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Abstract—In multi-label classification, the strategy of label-specific features has been shown to be effective to learn from multi-label
examples by accounting for the distinct discriminative properties of each class label. However, most existing approaches exploit the
semantic relations among labels as immutable prior knowledge, which may not be appropriate to constrain the learning process of
label-specific features. In this paper, we propose to learn label semantics and label-specific features in a collaborative way. Accordingly,
a deep neural network (DNN) based approach named CLIF, i.e. Collaborative Learning of label semantIcs and deep label-specific
Features for multi-label classification, is proposed. By integrating a graph autoencoder for encoding semantic relations in the label
space and a tailored feature-disentangling module for extracting label-specific features, CLIF is able to employ the learned label
semantics to guide mining label-specific features and propagate label-specific discriminative properties to the learning process of the
label semantics. In such a way, the learning of label semantics and label-specific features interact and facilitate with each other so that
label semantics can provide more accurate guidance to label-specific feature learning. Comprehensive experiments on 14 benchmark
data sets show that our approach outperforms other well-established multi-label classification algorithms.

Index Terms—Machine learning, multi-label classification, label-specific features, label semantics, collaborative learning.
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1 INTRODUCTION

MULTI-LABEL classification aims to derive classification
models from instances associated with multiple class

labels simultaneously [1]. As a practical machine learning
paradigm, multi-label classification has been widely ap-
plied in various real-world applications, such as multimedia
content annotation [2], [3] where the task is to recognize
all objects occurring in an image, text categorization [4],
[5] where each document may cover several topics, music
emotion analysis [6], [7] where a song may express various
emotions, etc.

One common strategy to learn from multi-label data is
to employ the identical feature set of the instance to induce
classification models. Although feasible results have been
achieved in such multi-label classification approaches, this
strategy might be suboptimal as it fails to account for the
distinct characteristics of each class label. For example, in
automatic image annotation, shape-based features would be
more essential in recognizing the plane category, while color-
based features might be preferred in discriminating the sky
category. With the ability to model distinct discriminative
properties of each class label, label-specific feature learning,
which aims to find the most pertinent and discriminative
features specific to each class label, has become a promising
strategy to facilitate multi-label classification [8], [9], [10].

Some early approaches construct label-specific features
heuristically. For example, LIFT [8] firstly performs clus-
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tering analysis on positive and negative instances of each
label, and then obtains label-specific features via querying
distances between the original instances and the cluster
centers. To improve this, many approaches have been de-
veloped to learn label-specific features by exploring the
semantic relations among labels, where the label correlations
are exploited as prior knowledge to constrain the learning
process of label-specific features [11], [12], [13], [14], [15].
More specifically, these approaches calculate the similarity
between pairwise labels and incorporate these similarity-
based label correlations into model training, where con-
straints are imposed to share more features [9], [16], [17]
or similar predictions [10] among strongly correlated labels.
Nevertheless, these existing approaches merely introduce
the semantic relations among labels via a precomputed sim-
ilarity matrix in label space, which may not be appropriate
for downstream task, i.e. label-specific feature learning.

To address above issues, we propose to collaboratively
learn label semantics and label-specific features. Concretely,
the label semantics derived from label space are employed
to actively guide finding the most discriminative features
for each class label, while the discrimination process based
on these label-specific features in turn affects the learning
process of the label semantics so that label semantics can
provide more accurate guidance to label-specific feature
learning.

Following this strategy, a DNN-based approach named
CLIF, i.e. Collaborative Learning of label semantIcs and deep
label-specific Features for multi-label classification, is presented.
In CLIF, we introduce a graph autoencoder to encode the
rich semantic dependencies among labels into semantic
label embeddings which capture correlations in label space
and we develop a tailored feature-disentangling module to
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extract label-specific features. In a collaborative way, learned
label embeddings are employed to guide the selection of
the most pertinent features of each class label and label-
specific discriminative properties are incorporated into the
correlation-aware label embeddings via backpropagation of
discrimination errors.

In this paper, we advance the label-specific feature learn-
ing to the deep learning scenario, which is a promising area
that has not received much attention. Relying on the end-
to-end learnable properties of deep neural networks, CLIF
makes a first attempt towards the appealing collaborative
learning strategy. Comprehensive experiments on 14 bench-
mark data sets show that CLIF performs better than well-
established multi-label classification algorithms.

The rest of this paper is organized as follows. Section 2
briefly reviews related works. Section 3 presents details of
the proposed CLIF approach. Section 4 reports experimental
results over a wide range of multi-label data sets. Section 5
concludes this paper.

2 RELATED WORKS

As a practical and challenging machine learning paradigm,
multi-label classification has been studied extensively in
recent years [1]. To cope with an output space which is
exponential in size to the number of class labels, numerous
approaches propose exploiting label correlations to improve
the learning process [18], [19], [20], [21], [22]. Generally
speaking, the order of label correlations considered in exist-
ing approaches can be grouped into three categories, namely
first-order correlations [23], [24], second-order correlations
[25], [26], [27] and high-order correlations [28], [29], [30].

Complementary to label correlation exploitation, manip-
ulating the feature space is also an attractive way to facilitate
multi-label classification. Dimensionality reduction [31] or
feature selection [32] approaches focus on learning more
compact representations for the original features. While
some embedding-based approaches [33], [34], [35] map the
original features into a semantic space where semantically
similar instances are close to each other. Other approaches
exist that introduce multi-view representations [36], [37] or
learn meta-level features [38], [39] for multi-label data.

As an alternative strategy for feature manipulation,
label-specific features differentiate itself from the above
feature manipulation strategies via tailoring features specific
to each class label. The basic assumption behind label-
specific features is that each class label may possess distinct
discriminative properties. Therefore, a more effective multi-
label classification model can be induced if the most perti-
nent and discriminative features for each class label could
be provided. As the seminal work, LIFT [8] heuristically
constructs the label-specific features by querying cluster
centers of each class label. Successively, several approaches
have been proposed to improve the construction process of
label-specific features. To alleviate the increasing of feature
dimensionality encountered in LIFT, the fuzzy rough set
is introduced to perform label-specific feature reduction
[40]. Some works aim to optimize the unstable clustering
process of k-means via clustering ensemble [41], [42]. In
addition, some other works augment label-specific features
with local neighbor information [43], global spatial topology

information [44], or informative features from related class
labels [14].

