‖wl‖ (6)

Note that maximizing min
l∈Y

1
‖wl‖ is equivalent to minimiz-

ing 1
2 max

l∈Y
‖wl‖2. Therefore, the target maximum margin

optimization problem can be formulated as:

Problem 1

min
{(wl,bl)|l∈Y}

1
2

max
l∈Y

‖wl‖2

subject to : ∀ i ∈ {1, . . . , N}, l ∈ Y such that{
max
x∈Xi

(〈wl,x〉+ bl) ≥ 1, if l ∈ Yi

∀x ∈ Xi : −〈wl,x〉 − bl ≥ 1, if l ∈ Yi

Here Yi denotes the complementary set of Yi in Y . Note
that the constraint ~Yi(l) · max

x∈Xi

(〈wl,x〉+ bl) ≥ 1 as shown

in Eq.(5) has been expressed in cases of ~Yi(l) = +1 and
~Yi(l) = −1 respectively. The above optimization problem
is difficult to solve which involves the max(·) function in
both the objective function and constraints. To simplify the

problem, note that:

max
l∈Y

‖wl‖2 ≤
Q∑

l=1

‖wl‖2 and

max
x∈Xi

(〈wl,x〉+ bl) ≥
∑ni

j=1(〈wl,xi
j〉+ bl)

ni
(7)

Therefore, Problem 1 can be approximated as:

Problem 2

min
{(wl,bl)|l∈Y}

1
2

Q∑

l=1

‖wl‖2

subject to : ∀ i ∈ {1, . . . , N}, l ∈ Y such that{ ∑ni
j=1(〈wl,x

i
j〉+bl)

ni
≥ 1, if l ∈ Yi

−〈wl,xi
j〉 − bl ≥ 1 (1 ≤ j ≤ ni), if l ∈ Yi

In order to deal with practical situations where training
set can not be perfectly classified, slack variables are in-
troduced for all constraints to accommodate classification
error. This leads to the specific optimization problem con-
sidered by M3MIML in its primal form:

Problem 3

min
{W,b,Ξ,Θ}

1
2

Q∑

l=1

‖wl‖2 + C

Q∑

l=1


∑

i∈Sl

ξil +
∑

i∈Sl

ni∑

j=1

θilj




subject to : ∀ i ∈ {1, . . . , N}, l ∈ Y such that{ ∑ni
j=1(〈wl,x

i
j〉+bl)

ni
≥ 1− ξil, if l ∈ Yi

−〈wl,xi
j〉 − bl ≥ 1− θilj (1 ≤ j ≤ ni), if l ∈ Yi

ξil ≥ 0, θilj ≥ 0 (1 ≤ j ≤ ni)

Where Sl = {i|1 ≤ i ≤ N, l ∈ Yi} is the index set
for those MIML examples associated with label l. Corre-
spondingly, Sl = {i|1 ≤ i ≤ N, l ∈ Yi} is the index
set for those MIML examples not associated with label l.
W = [w1, . . . ,wQ] is the matrix comprising all weight
vectors while b = [b1, . . . , bQ] is the vector comprising all
bias values. Similarly, Ξ = {ξil|1 ≤ i ≤ N, l ∈ Yi} and
Θ = {θilj |1 ≤ i ≤ N, l ∈ Yi, 1 ≤ j ≤ ni} are the set
of slack variables. In addition, constant C in the objective
function trades off the classification system’s margin and its
empirical loss on the training set.

3.2. Dual form

So far we have only assumed linear models to deal with
MIML learning task. Note that the primal form of M3MIML
is a standard quadratic programming (QP) problem, which
has convex objective function and linear constraints. There-
fore, by solving Problem 3 in its dual form, nonlinearity can



be incorporated into it via the well-known kernel trick. The
Lagrangian of Problem 3 is:

L(W,b, Ξ,Θ, A, B, Γ, Φ) =

1
2

Q∑

l=1

‖wl‖2 + C

Q∑

l=1


∑

i∈Sl

ξil +
∑

i∈Sl




ni∑

j=1

θilj







−
Q∑

l=1

(∑

i∈Sl

αil

(∑ni

j=1(〈wl,xi
j〉+ bl)

ni
− 1 + ξil

)

