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Multi-Label Classification with Label-Specific
Feature Generation: A Wrapped Approach

Ze-Bang Yu, and Min-Ling Zhang

Abstract —Label-specific features serve as an effective strategy to learn from multi-label data, where a set of features encoding
specific characteristics of each label are generated to help induce multi-label classification model. Existing approaches work by taking
the two-stage strategy, where the procedure of label-specific feature generation is independent of the follow-up procedure of
classification model induction. Intuitively, the performance of resulting classification model may be suboptimal due to the decoupling
nature of the two-stage strategy. In this paper, a wrapped learning approach is proposed which aims to jointly perform label-specific
feature generation and classification model induction. Specifically, one (kernelized) linear model is learned for each label where
label-specific features are simultaneously generated within an embedded feature space via empirical loss minimization and pairwise
label correlation regularization. Comparative studies over a total of sixteen benchmark data sets clearly validate the effectiveness of
the wrapped strategy in exploiting label-specific features for multi-label classification.

Index Terms —Multi-label classification, label-specific features, label correlation, wrapped procedure

✦

1 INTRODUCTION

IN recent years, multi-label classification techniques have
been widely used in solving real-world tasks involving

objects with rich semantics [18], [20], [24], [25], [28], [30],
[35], [39], [43]. Formally speaking, let X = Rm denote the m-
dimensional feature space and Y = {ω1, ω2, . . . , ωl} denote
the label space consisting of l class labels. The task of multi-
label classification is learn a predictive function h : X → 2Y

from the training set D = {(xi, Yi) | 1 ≤ i ≤ n}, where
xi ∈ X is a feature vector and Yi ⊆ Y is the set of relevant
labels associated with xi.

Generally, the desired multi-label classification model is
instantiated by learning a set of discriminative functions
g = {g1, g2, . . . , gl}, i.e. h(x) = {ωj | gj(x) > 0, 1 ≤ j ≤
l}, where gj : X → R determines the relevancy of ωj w.r.t.
x. The most straightforward strategy is to employ the very
single feature representation x in learning all the discrimina-
tive functions. However, the distinct characteristics of each
class label may not be fully considered by employing identi-
cal feature representation for model induction. For instance,
in multi-label text categorization, features corresponding
to word terms GDP, income and currency are informative
in discriminating economic and non-economic documents,
while features corresponding to word terms Olympics, movie
and celebrity are informative in discriminating entertainment
and non-entertainment documents.

Recently, the strategy of label-specific features has been
proposed to learning from multi-label data where the rel-
evancy of each label is determined with tailored features of
its own. Existing approaches following the label-specific fea-
tures strategy usually work in a two-stage manner [13], [15],
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[32], [38], [44], [48], [50], where the procedure of generat-
ing label-specific features is independent of the subsequent
procedure of the training classification model. Nonetheless,
the performance of resulting classification model may be
affected by the decoupling nature of two-stage mechanism.
As an inherent building block of the multi-label learning
system, it is beneficial to jointly consider the generation of
label-specific features along with the induction of classifi-
cation model. In this way, informative feedbacks from the
classification model can be incorporated in the generation
of label-specific features, and vice versa.

Recently, the strategy of label-specific features has been
jointly considered with several tasks in multi-label classifi-
cation such as label correlation exploitation [19] and missing
label completion [8], [36]. In [19], similarity constraints over
predictive outputs of a pair of class labels are exploited
to help induce the label-specific features. In [36], label
completion techniques are utilized to enrich the missing
labeling information which guide the generation of label-
specific features to be used by stand-alone classification
models such as BSVM [14]. In [8], positive as well as nega-
tive label correlations are utilized to help complete missing
labeling information as well as label-specific features gen-
eration. Although the task of label correlation exploitation
or missing label completion has been jointly considered in
previous studies on label-specific features [8], [19], [36], the
task of classification model induction has been rarely jointly
considered with label-specific features generation.

In light of these observations, a novel approach named
WRAP, i.e. WRAPping multi-label classification with label-
specific features generation, is proposed. Specifically, for each
class label, one (kernelized) linear model is learned by
simultaneously generating its label-specific features in an
embedded feature space. The resulting problem is solved by
alternating optimization based on empirical loss minimiza-
tion and pairwise label correlation regularization. Extensive
experiments over a total of sixteen benchmark data sets
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clearly show the benefits of wrapping label-specific features
generation with predictive model induction for multi-label
classification.

The rest of this paper is organized as follows. Firstly,
related works are briefly discussed. Secondly, technical de-
tails of the proposed WRAP approach are presented. Thirdly,
comparative experimental results are reported. Finally, we
conclude this paper.

2 RELATED WORK

Multi-label classification aims to learn a mapping function
from the feature space to the powerset of label space. Due to
the combinatorial nature of the predicted label set, most ap-
proaches focus on exploiting correlations among class labels
to facilitate the induction of multi-label classification model
[11], [51]. Roughly speaking, the order of label correlations
can be considered in a first-order manner by treating each
class label independently [1], [49], a second-order manner
by exploiting pairwise interactions between class labels [2],
[10], [21], and a high-order manner by exploiting interactions
among a subset of or all class labels [17], [27], [34].