Another line of research formalizes label-specific feature
construction as label-specific feature selection, i.e. retaining
a specific subset of the original features for each class label
[11], [12], [15], [45]. LLSF [9] presents a framework based
on lasso regression for label-specific feature selection with
feature-sharing between closely-related labels. JFSC [16] fur-
ther incorporates extra Fisher discriminant-based regular-
ization term into the feature selection process. Furthermore,
there have been other strategies for enhancing label-specific
feature selection such as introducing spectral clustering for
feature selection over meta-labels [46], imposing non-sparse
constraints on the selected feature subsets [47], or directly
regularizing the predictions with label correlations [10], etc.
It is worth noting that existing approaches merely exploit
the semantic relations of labels as prior knowledge to im-
pose constraints on the learning process of label specific fea-
tures. In other words, these label semantics are immutable
during the whole learning process.

Furthermore, the strategy of label-specific features has
also been jointly considered with the extreme multi-label
learning problem, where the label space may possess over
millions of labels. To optimize the excessive algorithmic
complexity brought by constructing label-specific features,
[48] reorganizes the label space into a probabilistic label
tree and captures the most relevant part of text for each
meta-label in the tree via a multi-label attention mechanism.
While [49] relies on label-specific features to enhance the
learning process of tail labels, which are ubiquitous in
extreme multi-label data sets.

Recently, deep learning has become a successful tech-
nique to solve the multi-label classification problem [17],
[50], [51], [52], [53], [54], [55]. Dates back to [56], deep neural
networks have been competent to construct a latent embed-
ding space which can well capture the dependency between
the features and labels [57], [58]. Success has been witnessed
in deep embedding-based approaches, such as C2AE [59]
and MPVAE [60], which resort to deep neural networks to
learn and align the latent spaces for features and labels.
Several works focus on exploiting deep neural networks to
capture label correlations [61], [62], [63]. For instance, ML-
GCN [64] introduces graph neural networks to explicitly
encode the label correlations into inter-dependent classifiers.
Sequential prediction methods such as [65], [66] utilize
recurrent neural networks to better exploit the higher-order
label dependencies.

Due to the powerful representation learning capability
of deep neural networks, it is quite natural to consider
the problem of label-specific features in the deep learning
scenario. However, this is still an area that has not received
much attention. In the next section, a first attempt towards
deep label-specific feature learning with collaborative learn-
ing strategy will be introduced in detail.

3 THE CLIF APPROACH

3.1 Notations
The following notations are used in the rest of this paper.
Let X = Rd denote the input space and Y = {l1, l2, . . . , lq}
denote the label space with q class labels. A multi-label
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Fig. 1. Illustration of the proposed CLIF approach. CLIF learns label semantics and label-specific features collaboratively. On one hand, the
semantic-guided feature-disentangling module extracts label-specific features with the guidance of semantic label embeddings generated by the
label semantic encoding module. On the other hand, as shown by the dotted arrows, discrimination process based on label-specific features in turn
enriches the label semantics with label-specific discriminative properties via backpropagation of discrimination errors.

example is denoted as (x, Y ), where x ∈ X is its feature
vector and Y ⊆ Y is its set of relevant labels. Here, a q-
dimensional vector y = [y1, y2, . . . , yq] ∈ {0, 1}q is utilized
to denote Y , where yk = 1 indicates lk ∈ Y and yk = 0
otherwise. Formally, multi-label classification aims to derive
a multi-label prediction function h : X → 2Y from a multi-
label data set D = {(xi, Yi)|1 ≤ i ≤ m}. Given an unseen
instance u ∈ X , its associated label set is predicted as
h(u) ⊆ Y .

3.2 Overview
Fig. 1 gives an overall illustration of the proposed CLIF
approach. In the label semantic encoding module, a graph
based on label co-occurrence is constructed over the label
space and then is fed into a graph autoencoder to generate
semantic-related label embeddings. With the guidance of se-
mantic label embeddings, the representation of an instance
is disentangled into label-semantic aware label-specific fea-
tures in the semantic-guided feature-disentangling module.
By training the whole model end-to-end, discrimination
errors on label-specific features are backpropagated into
the label semantic encoding module so that semantic label
embeddings can be updated to capture each label’s own
discriminative properties accurately. In such a collaborative
way, pertinent features for each class label can be mined
thoroughly with simultaneously improved label semantics.
We will describe key modules in CLIF in detail.

3.3 Label Semantic Encoding
Label co-occurrence is an essential semantic relation in label
space, modeling of which lies in the heart of multi-label
classification. In this section, we attempt to learn the label
embeddings in a label co-occurrence semantic space, where
labels with strong co-occurrence relationship possess similar
embeddings.

To achieve this, we firstly construct a label relation graph
based on statistics of label co-occurrence. Let G = (V,E)
denote such a label relation graph, where V denotes the
set of nodes corresponding to the set of class labels and
E denotes the set of edges. The adjacency matrix A stores

the weights associated with each edge, representing the
strengths of co-occurrence relationship between pairs of
labels. In this paper, we formulate the adjacency matrix A
as the symmetric conditional probability matrix1

Aij =
1

2
[P (lj |li) + P (li|lj)]

where P (lj |li) is the probability that label lj appears when
label li appears and the diagonal elements of conditional
probability matrix P are set to 0. We calculate the condi-
tional probability matrix P on training set.

Successively, a graph autoencoder is applied to embed
labels into a label co-occurrence semantic space with the
label relation graph. The encoder in our graph autoencoder
is instantiated by Graph Isomorphism Network (GIN) [67],
which was originally designed for graph classification task
with the most powerful representational capacity provably.
We introduce GIN to capture the label correlations contained
in the label relation graph.

Given a feature matrix of nodes H(t) ∈ Rq×d(t)

where
each row corresponds to the embedding of a label and d(t)

denotes the dimensionality of node features, together with
the adjacency matrix A, a GIN layer updates node features
by

H(t+1) = f (t+1)[(1 + ε(t+1))H(t) + AH(t)] (1)

where H(t+1) ∈ Rq×d(t+1)

is the updated feature matrix of
nodes, f (t+1) denotes a neural network consisting of two
fully-connected layers followed by Batch Normalization [68]
and LeakyReLU activation [69], and ε(t+1) is a learnable
parameter which controls the importance of node’s own fea-
tures during neighborhood aggregation. The initial feature
matrix of nodes H(0) ∈ Rq×d(0)

is initialized by Gaussian
function with zero mean and standard deviation of 1, which
has better empirical performance than one-hot embeddings.
After stacking GIN layers, we take H(T ) ∈ Rq×d(T )

as the

1. Actually, the adjacency matrix A can be constructed in numerous
alternative ways or even can be implemented in a learnable formula-
tion. We attempt to focus on the collaborative learning process for label
semantics and label-specific features and will leave it for further work.
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final label embeddings E ∈ Rq×de , i.e. E = H(T ), for
downstream feature-disentangling process.