+
∑

i∈Sl

ni∑

j=1

βilj

(−〈wl,xi
j〉 − bl − 1 + θilj

)



−
Q∑

l=1


∑

i∈Sl

γilξil +
∑

i∈Sl




ni∑

j=1

φiljθilj





 (8)

Here A = {αil|1 ≤ i ≤ N, l ∈ Yi}, B = {βilj |1 ≤ i ≤
N, l ∈ Yi, 1 ≤ j ≤ ni}, Γ = {γil|1 ≤ i ≤ N, l ∈ Yi} and
Φ = {φilj |1 ≤ i ≤ N, l ∈ Yi, 1 ≤ j ≤ ni} are the set of
nonnegative dual variables for different constraints.

To get the dual form of Problem 3, the derivatives
of Lagrangian (8) with respect to the primal variables
{W,b,Ξ, Θ} are set to be zero. Consequently, setting
∂L
∂wl

= 0 (l ∈ Y) yields:

wl =
∑

i∈Sl

(
αil

∑ni

j=1 xi
j

ni

)
+

∑

i∈Sl




ni∑

j=1

−βiljxi
j


 (9)

Setting ∂L
∂bl

= 0 (l ∈ Y) yields:

∑

i∈Sl

αil +
∑

i∈Sl




ni∑

j=1

−βilj


 = 0 (10)

Setting ∂L
∂ξil

= 0 (1 ≤ i ≤ N, l ∈ Yi) yields:

γil = C − αil (11)

Finally, setting ∂L
∂θilj

= 0 (1 ≤ i ≤ N, l /∈ Yi, 1 ≤ j ≤ ni)
yields:

φilj = C − βilj (12)

Substituting Eqs.(9) to (12) back into Lagrangian (8)
gives rise to the Lagrangian dual form of Problem 3:

Problem 4

max
A,B,Γ,Φ

Ω(A,B, Γ, Φ)

subject to : ∀ i ∈ {1, . . . , N}, l ∈ Y such that{
0 ≤ αil ≤ C, if l ∈ Yi

0 ≤ βilj ≤ C (1 ≤ j ≤ ni), if l /∈ Yi

∑

i∈Sl

αil +
∑

i∈Sl




ni∑

j=1

−βilj


 = 0

Here the dual objective function Ω(A,B, Γ, Φ) is:

Ω(A,B, Γ, Φ) =

−1
2

Q∑

l=1


∑

i∈Sl

∑

i′∈Sl


αilαi′l

nini′

ni∑

j=1

ni′∑

j′=1

〈xi
j ,x

i′
j′〉




+2
∑

i∈Sl

∑

i′∈Sl


αil

ni

ni∑

j=1

ni′∑

j′=1

−βi′lj′〈xi
j ,x

i′
j′〉




+
∑

i∈Sl

∑

i′∈Sl




ni∑

j=1

ni′∑

j′=1

βiljβi′lj′〈xi
j ,x

i′
j′〉







+
Q∑

l=1


∑

i∈Sl

αil +
∑

i∈Sl




ni∑

j=1

βilj





 (13)

In Problem 4, the first constraints (the inequalities) are in-
herited from the nonnegative properties of dual variables to-
gether with Eqs.(11) and (12), while the second constraints
(the equalities) are inherited from Eq.(10).