In addition to label correlations exploitation, another
effective way to facilitate multi-label classification is to
manipulate the feature space. Dimensionality reduction [31]
or feature selection [26] over the original feature space serve
as the most common strategy for feature manipulation.
Furthermore, there have been other feature manipulation
strategies for muti-label classification such as generating
discriminative meta-level features from the original features
[3], [45], aligning latent spaces for features and labels via
DNNs [5], [6], [42], [46], exploiting distance metric [12], [22],
[33] or multi-view representation [40], [41], [47] for multi-
label data. It is worth noting that, as a common practice
adopted by these feature manipulation strategies, identical
feature representation is utilized in the discrimination pro-
cesses of all class labels.

Different from existing multi-label feature manipulation
strategies, label-specific features have been proposed as an
alternative feature manipulation strategy to multi-label clas-
sification and has attracted significant research attentions
in recent years. The key idea is to derive tailored feature
representation for each class label rather than relying on the
identical feature representation for follow-up discriminative
modeling process. Specifically, the process of generating
label-specific features can be conducted in two different
manners, i.e. in the transformed feature space or in the
original feature space.

Initial attempt towards label-specific features works in
the first manner by deriving tailored feature representa-
tion in transformed feature space [50]. For each class, k-
means clustering is employed to analyze the distributional
property of positive and negative instances of each class
label, where the identified clustering centers are used as
the embedding bases for feature transformation. To enhance
the label-specific features generation process, several cus-
tomized strategies can be employed such as redundant in-
formation removal with attribute reduction [44], structured
sparsity regularization over label-specific features genera-
tion process [7], [16], label-specific features expansion with
nearest neighbor rules [38], linear discriminant analysis

for informative label-specific features excavation [13], joint
missing labeling information completion and label-specific
features generation [8], [36], and multi-granularity label-
specific features generation [23], etc.

On the other hand, label-specific features can be derived
in another manner by retaining specific subset of features
for different class labels within the original feature space.
Correspondingly, feature selection for each class label can
be conducted to enable retaining specific subset of original
features, such as imposing sparse [15] or non-sparse [37]
assumption over the selected subset of features, invoking
LASSO and spectral clustering techniques [32] for feature
subset selection over meta-labels, and learning to weight
original features via linear regression [19] or regularized
optimization [48], etc.

Generally, existing multi-label classification approaches
based on label-specific features work in two independent
generation-then-induction stages. In the next section, a first
attempt towards wrapped label-specific features generation
and multi-label classification model induction will be intro-
duced.

3 THE WRAP APPROACH

Given the multi-label training set D = {(xi, Yi) | 1 ≤
i ≤ n}, let X = [x1, x2, . . . , xn]> ∈ Rn×m denote the
instance matrix in the m-dimensional feature space and
Y = [y1, y2, . . . , yn]> ∈ {0, 1}n×l denote the binary label
matrix in the label space with l class labels. Here, we have
yi = [yi1, yi2, . . . , yil]> where yij = +1 if ωj ∈ Yi and
yij = 0 otherwise.

Furthermore, WRAP employs an embedding matrix V ∈
Rm×d which maps the original m-dimensional feature space
into a d-dimensional feature space (d < m) for label-specific
features generation. Correspondingly, one linear model w.r.t
each class label is assumed for wrapped label-specific fea-
tures generation and predictive model induction:

gj(x) = u>
j ∙ V> ∙ x + bj (1 ≤ j ≤ l), (1)

Here, uj ∈ Rd and bj correspond to weight vector and
bias of the linear model assumed for class label ωj in the
embedded feature space.

3.1 Linear Wrapping for Label-Specific Features

To enable label-specific features generation in conjunction
with the assumed classification model, WRAP aims to opti-
mize the following objective function:

min
U,V,b

1
2
||XVU + 1nb> − Y||22 (2)

+
λ1

2
||V||22 + λ3||U||1,

Here, we have U = [u1, u2, . . . , ul] ∈ Rd×l, b =
[b1, b2, . . . , bl]> ∈ Rl×1, and 1n = [1, 1, . . . , 1]> ∈ Rn×1.

Conceptually, the first term in Eq.(2) measures the pre-
dictive loss of the learned models while the second term in
Eq.(2) controls model complexity of the embedding matrix.
The third term in Eq.(2) corresponds to the `1 norm of the
weight matrix U, which aims to introduce sparsity into the
weight vector of linear models. In this way, WRAP naturally
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fulfills the task of label-specific features generation in the
embedded feature space by retaining features with non-zero
weight for each class label.

To enable the exploitation of label correlations, WRAP

adapts the objective function in Eq.(2) as follows:

min
U,V,b

1
2
||XVU + 1nb> − Y||22 +

λ1

2
||V||22 (3)

+
λ2

2
tr
(
UCU>

)
+ λ3||U||1

s.t. : u>
j uj = 1, 1 ≤ j ≤ l,

Here, tr
(
UCU>

)
=
∑l

j=1

∑l
k=1 cjku>

j uk considers the
correlations between any pair of linear models. Specifically,
C = [cjk]l×l ∈ Rl×l with cjk = −

∑n
i=1 yijyik being the

negation of the number of training examples on which ωj

and ωk co-occur as relevant labels. Therefore, the third term
in Eq.(3) enforces that the weight vectors of two linear mod-
els should be similar to each other if the corresponding class
labels have strong correlations. The resulting problem is
solved by following the alternating optimization procedure.