By sharing layer parameters among all the class labels
and explicitly incorporating label correlations into the ad-
jacency matrix, GIN is able to embed labels with strong
co-occurrence relationship to nearby locations in the la-
bel semantic space. However, the embeddings of weakly
correlated labels cannot be effectively pushed away from
each other, as the neighborhood aggregation scheme of GIN
does not ensure increased distinction between two non-
adjacent labels. Therefore, a pairwise decoder is utilized to
ensure that the learned semantic label embeddings capture
the topological structure of the semantic space well. The
objective function of the pairwise decoder is formulated as
follows

Lle =
1

q2

q∑
i=1

q∑
j=1

[cos(ei, ej)− Âij ]
2 (2)

where cos(ei, ej) denotes the cosine similarity between the
label embeddings of label li and lj , and Â = A + I with I
being an identity matrix.

3.4 Semantic-Guided Feature-Disentangling

In the semantic-guided feature-disentangling module, label
semantics provide guidance and incorporate label corre-
lations to the learning process of label-specific features.
Meanwhile, this module serves as a bridge to propagate
discrimination errors on label-specific features to the label
semantic encoding module.

Here, for each class label lk ∈ Y , a specific mapping
φk : X → Zk from the original feature space X ∈ Rd to the
label-specific feature space Zk ∈ Rdz is learned. With the
guidance of the semantic label embeddings E generated by
the label semantic encoding module, label-specific mapping
φk can be formulated as

φk(x) = φ(x, ek)

where ek denotes the label embedding of label lk which
corresponds to the kth row of E.

To achieve this, We firstly map instance representation
from the original feature space to a more powerful deep la-
tent space, where the latent representation can be optimized
to benefit the subsequent element-wise selection process of
the pertinent features for each class label

xz = ζ(Wxx + bx)

where Wx ∈ Rdz×d, bx ∈ Rdz are learnable parameters
shared among all the class labels, and ζ is the LeakyReLU
activation. Then, an attention-like mechanism is designed to
utilize label semantics to guide selecting the pertinent and
discriminative features for each class label. Concretely, we
exploit a one-layer fully-connected network to decode the
semantic label embeddings into feature importance vectors

αk = σ(Week + be)

where αk ∈ Rdz is the feature importance vectors specific
to label lk, We ∈ Rdz×de , be ∈ Rdz are shared learnable
parameters, and σ denotes the sigmoid function which can
generate multiple peaks to keep consistency with the fact

that there might be multiple pertinent features for each
class label. Successively, pertinent features for each class
label are selected via Hadamard product between the fea-
ture importance vectors and instance latent representation.
Finally, we feed pertinent features into another one-layer
fully-connected network to obtain the final label-specific
features

zk = ζ[Wo(xz � αk) + bo]

where Wo ∈ Rdz×dz , bo ∈ Rdz are shared learnable
parameters, and � denotes the Hadamard product.

3.5 Classification

For each class label lk ∈ Y , a fully-connected layer is
attached to the corresponding label-specific features zk to
predict the confidence score of the presence of label lk,
formulated as

sk = gk(zk) = σ(wT
k zk + bk)

where wk ∈ Rdz and bk are learnable parameters, σ denotes
the sigmoid function. Given an unseen instance u ∈ X , its
associated label set is predicted as

Y = {lk|gk[φk(u)] > 0.5, 1 ≤ k ≤ q}

3.6 Overall Objective Function

CLIF is trained with the following objective function in an
end-to-end fashion

L = Lce + λLle

where Lle is the label embedding loss elaborated in Eq. (2),
λ is a trade-off parameter, and Lce denotes the cross entropy
loss, formulated as

Lce = −
q∑

k=1

yk log sk + (1− yk) log(1− sk) (3)

4 EXPERIMENTS

4.1 Experimental Configurations

4.1.1 Data Sets
Table 1 summarizes detailed characteristics of the 14 multi-
label data sets used in the experiments. Properties of each
data set are characterized by several statistics, including
number of examples |S|, number of features dim(S), num-
ber of possible class labels L(S), feature type F (S), la-
bel cardinality (average number of labels per instance)
LCard(S), label density (label cardinality over L(S))
LDen(S), number of distinct label sets DL(S) and propor-
tion of distinct label sets PDL(S). Detailed definitions on
these statistics can be found in [1].

Following [8], we perform dimensionality reduction for
rcv-s1 and tmc2007 by retaining the top 2% features with
highest document frequency. For iaprtc12, espgame and
mirflickr, the local descriptor DenseSift is used. As shown
in Table 1, the 14 multi-label data sets possess diversified
multi-label properties. Therefore, experimental studies on
these data sets provide a solid basis for comprehensive
evaluation of CLIF’s effectiveness.
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TABLE 1
Characteristics of the Experimental Data Sets

Dataset |S| dim(S) L(S) F (S) LCard(S) LDen(S) DL(S) PDL(S) Domain

CAL500 502 68 174 Numeric 26.044 0.150 502 1.000 Music1

Image 2000 294 5 Numeric 1.236 0.247 20 0.010 Images2

scene 2407 294 6 Numeric 1.074 0.179 15 0.006 Images1

yeast 2417 103 14 Numeric 4.237 0.303 198 0.082 Biology1

corel5k 5000 499 374 Nominal 3.522 0.009 3175 0.635 Images1

rcv1-s1 6000 944 101 Numeric 2.880 0.029 1028 0.171 Text1

Corel16k-s1 13766 500 153 Nominal 2.859 0.019 4803 0.349 Images1

delicious 16105 500 983 Nominal 19.020 0.019 15806 0.981 Text1

iaprtc12 19627 1000 291 Numeric 5.719 0.020 16202 0.825 Images3

espgame 20770 1000 268 Numeric 4.686 0.017 18158 0.874 Images3

mirflickr 25000 1000 38 Numeric 4.716 0.124 4464 0.179 Images3

tmc2007 28596 981 22 Nominal 2.158 0.098 1341 0.047 Text1

mediamill 43907 120 101 Numeric 4.376 0.043 6555 0.149 Video1

bookmarks 87856 2150 208 Nominal 2.028 0.010 18716 0.213 Text1

1 http://mulan.sourceforge.net/datasets.html
2 http://palm.seu.edu.cn/zhangml/
3 http://lear.inrialpes.fr/people/guillaumin/data.php

4.1.2 Evaluation Metrics
Six widely-used evaluation metrics for multi-label classifica-
tion are employed to evaluate the performance of each ap-
proach, including One-error, Coverage, Ranking loss, Average
precision, Macro-averaging AUC and Adjusted hamming loss2.
Given the test data set T = {(xi, Yi)|1 ≤ i ≤ n} and the
learned prediction functions {f1, f2, . . . , fq} for each class
label respectively, these evaluation metrics are formulated
as follows:

• One-error: 1
n

∑n
i=1 I[(arg maxlk∈Y fk(xi)) /∈ Yi]

where I(P) = 1 if predicate P holds and I(P) = 0
otherwise.