As same as Problem 3 (primal form), it is evident that
Problem 4 (dual form) also falls into the category of QP
problems. Note that the constraints in Problem 4 only
bound dual variables with intervals and linear equalities,
such kind of QP problem can be solved by an efficient iter-
ative approach named the Franke and Wolfe’s method [13].
The fundamental idea of this method is to transform the
difficult QP problem into a sequence of simpler linear pro-
gramming (LP) problems. Due to page limit, the Franke and
Wolfe’ method is not elaborated here while its detailed de-
scription can be found in [12, 13]. To apply this method, the
gradients of the dual objective function are indispensable:

∂Ω
∂αil

= 1−
∑

i′∈Sl


 αi′l

ni′ni

ni′∑

j′=1

ni∑

j=1

〈xi′
j′ ,x

i
j〉




−
∑

i′ /∈Sl


 1

ni

ni′∑

j′=1

ni∑

j=1

−βi′lj′〈xi′
j′ ,x

i
j〉


 (14)

∂Ω
∂βilj

= 1−
∑

i′∈Sl


αi′l

ni′

ni′∑

j′=1

−〈xi′
j′ ,x

i
j〉




−
∑

i′ /∈Sl




ni′∑

j′=1

βi′lj′〈xi′
j′ ,x

i
j〉


 (15)

After solving Problem 4 with the Franke and Wolfe’s
method, parameters of the classification system can be
determined with the help of Karush-Kuhn-Tucker (KKT)
conditions [9]. Concretely, the weight vectors wl (l ∈ Y)
are calculated using Eq.(9). One way to compute the bias



Table 1. Characteristics of the data sets.

Number of Number of Number of Instances per bag Labels per example (k)
Data set examples classes features min max mean±std. k=1 k=2 k≥3
Scene 2,000 5 15 9 9 9.00±0.00 1,543 442 15
Reuters 2,000 7 243 2 26 3.56±2.71 1,701 290 9

values bl (l ∈ Y) is as follows:

bl = ϕ(i, l) = 1−
∑

i′∈Sl


 αi′l

ni′ni

ni′∑

j′=1

ni∑

j=1

〈xi′
j′ ,x

i
j〉




−
∑

i′ /∈Sl


 1

ni

ni′∑

j′=1

ni∑

j=1

−βi′lj′〈xi′
j′ ,x

i
j〉


 (16)

Here (i, l) is an index pair with l ∈ Yi and 0 < αil < C.
Resorting to Eqs.(1), (9) and (16), the label set Y for an

unseen bag X is determined as:

Y = {l|max
x∈X

f(x, l) ≥ 0, l ∈ Y}, where f(x, l) =

∑

i∈Sl


αil

ni

ni∑

j=1

〈xi
j ,x〉


−

∑

i∈Sl




ni∑

j=1

βilj〈xi
j ,x〉


+bl (17)

In addition, in case of Y being empty, the label with highest
(least negative) output is then assigned to X . This is actu-
ally the T-Criterion [3] used to treat learning problems with
multi-label outputs.

To sum up, in training phase, parameters of M3MIML are
learned by solving Problem 4 using the Franke and Wolfe’s
method1. In testing phase, the label set of unseen MIML
example is determined via Eq.(17). To have the non-linear
version of M3MIML, it suffices to replace the dot products
〈·, ·〉 with some kernel function k(·, ·) over X × X .

4. Experiments

4.1. Experimental setup

In this section, the performance of M3MIML is eval-
uated with applications to two real-world MIML learning
tasks. The first task is scene classification which was stud-
ied by Zhou and Zhang [32, 33] in their investigation of the
MIML framework. The scene classification data contains

1In each iterative round of the Franke and Wolfe’s method, a LP prob-
lem with M variables and M + Q constraints needs to be resolved. Here
M = |A| + |B| is the number of dual variables optimized in Problem 4
and Q is the number of possible class labels. It is well-known that the com-
putational complexity of solving a standard LP problem with p variables
and c constraints is O(p3, cp2) [4]. Considering that in general Q ¿ M
holds, the computational complexity of solving Problem 4 with Franke and
Wolfe’s method isO(nM3), here n is the number of iterations involved.

2,000 natural scene images collected from the COREL im-
age collection and the Internet. All the possible class labels
are desert, mountains, sea, sunset and trees and a set of la-
bels is manually assigned to each image. Images belonging
to more than one class comprise over 22% of the data set
and the average number of labels per image is 1.24±0.44.
Each image is represented as a bag of nine 15-dimensional
instances using the SBN image bag generator [17], where
each instance corresponds to an image patch.