Fix V and b, Optimize U The optimization problem in
this step corresponds to:

min
U

f(U) + λ3||U||1 (4)

s.t. : u>
j uj = 1, 1 ≤ j ≤ l,

where f(U) = 1
2 ||XVU + 1nb> −Y||22 + λ2

2 tr
(
UCU>

)
is

the smooth part of the convex objective function in Eq.(4).
Correspondingly, the iterative procedure based on proximal
gradient descent is invoked to minimize Eq.(4). It is not
difficult to show that:

∇Uf(U) = (XV)>(XVU + 1nb> − Y) + λ2UC, (5)

Furthermore, f(U) satisfies the L-Lipschitz condition:

||∇U(f(U1) −∇U(f(U2)||2 (6)

≤ (||XV||22 + λ2||Y||22) ∙ ||U1 − U2||,

with Lipschitz constant L = ||XV||22 + λ2||Y||22. Given
the solution U(t) at t-th iteration, the weight matrix U is
updated in the next iteration as follows:

Z(t) = U(t) −
1
L
∇Uf(U(t)), (7)

S(t)
ij = sign

(
Z(t)

ij

)
max

(∣
∣
∣Z(t)

ij

∣
∣
∣−

λ3

L
, 0
)

, (8)

U(t+1)
ij = S(t)

ij /||sj ||2, (9)

where sj =
[
S(t)

1j , . . . ,S(t)
dj

]>
corresponds to the j-th col-

umn of S(t).

Fix U, Optimize V and b The optimization problem in
this step corresponds to:

min
V,b

1
2
||XVU + 1nb> − Y||22 +

λ1

2
||V||22, (10)

It is not difficult to show that the minimizer of Eq.(10) w.r.t.
V should satisfy the following condition:

X>XVUU> + X>(1nb> − Y)U> + λ1V = 0, (11)

Let A = X>X, B = UU>and C = X>(1nb> − Y)U>.
The symmetric matrix A can be factorized into PΛP>,
where P is an orthonormal matrix whose columns store
the eigenvectors of A and Λ is a diagonal matrix whose
diagonal elements store the eigenvalues of A. Similarly, B
can be factorized into QΓQ> with orthonormal eigenvector
matrix Q and diagonal eigenvalue matrix Γ. Accordingly,
Eq.(11) is equivalent to:

PΛP>VQΓQ> + C + λ1V = 0, (12)

By multiplying P> (Q) to the left (right) of both sides of
Eq.(12), we can have:

ΛP>VQΓ + P>CQ + λ1P
>VQ = 0, (13)

Therefore, the closed-form solution for V corresponds to:

V = P
(
(−P>CQ) � (Λ1m1>

d Γ + λ11m1>
d )
)
Q>, (14)

Here, � represents the Hadamard division operator. In
addition, the closed-form solution for b corresponds to:

b = −
1
n
∙ (XVU − Y)>1n, (15)

The complete procedure of WRAP in linear mode is summa-
rized in Table 1. Firstly, the model parameters U, V and b
are randomly initialized with U>U = I (Steps 2 and 4).
After that, an iterative procedure is invoked to optimize
{U} and {V, b} in an iterative manner (Steps 5-12). Finally,
the label set for unseen instance is predicted by querying
the induced model (Steps 13 and 26).

3.2 Kernelized Wrapping for Label-Specific Features

Furthermore, a nonlinear version of the WRAP approach can
be derived by introducing the kernel trick [29]. Given the
kernel function κ : X × X 7→ R, let ψ : Rm 7→ RHκ be the
induced (implicit) nonlinear mapping from the original fea-
ture space X to the higher-dimensional Reproducing Kernel
Hilbert Space (RKHS). Accordingly, the embedding matrix
is set as V = ΨH where Ψ = [ψ(x1), ψ(x2), . . . , ψ(xn)] ∈
RHκ×n and H ∈ Rn×d. Then, the prediction of resulting
model on unseen instance x corresponds to:

gj(x) = u>
j ∙ H> ∙ ϕ(x) + bj (1 ≤ j ≤ l), (16)

where ϕ(x) = [κ(x1, x), κ(x2, x), . . . , κ(xn, x)]>.
Furthermore, the objective function of Eq.(3) can be re-

written as:

min
U,H,b

1
2
||KHU + 1nb> − Y||22 +

λ1

2
||H>KH||22 (17)

+
λ2

2
tr
(
UCU>

)
+ λ3||U||1

s.t. : u>
j uj = 1, 1 ≤ j ≤ l,

where K = [kij ]n×n corresponds to the kernel matrix with
kij = κ(xi, xj) = 〈ψ(xi), ψ(xj)〉Hκ

. Similarly, the resulting
problem can be solved by optimizing {U} and {H, b} in an
alternative manner.

Fix H and b, Optimize U By re-writing f(U) in Eq.(4) as
fκ(U) = 1

2 ||KHU+1nb>−Y||22 + λ2
2 tr

(
UCU>

)
with the

following gradient:

∇Ufκ(U) (18)

= (KH)>(KHU + 1nb> − Y) + λ2UC,
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TABLE 1
Pseudo-code of WRAP.