• Coverage: 1
q [ 1

n

∑n
i=1 maxlk∈Yi rank(xi, lk)− 1]

where rank(xi, lk) =
∑q

j=1 I[fj(xi) ≥ fk(xi)].

• Ranking loss: 1
n

∑n
i=1

|Zi|
|Yi||Ȳi|

where Ȳi = Y\Yi and
Zi = {(lk, lj)|fk(xi) ≤ fj(xi), (lk, lj) ∈ Yi × Ȳi}.

• Average precision: 1
n

∑n
i=1

1
|Yi|

∑
lk∈Yi

|R(xi,lk)|
rank(xi,lk)

where R(xi, lk) = {lj |fj(xi) ≥ fk(xi), lj ∈ Yi}.

• Macro-averaging AUC: 1
q

∑q
k=1 auck

where auck = |{(x′,x′′)|fk(x′)≥fk(x′′)}|
|Pk||Nk| ,

Pk and Nk consist of the instances with and without
label lk respectively, (x′,x′′) ∈ Pk ×Nk.

• Adjusted hamming loss: 1
n

∑n
i=1

|Ŷi∆Yi|
|Ŷi|+|Yi|

where Ŷi denotes the predicted set of relevant labels
for xi and ∆ denotes the symmetric difference be-
tween two sets.

All the above multi-label metrics take values in [0, 1]. For
Average precision and Macro-averaging AUC, larger values

2. As an enhanced version of the conventional Hamming loss, Ad-
justed hamming loss [70] is more sensitive to performance differences
among approaches when the data set has low label density.

mean better performance. While for the other four metrics,
smaller values indicate better performance.

4.1.3 Implementation Details
Unless otherwise stated, we stack two GIN layers to en-
code semantic label embeddings and residual connection
is added between these GIN layers. The dimensionality of
the initial node features is set to be equal to the number of
class labels. i.e. d(0) = q, while the output dimensionalities
of the two-layer neural networks {f (1), f (2)} in GIN layers
are both set as de. The dimensionality of the label-specific
features is set as 512. All the LeakyReLU activation functions
have a negative slope of 0.1. We initialize all the learn-
able layers with the MSRA method [71] and initialize the
learnable parameters {ε(1), ε(2)} in GIN by 0. For network
optimization, Adam with a batch size of 1000, momentums
of 0.999 and 0.9 is employed. The learning rate is set as 10−3

and the weight decay is set as 10−5.

4.2 Comparative Studies
We compare CLIF3 against six state-of-the-art multi-label
classification approaches with parameter configurations
suggested in respective literatures:

• LIFT [8]: LIFT constructs label-specific features via
querying clustering results on the positive and nega-
tive instances of each label. [parameter configuration:
r = 0.1]

• LLSF [9], [15]: LLSF performs label-specific feature
selection in a lasso-regression-like framework with
feature-sharing between closely-related labels. [pa-
rameter configuration: α = 0.1, β = 0.1, γ = 0.01]

• JFSC [16]: JFSC performs label-specific feature se-
lection and classification jointly with pairwise label
correlations. [parameter configuration: grid search
for α, β, γ ∈ {4−5, 4−4, . . . , 45} and η ∈ {0.1, 1, 10}]

3. Code of CLIF is publicly available at: http://palm.seu.edu.cn/
zhangml/files/CLIF.rar

http://mulan.sourceforge.net/datasets.html
http://palm.seu.edu.cn/zhangml/
http://lear.inrialpes.fr/people/guillaumin/data.php
http://palm.seu.edu.cn/zhangml/files/CLIF.rar
http://palm.seu.edu.cn/zhangml/files/CLIF.rar
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TABLE 2
Predictive Performance of Each Comparing Approach (mean±std. deviation) in terms of Average precision, Macro-averaging AUC and Adjusted

hamming loss. ↑ (↓) indicates the larger (smaller) the value, the better the performance. Best results are highlighted in boldface

Data Sets Average precision ↑
LIFT LLSF JFSC TIFS C2AE MPVAE CLIF

CAL500 0.500±0.015 0.511±0.016 0.502±0.012 0.471±0.019 0.478±0.014 0.480±0.013 0.513±0.016
Image 0.824±0.019 0.754±0.023 0.763±0.020 0.768±0.025 0.782±0.019 0.817±0.022 0.836±0.021
scene 0.886±0.016 0.847±0.016 0.853±0.021 0.828±0.011 0.851±0.019 0.879±0.022 0.888±0.016
yeast 0.770±0.017 0.763±0.014 0.759±0.013 0.751±0.023 0.733±0.019 0.764±0.013 0.773±0.018
corel5k 0.288±0.011 0.301±0.012 0.301±0.012 0.236±0.016 0.272±0.012 0.311±0.012 0.336±0.013
rcv1-s1 0.596±0.010 0.620±0.010 0.620±0.012 0.488±0.021 0.621±0.015 0.639±0.012 0.646±0.013
Corel16k-s1 0.320±0.005 0.346±0.007 0.345±0.007 0.245±0.004 0.333±0.007 0.355±0.008 0.369±0.008
delicious 0.378±0.005 0.362±0.005 0.381±0.005 0.257±0.008 0.357±0.004 0.400±0.005 0.403±0.005
iaprtc12 0.346±0.005 0.368±0.005 0.373±0.005 0.291±0.007 0.372±0.006 0.411±0.005 0.420±0.005
espgame 0.284±0.005 0.277±0.004 0.279±0.005 0.210±0.004 0.276±0.004 0.311±0.005 0.308±0.004
mirflickr 0.635±0.003 0.651±0.006 0.651±0.006 0.542±0.007 0.655±0.005 0.661±0.005 0.671±0.006
tmc2007 0.815±0.003 0.815±0.003 0.809±0.003 0.750±0.006 0.791±0.005 0.836±0.004 0.833±0.005
mediamill 0.730±0.003 0.728±0.003 0.712±0.004 0.634±0.007 0.721±0.003 0.747±0.003 0.752±0.004
bookmarks 0.492±0.004 0.501±0.002 0.499±0.002 0.307±0.003 0.489±0.003 0.520±0.002 0.508±0.003