In addition to scene classification, we have also tested
M3MIML on text categorization problems. Specifically, the
widely studied Reuters-21578 collection [22] is used in ex-
periment [33]. The seven most frequent categories are con-
sidered. After removing documents whose label sets or
main texts are empty, 8,866 documents are retained where
only 3.37% of them are associated with more than one class
labels. After randomly removing documents with only one
label, a text categorization data set containing 2,000 doc-
uments is obtained. Around 15% documents with multi-
ple labels comprise the resultant data set and the average
number of labels per document is 1.15±0.37. Each docu-
ment is represented as a bag of instances using the sliding
window techniques [2], where each instance corresponds
to a text segment enclosed in one sliding window of size
50 (overlapped with 25 words). “Function words” on the
SMART stop-list [20] are removed from the vocabulary and
the remaining words are stemmed. Instances in the bags
adopt the “Bag-of-Words” representation based on term fre-
quency [11, 22]. Without loss of effectiveness, dimension-
ality reduction is performed by retaining the top 2% words
with highest document frequency [27]. Thereafter, each in-
stance is represented as a 243-dimensional feature vector.
Table 1 summarizes characteristics of both data sets.

M3MIML is compared with MIMLBOOST and
MIMLSVM, both of which are set to take the best pa-
rameters as reported in [32]. Concretely, the number of
boosting rounds for MIMLBOOST is set to 25, and Gaussian
kernel with γ = 0.22 is used to implement MIMLSVM.
For fair comparison, Gaussian kernel function is also used
to yield the non-linear version of M3MIML. Note that
although parameters of MIMLBOOST and MIMLSVM are
carefully chosen, on the other hand, those of M3MIML are
not specifically tuned in any way. In particular, the values
of C (cost parameter as shown in Problem 4) and γ are

2k(x, z) = exp(−γ · ‖x− z‖2) for two vectors x and z.
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Figure 1. The performance of each compared algorithm (on the scene data) changes as the number
of training examples increases. In each subfigure, the lower the curve the better the performance.

both set to the default value of 1. Actually, in preliminary
experiments, M3MIML shows similar performance with γ
ranging from 0.6 to 1.4 by step 0.2.

Since MIML algorithms make multi-label predictions,
the performance of each compared algorithm is evaluated
according to five popular multi-label metrics, i.e. hamming
loss, one-error, coverage, ranking loss and average preci-
sion. As for average precision, the bigger the value the bet-
ter the performance. While for the other four metrics, the
smaller the value the better the performance. Due to page
limit, details on these metrics can be found in [21, 28].

Next, we will make comparative studies among MIML
algorithms with two series of experiments. The first series
concerns how the algorithms perform under different num-
ber of training examples. The other series investigates how
the algorithms learn from data sets with varying percentage
of examples associated with multiple labels.

4.2. Experimental results under varying
training set size

To investigate the performance of each algorithm learned
with different number of training examples, we create the
training and test data as follows. For either of the scene
or Reuters data, a test set is created by randomly choosing
1,000 examples from the original data set. The remaining

1,000 examples is then used to form the potential training
set, where training set is formed by randomly picking up N
examples from the potential training set. In this paper, N
ranges from 200 to 800 with an interval of 100. For each
value of N , ten different training sets are created by repeat-
ing the pickup procedure. The average test performance of
each algorithm trained on the ten training sets is reported.

Figure 1 illustrates the performance of each compared
algorithm on the scene classification data in terms of the
five multi-label evaluation metrics as well as the time spent
in training. For each algorithm, when the training set size
is fixed, the average and standard deviation out of ten in-
dependent runs are depicted. Note that in Figure 1(e), we
plot 1−average precision instead of average precision such
that for all subfigures, the lower of one algorithm’s curve
the better its performance. Furthermore, the training time
(measured in seconds) shown in Figure 1(f) is plotted in
log-linear scale. Accordingly, Figure 2 reports the experi-
mental results on the Reuters categorization data.