Inputs:

D: the multi-label training set {(xi, Yi) |1 ≤ i ≤ n} (X = Rm, Y = {ω1, ω2, . . . , ωl}, xi ∈ X , Yi ⊆ Y)

d: dimensionality of embedded feature space

λ1, λ2, λ3: regularization parameters w.r.t. the complexity, correlation and sparsity terms of the objective function

Outputs:

Y : predicted label set for unseen instance x

Process:

1: Set Y = [y1,y2, . . . ,yn]> with yi = [yi1, yi2, . . . , yil]
>, where yij = +1 if ωj ∈ Yi and yij = 0 otherwise;

2: Randomly initialize U ∈ Rd×l (U>U = I), b ∈ Rl×1;
3: if linear mode then
4: Randomly initialize V ∈ Rm×d;
5: Factorize the symmetric matrix X>X into PΛP> with X = [x1,x2, . . . ,xn]>;
6: repeat
7: U(0) = U;
8: t = 0;
9: repeat

10: Calculate ∇Uf(U(t)) w.r.t. Eq.(5); Set L = ||XV||22 + λ2||Y||22; Update U(t+1) w.r.t. Eqs.(7)-(9);
11: t = t + 1;
12: until convergence
13: U = U(t);
14: Factorize the symmetric matrix UU> into QΓQ>;
15: Set C = X>(1nb

> − Y)U>;
16: Update V and b according to Eq.(14) and Eq.(15) respectively;
17: until convergence
18: Calculate gj(x) (1 ≤ j ≤ l) according to Eq.(1);
19: else
20: Randomly initialize H ∈ Rn×d;
21: Set K = [kij ]n×n with kij = κ(xi,xj) and then factorize it into RΦR>;
22: repeat
23: U(0) = U;
24: t = 0;
25: repeat
26: Calculate ∇Ufκ(U(t)) w.r.t. Eq.(18); Set L = ||KH||22 + λ2||Y||22; Update U(t+1) w.r.t. Eqs.(7)-(9) by replacing f(∙) with

fκ(∙);
27: t = t + 1;
28: until convergence
29: U = U(t);
30: Factorize the symmetric matrix UU> into QΓQ>;
31: Set Cκ = K>(1nb> − Y)U>;
32: Update H and b according to Eq.(23) and Eq.(24) respectively;
33: until convergence
34: Calculate gj(x) (1 ≤ j ≤ l) according to Eq.(16);
35: end if
36: Return Y = {ωj | gj(x) > 0.5, 1 ≤ j ≤ l}.

Accordingly, fκ(U) also satisfies the L-Lipschitz condition
with L = ||KH||22 + λ2||Y||22. Given the solution U(t) at
t-th iteration, the weight matrix U is updated according to
Eqs.(7)-(9) by replacing f(∙) with fκ(∙).

Fix U, Optimize H and b The optimization problem in
this step corresponds to:

min
H,b

1
2
||KHU + 1nb> − Y||22 +

λ1

2
||H>KH||22, (19)

It is not difficult to show that the minimizer of Eq.(19) w.r.t.
H should satisfy the following condition:

K>KHUU> + K>(1nb> − Y)U> + λ1KH = 0, (20)

Let Cκ = K>(1nb> − Y)U>. Furthermore, the kernel
matrix K can be factorized into RΦR> with orthonormal
eigenvector matrix R and diagonal eigenvalue matrix Φ.
Accordingly, Eq.(20) is equivalent to:

RΦR>(KH)QΓQ> + Cκ + λ1(KH) = 0, (21)

By multiplying R> (Q) to the left (right) of both sides of
Eq.(21), we can have:

ΦR>(KH)QΓ + R>CκQ + λ1R
>(KH)Q = 0, (22)

Therefore, the closed-form solution for H corresponds to:

H = (23)
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TABLE 2
Characteristics of the experimental data sets.

Data set |S| dim(S) L(S) LCard(S) LDen(S) DL(S) Domain
CAL500 502 68 174 26.044 0.150 502 music
emotions 593 72 6 1.869 0.311 27 music

birds 645 260 19 1.014 0.053 133 audio
medical 978 1,449 45 1.245 0.028 94 text

language log 1,460 1,004 75 1.180 0.016 286 text
enron 1,702 1,001 53 3.378 0.064 753 text
scene 2,407 294 6 1.074 0.179 15 images
yeast 2,417 103 14 4.237 0.303 198 biology

slashdot 3,782 1,079 22 1.181 0.054 156 text
corel5k 5,000 499 374 3.522 0.009 3,175 images
bibtex 7,395 1,836 159 2.402 0.015 2,856 text

corel16k 13,766 500 153 2.859 0.019 4,803 images
delicious 16,105 500 983 19.020 0.019 15,806 text
eurlex-sm 19,348 5,000 201 2.213 0.011 2,504 text
tmc2007 28,596 500 22 2.158 0.098 1,341 text

mediamill 43,907 120 101 4.376 0.043 6,555 video

K−1
(
R
(
(−R>CκQ) � (Φ1n1>

d Γ + λ11n1>
d )
)
Q>

)

= RΦ−1
(
(−R>CκQ) � (Φ1n1>

d Γ + λ11n1>
d )
)
Q>,

In addition, the closed-form solution for b corresponds to:

b = −
1
n
∙ (KHU − Y)>1n, (24)

The complete procedure of WRAP in kernelized mode is
also summarized in Table 1. Similar to the linear mode,
the model parameters U, H and b are randomly initialized
(Steps 2 and 15). After that, an iterative procedure is invoked
to optimize {U} and {H, b} in an iterative manner (Steps
16-23). Finally, the label set for unseen instance is predicted
by querying the induced model (Steps 24 and 26).

4 EXPERIMENTS

4.1 Experimental Setup

In this paper, a total of sixteen benchmark multi-label data
sets have been employed for extensive comparative stud-
ies.1 Table 2 summarizes characteristics of each experimental
data set S , including the number of examples (|S|), number of
features (dim(S)), number of class labels (L(S)), label cardinal-
ity (LCard(S), i.e. average number of relevant labels per
example), label density (LDen(S)), i.e. label cardinality over
L(S)), and number of distinct label sets (DL(S)) appearing in
S [27], [51].