Data Sets Macro-averaging AUC ↑
LIFT LLSF JFSC TIFS C2AE MPVAE CLIF

CAL500 0.518±0.011 0.579±0.016 0.552±0.012 0.542±0.020 0.487±0.025 0.496±0.013 0.567±0.016
Image 0.858±0.015 0.793±0.021 0.818±0.021 0.818±0.020 0.824±0.024 0.851±0.021 0.870±0.021
scene 0.948±0.009 0.921±0.011 0.924±0.012 0.915±0.007 0.919±0.017 0.946±0.011 0.950±0.010
yeast 0.675±0.019 0.694±0.016 0.678±0.016 0.674±0.023 0.625±0.023 0.705±0.012 0.715±0.016
corel5k 0.717±0.013 0.662±0.017 0.671±0.013 0.655±0.016 0.677±0.009 0.688±0.020 0.760±0.010
rcv1-s1 0.926±0.007 0.912±0.009 0.907±0.011 0.849±0.016 0.918±0.006 0.937±0.005 0.946±0.004
Corel16k-s1 0.688±0.008 0.710±0.006 0.708±0.009 0.652±0.015 0.732±0.009 0.738±0.014 0.787±0.005
delicious 0.782±0.004 0.766±0.005 0.772±0.006 0.641±0.010 0.790±0.004 0.813±0.004 0.827±0.003
iaprtc12 0.798±0.005 0.816±0.005 0.808±0.006 0.786±0.006 0.842±0.003 0.857±0.003 0.863±0.004
espgame 0.761±0.007 0.738±0.006 0.728±0.007 0.656±0.008 0.761±0.007 0.779±0.005 0.781±0.004
mirflickr 0.797±0.005 0.821±0.005 0.810±0.005 0.709±0.007 0.817±0.006 0.823±0.007 0.833±0.004
tmc2007 0.923±0.003 0.923±0.004 0.920±0.004 0.875±0.002 0.896±0.006 0.933±0.003 0.934±0.003
mediamill 0.774±0.011 0.778±0.004 0.834±0.009 0.707±0.007 0.800±0.011 0.861±0.009 0.859±0.009
bookmarks 0.894±0.002 0.882±0.003 0.873±0.003 0.679±0.011 0.859±0.004 0.912±0.003 0.906±0.003

Data Sets Adjusted hamming loss ↓
LIFT LLSF JFSC TIFS C2AE MPVAE CLIF

CAL500 0.678±0.009 0.660±0.009 0.687±0.007 0.622±0.016 0.553±0.008 0.668±0.007 0.575±0.013
Image 0.417±0.035 0.501±0.023 0.623±0.025 0.390±0.033 0.409±0.027 0.350±0.026 0.336±0.022
scene 0.291±0.027 0.525±0.037 0.449±0.032 0.303±0.025 0.317±0.029 0.237±0.029 0.235±0.023
yeast 0.376±0.018 0.387±0.017 0.377±0.017 0.355±0.015 0.395±0.021 0.352±0.014 0.346±0.017
corel5k 0.948±0.007 0.947±0.007 0.917±0.008 0.832±0.017 0.798±0.007 0.829±0.013 0.787±0.013
rcv1-s1 0.726±0.014 0.723±0.016 0.672±0.016 0.623±0.017 0.498±0.011 0.460±0.011 0.459±0.007
Corel16k-s1 0.969±0.005 0.956±0.004 0.937±0.007 0.838±0.005 0.770±0.006 0.784±0.008 0.729±0.008
delicious 0.780±0.006 0.812±0.004 0.798±0.004 0.761±0.005 0.747±0.002 0.729±0.005 0.698±0.007
iaprtc12 0.882±0.003 0.894±0.004 0.904±0.004 0.843±0.004 0.775±0.005 0.645±0.004 0.639±0.007
espgame 0.939±0.005 0.958±0.004 0.960±0.004 0.918±0.003 0.819±0.004 0.825±0.007 0.763±0.007
mirflickr 0.622±0.006 0.606±0.006 0.631±0.006 0.594±0.008 0.499±0.005 0.495±0.006 0.488±0.007
tmc2007 0.373±0.007 0.388±0.005 0.387±0.005 0.389±0.006 0.347±0.009 0.294±0.006 0.299±0.006
mediamill 0.452±0.003 0.463±0.003 0.490±0.004 0.504±0.006 0.445±0.003 0.418±0.004 0.406±0.005
bookmarks 0.742±0.002 0.805±0.002 0.801±0.003 0.816±0.003 0.646±0.004 0.617±0.001 0.637±0.004

• TIFS [11]: TIFS performs label-specific feature se-
lection in a latent topic space which captures the
input-output correlation. [parameter configuration:
grid search for τ, δ ∈ {10−4, 10−3, 10−2, 10−1}]

• C2AE [59]: C2AE is a deep neural network based
label embedding approach for multi-label classifica-
tion, which jointly embeds features and labels via
integrating deep canonical correlation analysis and
autoencoder. [parameter configuration: search for
α ∈ {0.1, 1, 2, 5, 10}]

• MPVAE [60]: MPVAE employs a variational autoen-
coder to align features and labels in a probabilistic
latent space and explicitly learns a shared covariance
matrix to model the label correlation. [parameter
configuration: λ1 = λ2 = 0.5, λ3 = 10, β = 1.1]

For CLIF, trade-off parameter λ is searched in
{10−5, 10−4, . . . , 1, 2, 5, 10} and the output dimensionality
of GIN, i.e. de is searched in {64, 128, 256}. For fair compar-
ison, all neural network-based approaches share the same
neural network structure. Ten-fold cross validation is em-
ployed to evaluate above approaches on the 14 benchmark
data sets.

Table 2 and Table 3 report detailed experimental results
of comparing algorithms in terms of each evaluation metric.
For each evaluation metric, “↓” indicates “the smaller the
better” while “↑” indicates “the larger the better”. Further-
more, the best performance among comparing algorithms is
shown in boldface.