It is evident from Figures 1 and 2 that, on both data
sets, M3MIML consistently outperforms MIMLBOOST and
MIMLSVM in terms of each evaluation metric. As expected,
the performance of each algorithm improves as the num-
ber of training examples increases. It is interesting to see
that, as more training examples become available, the per-
formance gap between M3MIML and its compared counter-
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Figure 2. The performance of each compared algorithm (on the Reuters data) changes as the number
of training examples increases. In each subfigure, the lower the curve the better the performance.

Table 2. The win/tie/loss counts for M3MIML
against MIMLBOOST and MIMLSVM with vary-
ing training set size.

M3MIML against
Evaluation MIMLBOOST MIMLSVM
metric Scene Reuters Scene Reuters
hamming loss 7/0/0 7/0/0 7/0/0 7/0/0
one-error 7/0/0 7/0/0 7/0/0 7/0/0
coverage 7/0/0 7/0/0 7/0/0 7/0/0
ranking loss 7/0/0 7/0/0 7/0/0 7/0/0
average precision 7/0/0 7/0/0 7/0/0 7/0/0

parts tends to increase on the scene data but decrease on the
Reuters data (while still remarkably large). Furthermore,
when more and more training examples are used in classifier
induction, the performance of MIMLSVM would gradually
approaches that of MIMLBOOST on both data sets.

Pairwise t-tests at 0.05 significance level are conducted
to statistically measure the performance difference between
the compared algorithms. The win/tie/loss counts based on
pairwise t-test are reported in Table 2. For each metric,
a win (or loss) is counted when M3MIML is significantly
better (or worse) than the compared algorithm on a specific
training set size out of 10 runs. Otherwise, a tie is recorded.

As shown in Table 2, it is rather impressive that in terms
of each multi-label metric, M3MIML is statistically supe-
rior to MIMLBOOST and MIMLSVM on both data sets un-
der any number of training examples. As shown in Fig-
ures 1(f) and 2(f), although MIMLSVM runs greatly faster
than both M3MIML and MIMLBOOST, it has the worst per-
formance among all the compared algorithms. In addition,
MIMLBOOST usually consumes 2 to 4 times of training pe-
riod than M3MIML in order to complete the learning pro-
cedure. The above results reveal that, compared to other
MIML algorithms, M3MIML is a better choice for solving
MIML problems with balanced effectiveness and efficiency.

4.3. Experimental results under varying
percentage of multi-label data

It is interesting to study the influence of the percentage of
multi-label data (or equivalently the average number of la-
bels per example) on the algorithms, so we do another series
of experiments. We derive seven data sets from the scene
data which contains around 22% images with multiple la-
bels. By randomly removing some single-label images, we
obtain a data set where 30% (or 40%, 50%, 60%, 70%)
images belong to multiple classes simultaneously; by ran-
domly removing some multi-label images, we obtain a data
set where 10% (or 20%) images belong to multiple classes
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Figure 3. The performance of each compared algorithm (on data sets derived from scene classifica-
tion task) changes as the percentage of multi-label examples increases. In each subfigure, the lower
the curve the better the performance.

simultaneously. Note that the derived data set with high per-
centage of multi-label images would have a relatively small
size, since during its generation process more single-label
images are removed from the original scene data. Simi-
larly, we also derive seven data sets with P% percentage
of multi-label documents from the Reuters data, here P%
ranges from 10% to 70% with an interval of 10%.

Ten times of hold-out tests are performed on each de-
rived data set. In each hold-out test, the data set is ran-
domly divided into two parts with equal size. Algorithms
are trained on one part and then evaluated on the other part.
Figure 3 illustrates the performance of each compared algo-
rithm on data sets derived from the scene classification task.
For each algorithm, when the percentage of multi-label ex-
amples is fixed, the average and standard deviation out of
ten independent hold-out tests are depicted. The same as
Subsection 4.2, we draw 1−average precision instead of
average precision and plot the training time (measured in
seconds) in log-linear scale. Accordingly, Figure 4 reports
the experimental results on data sets derived from the text
categorization task.