The performance of WRAP is compared against the
following seven well-established multi-label classification
approaches with parameter configurations suggested in re-
spective standard implementations, where three of them
work by employing the strategy of label-specific features:

• BR [1]: A classical multi-label classification approach
which decomposes the original multi-label classifica-
tion task into a set of binary classification tasks, one
per class label. [parameter configuration: C = 1];

1. Data sets publicly available at http://mulan.sourceforge.net/
datasets-mlc.html

• ECC [27]: An ensemble-based learning approach for
multi-label classification, which builds an ensemble
of N classifier chains over the class labels in random
order. [parameter configuration: N = 5];

• RAKEL [34]: A transformation-based learning ap-
proach for multi-label classification, which trans-
forms the original multi-label classification task into
N multi-class classification tasks over k randomly
chosen class labels. [parameter configuration: N = l,
k = 3];

• ML-KNN [52]: A popular kNN-based learning ap-
proach for multi-label classification, which can be
regarded as a degenerated counterpart of the label-
specific feature strategy by utilizing only the origi-
nal feature representation. [parameter configuration:
k = 10];

• LIFT [50]: The seminal multi-label classification ap-
proach based on label-specific features which gener-
ates tailored features by conducting clustering anal-
ysis over the set of positive examples and negative
examples w.r.t. each class label. [parameter configu-
ration: r = 0.1];

• MLSF [32]: Another comparing multi-label classifica-
tion approach based on label-specific features which
generates tailored features by retaining different sub-
set of original features for a group of class labels.
[parameter configuration: K = dl/10e, ε = 0.01,
α = 0.8, γ = 0.01];

• LFLC [23]: The third comparing multi-label classi-
fication approach based on label-specific features
which generates tailored features by analyzing local
and global feature-to-label correlations. [parameter
configuration: grid search for λ ∈ {1, 3, . . . , 19} with
step-size 2, η ∈ {1e−10, . . . , 1e−5} with a multiple
of e at each step, β = 104].

As shown in Table 1, for the proposed WRAP approach
(linear mode), we have the following parameter configura-
tion in this paper: grid search for λ1, λ2 ∈ {0, 1, . . . , 10}
with step-size 1, λ3 = 0.1 and d = bα min(m, l)c with
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TABLE 3
Experimental results of the comparing approaches on the first eight data sets (↓: the smaller the better; ↑: the larger the better).

Approach
Hamming loss ↓

CAL500 emotions birds medical language log enron scene yeast
WRAP 0.136 ± 0.002 0.200 ± 0.007 0.045 ± 0.048 0.010 ± 0.002 0.015 ± 0.001 0.047 ± 0.001 0.110 ± 0.006 0.199 ± 0.005
WRAPκ 0.136 ± 0.005 0.184 ± 0.023 0.045 ± 0.006 0.009 ± 0.001 0.015 ± 0.001 0.045 ± 0.002 0.078 ± 0.003 0.185 ± 0.005
BR 0.165 ± 0.003 0.207 ± 0.021 0.070 ± 0.010 0.010 ± 0.001 0.019 ± 0.001 0.061 ± 0.002 0.131 ± 0.005 0.202 ± 0.006
BRκ 0.137 ± 0.001 0.176 ± 0.009 0.047 ± 0.005 0.028 ± 0.001 0.016 ± 0.000 0.051 ± 0.001 0.075 ± 0.003 0.187 ± 0.001
ECC 0.147 ± 0.002 0.226 ± 0.011 0.050 ± 0.004 0.010 ± 0.001 0.015 ± 0.001 0.050 ± 0.001 0.122 ± 0.003 0.211 ± 0.008
RAKEL 0.279 ± 0.009 0.254 ± 0.034 0.250 ± 0.013 0.034 ± 0.001 0.051 ± 0.003 0.162 ± 0.009 0.164 ± 0.017 0.291 ± 0.009
ML-KNN 0.147 ± 0.003 0.200 ± 0.007 0.051 ± 0.006 0.015 ± 0.002 0.016 ± 0.000 0.055 ± 0.002 0.086 ± 0.005 0.199 ± 0.008
LIFT 0.139 ± 0.003 0.187 ± 0.010 0.045 ± 0.009 0.012 ± 0.001 0.015 ± 0.000 0.046 ± 0.002 0.081 ± 0.007 0.194 ± 0.006
LIFTκ 0.227 ± 0.019 0.418 ± 0.034 0.131 ± 0.041 0.038 ± 0.002 0.029 ± 0.001 0.112 ± 0.008 0.380 ± 0.007 0.324 ± 0.010
MLSF 0.138 ± 0.004 0.224 ± 0.021 0.050 ± 0.003 0.010 ± 0.001 0.015 ± 0.001 0.051 ± 0.001 0.128 ± 0.007 0.210 ± 0.005
LFLC 0.136 ± 0.004 0.197 ± 0.004 0.045 ± 0.003 0.010 ± 0.001 0.015 ± 0.001 0.046 ± 0.001 0.107 ± 0.005 0.197 ± 0.004