To analyze whether there are statistical performance
gaps among comparing algorithms, Friedman test [72], which
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TABLE 3
Predictive Performance of Each Comparing Approach (mean±std. deviation) in terms of One-error, Coverage and Ranking loss. ↑ (↓) indicates the

larger (smaller) the value, the better the performance. Best results are highlighted in boldface

Data Sets One-error ↓
LIFT LLSF JFSC TIFS C2AE MPVAE CLIF

CAL500 0.124±0.033 0.118±0.043 0.116±0.028 0.179±0.061 0.116±0.026 0.117±0.035 0.119±0.046
Image 0.269±0.033 0.380±0.039 0.369±0.035 0.363±0.041 0.332±0.029 0.279±0.038 0.252±0.032
scene 0.196±0.029 0.255±0.025 0.243±0.033 0.292±0.021 0.240±0.030 0.207±0.039 0.189±0.030
yeast 0.218±0.034 0.218±0.025 0.230±0.023 0.249±0.038 0.256±0.033 0.235±0.019 0.221±0.033
corel5k 0.682±0.012 0.645±0.018 0.638±0.018 0.747±0.031 0.660±0.017 0.632±0.024 0.609±0.018
rcv1-s1 0.408±0.015 0.412±0.016 0.411±0.018 0.561±0.033 0.434±0.017 0.403±0.017 0.402±0.017
Corel16k-s1 0.676±0.013 0.636±0.018 0.636±0.018 0.779±0.011 0.652±0.017 0.630±0.017 0.621±0.018
delicious 0.325±0.012 0.354±0.011 0.322±0.009 0.561±0.027 0.358±0.009 0.310±0.011 0.304±0.010
iaprtc12 0.501±0.007 0.478±0.009 0.473±0.009 0.627±0.012 0.498±0.010 0.436±0.014 0.430±0.008
espgame 0.631±0.009 0.640±0.013 0.638±0.011 0.722±0.005 0.654±0.010 0.604±0.013 0.603±0.007
mirflickr 0.317±0.008 0.300±0.011 0.306±0.011 0.434±0.007 0.292±0.011 0.294±0.008 0.281±0.010
tmc2007 0.217±0.004 0.223±0.008 0.230±0.007 0.286±0.011 0.235±0.012 0.196±0.006 0.198±0.006
mediamill 0.158±0.006 0.159±0.006 0.172±0.007 0.220±0.011 0.159±0.006 0.149±0.007 0.145±0.006
bookmarks 0.533±0.005 0.523±0.003 0.524±0.003 0.727±0.003 0.524±0.005 0.506±0.002 0.520±0.005

Data Sets Coverage ↓
LIFT LLSF JFSC TIFS C2AE MPVAE CLIF

CAL500 0.753±0.024 0.754±0.016 0.743±0.013 0.788±0.023 0.798±0.016 0.779±0.014 0.744±0.016
Image 0.169±0.013 0.222±0.019 0.209±0.016 0.207±0.018 0.204±0.018 0.174±0.017 0.161±0.018
scene 0.066±0.008 0.089±0.009 0.088±0.011 0.096±0.006 0.094±0.011 0.069±0.009 0.065±0.006
yeast 0.452±0.015 0.454±0.017 0.465±0.016 0.456±0.013 0.468±0.018 0.457±0.017 0.445±0.014
corel5k 0.291±0.012 0.436±0.014 0.444±0.017 0.284±0.016 0.331±0.012 0.247±0.015 0.219±0.013
rcv1-s1 0.121±0.007 0.118±0.010 0.137±0.011 0.181±0.014 0.109±0.004 0.089±0.006 0.082±0.006
Corel16k-s1 0.324±0.007 0.324±0.008 0.342±0.008 0.321±0.005 0.284±0.008 0.250±0.007 0.233±0.005
delicious 0.481±0.007 0.618±0.009 0.602±0.010 0.580±0.009 0.429±0.006 0.410±0.004 0.405±0.006
iaprtc12 0.320±0.005 0.377±0.008 0.376±0.008 0.372±0.008 0.276±0.005 0.265±0.004 0.248±0.004
espgame 0.351±0.009 0.454±0.008 0.463±0.009 0.411±0.009 0.353±0.007 0.320±0.008 0.314±0.006
mirflickr 0.317±0.003 0.319±0.004 0.327±0.005 0.375±0.005 0.309±0.004 0.303±0.005 0.286±0.004
tmc2007 0.121±0.004 0.127±0.004 0.131±0.004 0.159±0.003 0.148±0.005 0.112±0.003 0.113±0.003
mediamill 0.156±0.003 0.174±0.004 0.170±0.004 0.215±0.004 0.155±0.003 0.132±0.002 0.131±0.003
bookmarks 0.131±0.002 0.157±0.004 0.165±0.004 0.246±0.006 0.173±0.004 0.112±0.002 0.116±0.002

Data Sets Ranking loss ↓
LIFT LLSF JFSC TIFS C2AE MPVAE CLIF

CAL500 0.181±0.006 0.184±0.007 0.179±0.005 0.206±0.008 0.196±0.005 0.195±0.006 0.179±0.005
Image 0.143±0.014 0.212±0.023 0.193±0.019 0.193±0.021 0.189±0.024 0.148±0.020 0.134±0.022
scene 0.062±0.010 0.089±0.011 0.088±0.015 0.098±0.008 0.094±0.014 0.066±0.012 0.062±0.008
yeast 0.164±0.010 0.168±0.010 0.177±0.009 0.178±0.012 0.187±0.012 0.172±0.012 0.162±0.010
corel5k 0.122±0.005 0.191±0.008 0.196±0.008 0.131±0.006 0.161±0.006 0.105±0.005 0.098±0.005
rcv1-s1 0.048±0.003 0.046±0.004 0.054±0.005 0.082±0.006 0.046±0.002 0.036±0.003 0.033±0.003
Corel16k-s1 0.163±0.003 0.162±0.004 0.173±0.004 0.178±0.003 0.153±0.004 0.128±0.002 0.122±0.002
delicious 0.100±0.002 0.143±0.003 0.121±0.003 0.137±0.002 0.103±0.002 0.089±0.001 0.086±0.002
iaprtc12 0.111±0.002 0.123±0.003 0.122±0.003 0.138±0.004 0.095±0.002 0.090±0.001 0.083±0.002
espgame 0.143±0.003 0.182±0.004 0.186±0.004 0.183±0.003 0.148±0.003 0.129±0.003 0.128±0.002
mirflickr 0.120±0.002 0.119±0.003 0.122±0.004 0.163±0.004 0.115±0.004 0.111±0.004 0.103±0.003
tmc2007 0.047±0.002 0.049±0.002 0.051±0.002 0.075±0.002 0.062±0.003 0.040±0.001 0.040±0.002
mediamill 0.045±0.001 0.052±0.002 0.052±0.002 0.067±0.002 0.046±0.001 0.037±0.001 0.037±0.001
bookmarks 0.083±0.001 0.098±0.003 0.102±0.003 0.179±0.005 0.113±0.003 0.071±0.001 0.073±0.002