It is evident from Figures 3 and 4 that, in most cases,
M3MIML is superior to MIMLBOOST and MIMLSVM.
Specifically, on data sets derived from scene classification
task, M3MIML is indistinguishable from MIMLBOOST and

Table 3. The win/tie/loss counts for M3MIML
against MIMLBOOST and MIMLSVM with vary-
ing percentage of multi-label examples.

M3MIML against
Evaluation MIMLBOOST MIMLSVM
metric Scene Reuters Scene Reuters
hamming loss 5/1/1 7/0/0 7/0/0 7/0/0
one-error 6/1/0 7/0/0 7/0/0 7/0/0
coverage 3/4/0 7/0/0 7/0/0 7/0/0
ranking loss 3/4/0 7/0/0 7/0/0 7/0/0
average precision 4/3/0 7/0/0 7/0/0 7/0/0

slightly outperforms MIMLSVM in terms of coverage. In
terms of other evaluation metrics, M3MIML performs con-
sistently better than MIMLSVM, while the performance gap
between M3MIML and MIMLBOOST gradually ceases to-
ward zero as the percentage of multi-label examples ap-
proaches 70%; On data sets derived from text categorization
task, M3MIML achieves consistently superior performance
over MIMLBOOST and MIMLSVM in terms of all evalua-
tion metrics. In addition, as the fraction of multi-label ex-
amples increases, the performance gap between M3MIML
and its compared counterparts tends to steadily increase.
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Figure 4. The performance of each compared algorithm (on data sets derived from text categorization
task) changes as the percentage of multi-label examples increases. In each subfigure, the lower the
curve the better the performance.

The same as Subsection 4.2, the win/tie/loss counts
based on pairwise t-test are reported in Table 3. For each
evaluation metric, a win (or loss) is counted when M3MIML
is significantly better (or worse) than the compared algo-
rithm on a specific percentage of multi-label examples out
of 10 hold-out runs. Otherwise, a tie is recorded.

As shown in Table 3, it is quite impressive that in terms
of each multi-label metric, M3MIML statistically outper-
forms MIMLSVM on both scene and text learning tasks.
M3MIML also performs statistically better than MIML-
BOOST on the text categorization task. On the scene clas-
sification task, our approach is inferior to MIMLBOOST in
terms of hamming loss in only one case, while it is superior
or at least comparable to MIMLBOOST on the other metrics.
The series of experiments reported in this subsection further
confirm the superiority of our proposed approach.

5. Conclusion

In this paper, a novel MIML approach named M3MIML
is proposed. This method directly considers the connec-
tions between the instances and the labels of an MIML ex-
ample through defining a specific margin on it. The corre-
sponding maximum margin learning task is formulated as a
QP problem and solved in its dual form with kernel imple-

mentation. Comparative studies with existing MIML algo-
rithms are carried out with applications to scene classifica-
tion and text categorization. Experimental results show that
M3MIML achieves significantly better performance than
existing methods together with a good balance between ef-
fectiveness and efficiency.

Designing other kinds of MIML algorithms and perform
comparative studies on more and larger MIML data sets are
important issues for future work.
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model for multilabel classification and ranking. In Proceed-
ings of the 17th European Conference on Artificial Intelli-
gence, pages 489–493, Riva del Garda, Italy, 2006.

[6] Y. Chen, J. Bi, and J. Z. Wang. MILES: multiple-
instance learning via embedded instance selection. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
28(12):1931–1947, 2006.

[7] Y. Chen and J. Z. Wang. Image categorization by learning
and reasoning with regions. Journal of Machine Learning
Research, 5(Aug):913–939, 2004.

[8] Y. Chevaleyre and J.-D. Zucker. Solving multiple-instance
and multiple-part learning problems with decision trees and
decision rules. Application to the mutagenesis problem. In
Lecture Notes in Artificial Intelligence 2056, pages 204–
214. Springer, Berlin, 2001.

[9] N. Cristianini and J. Shawe-Taylor. An Introduction to
Support Vector Machines and Other Kernel-based Learn-
ing Methods. Cambridge University Press, Cambridge, UK,
2000.

[10] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez. Solv-
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