Approach
One error ↓

CAL500 emotions birds medical language log enron scene yeast
WRAP 0.113 ± 0.033 0.265 ± 0.025 0.660 ± 0.031 0.125 ± 0.025 0.730 ± 0.032 0.220 ± 0.021 0.272 ± 0.008 0.223 ± 0.008
WRAPκ 0.115 ± 0.038 0.224 ± 0.033 0.656 ± 0.040 0.130 ± 0.016 0.724 ± 0.020 0.203 ± 0.030 0.181 ± 0.008 0.214 ± 0.025
BR 0.119 ± 0.045 0.268 ± 0.024 0.712 ± 0.045 0.134 ± 0.020 0.750 ± 0.008 0.271 ± 0.015 0.317 ± 0.030 0.233 ± 0.033
BRκ 0.115 ± 0.039 0.228 ± 0.042 0.668 ± 0.034 0.147 ± 0.029 0.698 ± 0.017 0.247 ± 0.018 0.181 ± 0.018 0.215 ± 0.012
ECC 0.299 ± 0.042 0.312 ± 0.033 0.712 ± 0.035 0.148 ± 0.027 0.752 ± 0.016 0.267 ± 0.026 0.338 ± 0.018 0.262 ± 0.023
RAKEL 0.596 ± 0.019 0.310 ± 0.057 0.819 ± 0.034 0.582 ± 0.029 0.910 ± 0.032 0.755 ± 0.066 0.351 ± 0.023 0.348 ± 0.022
ML-KNN 0.158 ± 0.014 0.372 ± 0.004 0.837 ± 0.029 0.405 ± 0.023 0.905 ± 0.016 0.468 ± 0.018 0.317 ± 0.013 0.254 ± 0.023
LIFT 0.137 ± 0.014 0.241 ± 0.030 0.691 ± 0.036 0.158 ± 0.016 0.729 ± 0.022 0.232 ± 0.023 0.195 ± 0.024 0.225 ± 0.024
LIFTκ 0.476 ± 0.257 0.734 ± 0.050 0.966 ± 0.015 0.728 ± 0.040 0.986 ± 0.018 0.584 ± 0.198 0.823 ± 0.016 0.776 ± 0.105
MLSF 0.128 ± 0.040 0.319 ± 0.021 0.701 ± 0.055 0.161 ± 0.017 0.755 ± 0.012 0.283 ± 0.028 0.345 ± 0.010 0.261 ± 0.022
LFLC 0.120 ± 0.022 0.277 ± 0.031 0.656 ± 0.037 0.136 ± 0.016 0.721 ± 0.025 0.231 ± 0.009 0.250 ± 0.023 0.225 ± 0.025

Approach
Ranking loss ↓

CAL500 emotions birds medical language log enron scene yeast
WRAP 0.175 ± 0.006 0.157 ± 0.028 0.088 ± 0.011 0.020 ± 0.006 0.157 ± 0.015 0.080 ± 0.006 0.103 ± 0.006 0.170 ± 0.004
WRAPκ 0.175 ± 0.004 0.140 ± 0.018 0.088 ± 0.011 0.020 ± 0.009 0.155 ± 0.010 0.074 ± 0.003 0.062 ± 0.004 0.158 ± 0.006
BR 0.180 ± 0.006 0.162 ± 0.014 0.104 ± 0.007 0.024 ± 0.010 0.113 ± 0.004 0.085 ± 0.004 0.115 ± 0.013 0.174 ± 0.011
BRκ 0.180 ± 0.002 0.139 ± 0.015 0.085 ± 0.008 0.022 ± 0.008 0.102 ± 0.012 0.080 ± 0.006 0.058 ± 0.007 0.157 ± 0.009
ECC 0.214 ± 0.007 0.183 ± 0.017 0.097 ± 0.008 0.026 ± 0.004 0.112 ± 0.011 0.088 ± 0.005 0.138 ± 0.004 0.202 ± 0.009
RAKEL 0.286 ± 0.006 0.185 ± 0.018 0.290 ± 0.040 0.544 ± 0.005 0.601 ± 0.035 0.335 ± 0.030 0.137 ± 0.017 0.246 ± 0.008
ML-KNN 0.220 ± 0.005 0.214 ± 0.009 0.125 ± 0.023 0.059 ± 0.012 0.156 ± 0.006 0.111 ± 0.003 0.105 ± 0.007 0.221 ± 0.007
LIFT 0.185 ± 0.005 0.141 ± 0.015 0.106 ± 0.014 0.028 ± 0.006 0.133 ± 0.013 0.078 ± 0.005 0.063 ± 0.009 0.168 ± 0.010
LIFTκ 0.672 ± 0.017 0.682 ± 0.035 0.512 ± 0.030 0.786 ± 0.039 0.846 ± 0.014 0.796 ± 0.009 0.710 ± 0.012 0.687 ± 0.075
MLSF 0.204 ± 0.004 0.181 ± 0.014 0.107 ± 0.027 0.048 ± 0.020 0.118 ± 0.019 0.084 ± 0.005 0.122 ± 0.010 0.201 ± 0.008
LFLC 0.177 ± 0.004 0.164 ± 0.008 0.086 ± 0.010 0.020 ± 0.002 0.143 ± 0.013 0.080 ± 0.007 0.084 ± 0.006 0.171 ± 0.009