TABLE 4
Summary of the Friedman Statistics FF in terms of Each Evaluation

Metric and the Critical Value at 0.05 Significance Level
(# comparing algorithms K = 7, # data sets N = 14)

Evaluation metric FF Critical value (α = 0.05)

Average precision 33.493

2.217

Macro-averaging AUC 24.708
Adjusted hamming loss 33.028
One-error 20.230
Coverage 20.949
Ranking loss 31.176

is a widely-accepted statistical test for comparisons of mul-
tiple algorithms over a number of data sets, is employed.
For each evaluation metric, the average rank of the j-th

algorithm is firstly computed as Rj = 1
N

∑N
i=1 r

j
i , where

rji denotes the rank of the j-th algorithm on the i-th data
set. Then, the Friedman statistics FF , which is distributed
according to the F -distribution with (K − 1) numerator
degrees of freedom and (K−1)(N−1) denominator degrees
of freedom, is computed as:

FF =
(N − 1)X 2

F

N(K − 1)−X 2
F

, where

X 2
F =

12N

K(K + 1)
[
K∑
j=1

R2
j −

K(K + 1)2

4
]

Table 4 summarizes the Friedman statistics FF on each
evaluation metric and the corresponding critical value at
significance level α = 0.05. As shown in Table 4, the
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Fig. 2. Comparison of CLIF (control algorithm) against other comparing algorithms with the Bonferroni-Dunn test. Algorithms not connected with
CLIF in the CD diagram are considered to have significantly different performance from the control algorithm (significance level α = 0.05).

null hypothesis, i.e. all comparing algorithms possess equal
performance, is clearly rejected in terms of each evaluation
metric.

Consequently, the Bonferroni-Dunn test [73] is further
employed as the post-hoc test [72] to analyze the relative per-
formance among the comparing approaches. Here, CLIF is
treated as the control algorithm and the difference between
the average ranks of CLIF and one comparing algorithm is
compared with the critical difference (CD). If their difference
is larger than one CD (CD=2.154 with K = 7 and N = 14 at
significance level of α = 0.05), the performance of CLIF
is deemed to be significantly different from that of the
comparing algorithm.

Fig. 2 presents the CD diagrams [72] on each evaluation
metric. In each subfigure, the average rank of each compar-
ing algorithm is marked along the axis with lower ranks to
the right and a thick line connects CLIF and any comparing
algorithm if the difference between their average ranks is
less than one CD. Based on the above results, observations
can be made as follows:

• CLIF achieves lowest average ranks against other
comparing approaches in terms of each evaluation
metric. Furthermore, across all evaluation metrics,
CLIF ranks 1st in 79.8% cases over all the 14 data
sets.

• As shown in Fig. 2, CLIF performs better than other
approaches based on label-specific features. Con-
cretely, CLIF significantly outperforms LLSF, JFSC
and TIFS in terms of all evaluation metrics and
achieves statistically superior or at least comparable
performance against LIFT. These impressive results
validate the superiority of our collaborative learning
strategy against existing approaches based on label-
specific features.

• Furthermore, Fig. 2 shows that CLIF significantly
outperforms C2AE in terms of all evaluation metrics
except for Adjusted hamming loss, while CLIF is not
significantly different from MPVAE. This is due to the
factor that MPVAE beats other comparing approaches
and the Bonferroni-Dunn test fails to detect that
CLIF achieves a consistently better average ranks
than MPVAE on all evaluation metrics. The superior
performance of CLIF against C2AE and MPVAE indi-
cates that it is a promising direction to explore the
interactions between the feature space and the label

space via extracting label-specific features under the
guidance of collaboratively learned label semantics.

To summarize, CLIF achieves highly competitive per-
formance against other well-established multi-label clas-
sification algorithms, which validates the effectiveness of
our proposed label-specific feature learning approach to
facilitate multi-label classification.

4.3 Further Analyses
4.3.1 Ablation Studies
In this section, ablation studies are conducted on all the 14
multi-label benchmark data sets with 10-fold cross valida-
tion. The training and test settings of CLIF’s variant models
are exactly the same as those of CLIF unless otherwise
stated. We conduct the Wilcoxon signed-ranks test [74] at
significance level α = 0.05 to analyze whether CLIF per-
forms statistically better than these variant models. Table 5
summarizes the p-value statistics on each evaluation metric
and Table 6 shows the detailed experimental results in terms
of Average precision.

Effectiveness of the collaborative learning strategy. We im-
plement a variant model named CLIF-ts, which learns label
semantics and label-specific features in a two-stage train-
ing procedure. Concretely, CLIF-ts firstly learns to encode
semantic relations among labels into semantic label embed-
dings with the label-embedding loss Lle elaborated in Eq.
(2). Then, CLIF-ts learns to extract label-specific features and
perform classification with the cross-entropy loss Lce, freez-
ing the learned semantic label embeddings. Results reported
in Table 5 validate the effectiveness of our collaborative
learning strategy.

Effectiveness of the semantic-guided label-specific features. We
implement a plain version of CLIF named CLIF-id, where
identical features are employed in the discrimination pro-
cesses of all class labels. As shown in Table 5, CLIF achieves
comparable performance against the CLIF-id variation in
terms of Adjusted hamming loss and significantly outper-
forms it on all the other evaluation metrics.

Effectiveness of the label semantic encoding module. We im-
plement two variant models named CLIF-re and CLIF-oe.
CLIF-re is implemented by replacing the label semantic en-
coding module with label embedding matrix generated by
Gaussian function with zero mean and standard deviation
of 1, while CLIF-oe is implemented similarly but with a
one-hot label embedding matrix. As shown in Table 5, the
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TABLE 5
Summary of the Wilcoxon Signed-Ranks Test for CLIF Against Its Variants in terms of Each Evaluation Metric at 0.05 Significance Level.

p-values are Shown in the Brackets

Comparing approaches Average precision Macro-averaging AUC Adjusted hamming loss One-error Coverage Ranking loss

CLIF against CLIF-ts win [0.0004] win [0.0205] win [0.0026] win [0.0002] win [0.0039] win [0.0020]
CLIF against CLIF-id win [0.0020] win [0.0352] tie [0.0762] win [0.0291] win [0.0024] win [0.0391]
CLIF against CLIF-re win [0.0001] win [0.0001] win [0.0006] win [0.0200] win [0.0002] win [0.0059]
CLIF against CLIF-oe win [0.0010] tie [0.0715] win [0.0002] win [0.0001] win [0.0103] win [0.0093]

Fig. 3. Performance of CLIF changes as the trade-off parameter λ varies. The first and the second rows show results on the tmc2007 and iaprtc12
data sets respectively.