Approach
Average precision ↑

CAL500 emotions birds medical language log enron scene yeast
WRAP 0.520 ± 0.006 0.807 ± 0.019 0.352 ± 0.026 0.907 ± 0.017 0.341 ± 0.024 0.710 ± 0.012 0.832 ± 0.007 0.761 ± 0.006
WRAPκ 0.518 ± 0.010 0.830 ± 0.021 0.352 ± 0.040 0.903 ± 0.013 0.350 ± 0.011 0.720 ± 0.022 0.892 ± 0.006 0.781 ± 0.016
BR 0.502 ± 0.007 0.800 ± 0.019 0.314 ± 0.035 0.892 ± 0.020 0.330 ± 0.010 0.661 ± 0.004 0.807 ± 0.020 0.754 ± 0.020
BRκ 0.504 ± 0.008 0.830 ± 0.018 0.353 ± 0.029 0.889 ± 0.015 0.376 ± 0.010 0.690 ± 0.013 0.895 ± 0.011 0.779 ± 0.008
ECC 0.451 ± 0.013 0.779 ± 0.019 0.317 ± 0.023 0.887 ± 0.017 0.336 ± 0.015 0.664 ± 0.012 0.787 ± 0.009 0.716 ± 0.015
RAKEL 0.314 ± 0.008 0.778 ± 0.025 0.275 ± 0.055 0.426 ± 0.033 0.168 ± 0.024 0.558 ± 0.030 0.791 ± 0.022 0.670 ± 0.012
ML-KNN 0.445 ± 0.012 0.739 ± 0.019 0.235 ± 0.034 0.706 ± 0.015 0.200 ± 0.012 0.527 ± 0.009 0.812 ± 0.009 0.703 ± 0.008
LIFT 0.497 ± 0.008 0.823 ± 0.005 0.325 ± 0.040 0.872 ± 0.014 0.353 ± 0.011 0.699 ± 0.011 0.885 ± 0.014 0.764 ± 0.014
LIFTκ 0.635 ± 0.069 0.684 ± 0.018 0.165 ± 0.039 0.278 ± 0.037 0.057 ± 0.014 0.276 ± 0.015 0.452 ± 0.011 0.853 ± 0.060
MLSF 0.479 ± 0.010 0.779 ± 0.014 0.326 ± 0.025 0.868 ± 0.020 0.324 ± 0.016 0.663 ± 0.010 0.793 ± 0.007 0.725 ± 0.015
LFLC 0.518 ± 0.011 0.799 ± 0.012 0.361 ± 0.023 0.899 ± 0.010 0.355 ± 0.022 0.709 ± 0.009 0.851 ± 0.021 0.762 ± 0.014

Approach
Macro-averaging AUC ↑

CAL500 emotions birds medical language log enron scene yeast
WRAP 0.555 ± 0.011 0.835 ± 0.029 0.815 ± 0.041 0.619 ± 0.030 0.540 ± 0.040 0.635 ± 0.014 0.906 ± 0.005 0.688 ± 0.008
WRAPκ 0.549 ± 0.016 0.855 ± 0.018 0.816 ± 0.029 0.621 ± 0.029 0.552 ± 0.014 0.693 ± 0.022 0.950 ± 0.006 0.727 ± 0.010
BR 0.502 ± 0.007 0.826 ± 0.023 0.718 ± 0.051 0.644 ± 0.052 0.553 ± 0.020 0.619 ± 0.028 0.886 ± 0.011 0.629 ± 0.013
BRκ 0.508 ± 0.012 0.862 ± 0.012 0.836 ± 0.032 0.655 ± 0.069 0.571 ± 0.010 0.675 ± 0.028 0.951 ± 0.003 0.713 ± 0.012
ECC 0.497 ± 0.013 0.815 ± 0.013 0.732 ± 0.050 0.646 ± 0.057 0.544 ± 0.052 0.650 ± 0.019 0.878 ± 0.004 0.650 ± 0.017
RAKEL 0.522 ± 0.026 0.800 ± 0.014 0.701 ± 0.050 0.655 ± 0.075 0.746 ± 0.027 0.813 ± 0.036 0.905 ± 0.010 0.686 ± 0.016
ML-KNN 0.691 ± 0.020 0.802 ± 0.010 0.847 ± 0.022 0.662 ± 0.068 0.703 ± 0.027 0.836 ± 0.032 0.938 ± 0.004 0.709 ± 0.008
LIFT 0.518 ± 0.006 0.854 ± 0.011 0.775 ± 0.057 0.626 ± 0.028 0.582 ± 0.039 0.681 ± 0.036 0.946 ± 0.005 0.688 ± 0.012
LIFTκ 0.956 ± 0.010 1.000 ± 0.000 0.947 ± 0.053 0.667 ± 0.044 0.768 ± 0.031 0.928 ± 0.021 1.000 ± 0.000 1.000 ± 0.000
MLSF 0.528 ± 0.012 0.816 ± 0.020 0.660 ± 0.038 0.654 ± 0.012 0.558 ± 0.036 0.503 ± 0.024 0.892 ± 0.010 0.631 ± 0.008
LFLC 0.553 ± 0.010 0.834 ± 0.013 0.835 ± 0.040 0.652 ± 0.026 0.557 ± 0.004 0.686 ± 0.028 0.924 ± 0.005 0.684 ± 0.009

α = 0.9.2 Accordingly, the kernel version is denoted as
WRAPκ with the following parameter configuration: λ1 =
λ2 = λ3 = 0.1, α = 0.9, Gaussian kernel with grid search for
σ ∈ {20, 21, . . . , 215} with a multiple of 2 at each step. For
BR and LIFT, linear kernel SVM [4] is utilized to instantiate
the base learner for both approaches. Accordingly, the ker-
nelized versions are denoted as BRκ and LIFTκ respectively

2. As shown in Eq.(2), for the m × d embedding matrix V and the
d × l weight vector matrix U, the rank of VU is upper-bounded by
min(m, l), i.e. r(VU) ≤ min(r(V), r(U)) ≤ min(m, l). Correspond-
ingly, we set d to be some fraction of min(m, l) with α = 0.9.

by utilizing Gaussian kernel SVM as their base learner.