TABLE 6
Predictive Performance of CLIF and its variant models (mean±std.

deviation) in terms of Average precision

Data Sets
Average precision ↑

CLIF CLIF-ts CLIF-id CLIF-re CLIF-oe

CAL500 0.513±0.016 0.511±0.017 0.509±0.015 0.510±0.015 0.510±0.015
Image 0.836±0.021 0.828±0.022 0.830±0.020 0.829±0.022 0.828±0.019
scene 0.888±0.016 0.884±0.019 0.888±0.019 0.883±0.022 0.884±0.022
yeast 0.773±0.018 0.771±0.017 0.772±0.017 0.771±0.017 0.770±0.015
corel5k 0.336±0.013 0.330±0.012 0.335±0.014 0.333±0.012 0.332±0.013
rcv1-s1 0.646±0.013 0.636±0.012 0.633±0.014 0.645±0.011 0.630±0.012
Corel16k-s1 0.369±0.008 0.368±0.006 0.368±0.007 0.367±0.007 0.370±0.007
delicious 0.403±0.005 0.393±0.004 0.403±0.005 0.395±0.005 0.391±0.005
iaprtc12 0.420±0.005 0.421±0.007 0.411±0.005 0.419±0.006 0.421±0.006
espgame 0.308±0.004 0.305±0.005 0.308±0.004 0.303±0.005 0.308±0.006
mirflickr 0.671±0.006 0.664±0.007 0.659±0.012 0.666±0.007 0.667±0.008
tmc2007 0.833±0.005 0.829±0.004 0.831±0.005 0.829±0.005 0.829±0.005
mediamill 0.752±0.004 0.745±0.003 0.751±0.004 0.750±0.004 0.744±0.004
bookmarks 0.508±0.003 0.499±0.003 0.508±0.002 0.507±0.003 0.500±0.003

effectiveness of the label semantic encoding module is sta-
tistically significant. In CLIF, label embeddings generated by
the label semantic encoding module capture semantics from
label space. Instead, label embedding matrix generated by
Gaussian function or one-hot encoder lacks such semantics.

4.3.2 Parameter Sensitivity

Fig. 3 gives an illustrative example on how the performance
of CLIF changes in terms of each evaluation metric when the
value of the trade-off parameter λ in the overall objective
function changes. As shown in Fig. 3, the trade-off param-
eter λ which controls the strength of the preservation of
label space topological structure does affect the performance
of CLIF. However, the performance is still relatively stable
as the parameter value changes within a reasonable range,

Fig. 4. Visualization of CLIF on tmc2007. The left subfigure shows the
constructed adjacency matrix A with self-loop, i.e. filling the diagonal
elements with 1. The middle and the right subfigures show the cosine
similarity matrices of label embeddings and importance vectors respec-
tively.

which serves as a desirable property in using the proposed
approach. Similar results can be observed on other data sets.

4.3.3 Visualization
To provide a deeper insight into CLIF, we visualize the con-
structed adjacency matrix A, learned semantic label embed-
dings and generated label-specific importance vectors αk on
the tmc2007 data set. It is obvious from Fig. 4 that: (a) the
topological structure of the label space is well preserved in
learned semantic label embeddings; (b) strongly correlated
labels share more pertinent and discriminative features than
weakly correlated labels. These results verify that CLIF can
take full advantage of the semantics from label space to
guide the learning process of label-specific features.

4.3.4 Complexity Analyses
Let b be the batch size and d̂ denote a proxy of the hidden
dimensionalities of the network, the time complexity of CLIF

corresponds to O(q2d̂ + bqd̂2), where the quadratic term
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Fig. 5. Complexity analyses of CLIF. (a) Empirical scalability of CLIF on the delicious data set. (b)(c) Running time (training/test) of each comparing
approach on six benchmark data sets. For histogram illustration, the y-axis corresponds to the logarithm of running time.

Fig. 6. Further analyses of CLIF with varying loss functions. (a) Performance comparision in terms of a ranking-based metric (Average precision).
(b) Performance comparision in terms of a classification-based metric (Adjusted hamming loss).

of the label number q is derived from the neighborhood
aggregation process in Eq. (1). During test, this quadrac-
tic term can be eliminated by saving the final semantic
label embeddings E. As shown in Fig. 5(a), the actual
time overhead of CLIF scales linearly in terms of q, when
q � bd̂. If q becomes extremely large, e.g. millions of labels,
this quadratic term can be optimized with approximate
neighborhood aggregation [75] or hierarchical classification
mechanism [48], [63], which will be left for further work.

Furthermore, Fig. 5(b)(c) illustrate the training and test
time of each comparing approach, which show that CLIF
is comparable to existing approaches in time overhead. On
the same computing device (a V100 GPU), CLIF takes signif-
icantly less time to train and test than its strong competitor
MPVAE.

4.3.5 Alternative Implementations
As shown in Eq. (3), the default loss function for classifica-
tion model induction in CLIF is the commonly-used cross-
entropy loss. Here, we further analyze how the performance
of CLIF changes when the loss funtion changes. Except
for the cross-entropy loss, two more loss functions are
investigated. The label-correlation aware loss [56] penalizes
pairwise reversed ranking between each relevant-irrelevant
label pair. While the asymmetric loss [76] concentrates on
individual label discrimination as the cross-entropy loss
does, but focuses more on hard relevant labels. As shown
in Fig. 6, it is not surprising that the asymmetric loss tends
to possess better performance in terms of Adjusted hamming
loss, which is a classification-based metric. And the cross-
entropy loss achieves better ranking performance, though
the label-correlation aware loss is intuitively friendly to
ranking-based metrics.

5 CONCLUSION

In this paper, we propose to construct label-specific fea-
tures for multi-label classification with a novel collabora-
tive learning strategy where the learning of label seman-
tics and label-specific features interact and facilitate with
each other. Following this strategy, we present a DNN-
based approach CLIF which exploits learned label semantics
to guide extracting the most pertinent features for each
class label, while the discrimination process based on these
label-specific features propagates label-specific discrimina-
tive properties to the learning process of the label seman-
tics. Comprehensive experiments show that our approach
achieves highly competitive performance against other well-
established multi-label classification algorithms. In the fu-
ture, it is interesting to design other interaction mechanisms
between label semantics and label-specific features as there
may be sophisticated relationships between a label and its
own discriminative features.
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