For performance evaluation, five widely-used multi-
label metrics are utilized including hamming loss, one-error,
ranking loss, average precision and macro-averaging AUC [11],
[51]. For the first three evaluation metrics, the smaller the
metric value the better the performance. For the other two
evaluation metrics, the larger the metric value the better the
performance.
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TABLE 4
Experimental results of the comparing approaches on the other six data sets (↓: the smaller the better; ↑: the larger the better).

Approach
Hamming loss ↓

slashdot corel5k bibtex corel16k1 delicious eurlex-sm tmc2007 mediamill
WRAP 0.036 ± 0.002 0.009 ± 0.000 0.012 ± 0.000 0.019 ± 0.001 0.018 ± 0.000 0.006 ± 0.000 0.060 ± 0.000 0.030 ± 0.000
WRAPκ 0.036 ± 0.002 0.009 ± 0.000 0.013 ± 0.000 0.019 ± 0.001 0.019 ± 0.000 0.010 ± 0.001 0.047 ± 0.002 0.028 ± 0.000
BR 0.048 ± 0.001 0.011 ± 0.000 0.016 ± 0.000 0.019 ± 0.000 0.018 ± 0.000 0.002 ± 0.000 0.056 ± 0.000 0.029 ± 0.000
BRκ 0.054 ± 0.001 0.009 ± 0.000 0.014 ± 0.000 0.019 ± 0.000 0.018 ± 0.000 0.007 ± 0.000 0.047 ± 0.001 0.029 ± 0.000
ECC 0.042 ± 0.001 0.010 ± 0.000 0.013 ± 0.000 0.020 ± 0.000 0.019 ± 0.000 0.005 ± 0.000 0.057 ± 0.001 0.031 ± 0.000
RAKEL 0.075 ± 0.002 0.038 ± 0.001 0.041 ± 0.001 0.169 ± 0.003 0.250 ± 0.002 0.044 ± 0.001 0.375 ± 0.016 0.271 ± 0.007
ML-KNN 0.060 ± 0.001 0.010 ± 0.000 0.015 ± 0.000 0.020 ± 0.000 0.019 ± 0.000 0.005 ± 0.000 0.067 ± 0.001 0.029 ± 0.000
LIFT 0.038 ± 0.001 0.009 ± 0.000 0.012 ± 0.000 0.019 ± 0.000 0.018 ± 0.000 0.017 ± 0.003 0.054 ± 0.001 0.030 ± 0.000
LIFTκ 0.127 ± 0.019 0.019 ± 0.000 0.029 ± 0.005 0.038 ± 0.000 0.031 ± 0.003 0.021 ± 0.001 0.140 ± 0.051 0.053 ± 0.006
MLSF 0.039 ± 0.002 0.009 ± 0.000 0.012 ± 0.000 0.019 ± 0.000 0.018 ± 0.000 0.002 ± 0.000 0.057 ± 0.001 0.030 ± 0.000
LFLC 0.037 ± 0.001 0.009 ± 0.000 0.012 ± 0.000 0.019 ± 0.000 0.024 ± 0.000 0.352 ± 0.016 0.093 ± 0.001 0.030 ± 0.000

Approach
One error ↓

slashdot corel5k bibtex corel16k1 delicious eurlex-sm tmc2007 mediamill
WRAP 0.369 ± 0.030 0.621 ± 0.032 0.363 ± 0.012 0.635 ± 0.005 0.340 ± 0.010 0.098 ± 0.005 0.196 ± 0.005 0.156 ± 0.003
WRAPκ 0.373 ± 0.007 0.617 ± 0.017 0.385 ± 0.011 0.673 ± 0.008 0.406 ± 0.014 0.610 ± 0.078 0.185 ± 0.007 0.182 ± 0.003
BR 0.423 ± 0.011 0.667 ± 0.017 0.399 ± 0.011 0.738 ± 0.016 0.343 ± 0.008 0.046 ± 0.002 0.176 ± 0.005 0.162 ± 0.006
BRκ 0.371 ± 0.020 0.653 ± 0.025 0.354 ± 0.007 0.712 ± 0.011 0.326 ± 0.009 0.110 ± 0.007 0.128 ± 0.005 0.162 ± 0.005
ECC 0.436 ± 0.018 0.757 ± 0.014 0.402 ± 0.015 0.693 ± 0.003 0.467 ± 0.010 0.044 ± 0.003 0.178 ± 0.005 0.176 ± 0.005
RAKEL 0.706 ± 0.029 0.866 ± 0.013 0.785 ± 0.008 0.961 ± 0.007 0.941 ± 0.024 0.582 ± 0.007 0.635 ± 0.078 0.700 ± 0.032
ML-KNN 0.696 ± 0.018 0.791 ± 0.009 0.837 ± 0.006 0.805 ± 0.007 0.573 ± 0.012 0.334 ± 0.006 0.334 ± 0.007 0.182 ± 0.004
LIFT 0.383 ± 0.012 0.675 ± 0.017 0.381 ± 0.013 0.668 ± 0.007 0.324 ± 0.008 0.903 ± 0.068 0.160 ± 0.002 0.164 ± 0.003
LIFTκ 0.956 ± 0.009 0.984 ± 0.007 0.971 ± 0.002 0.930 ± 0.011 0.936 ± 0.021 0.932 ± 0.086 0.629 ± 0.126 0.899 ± 0.043
MLSF 0.414 ± 0.021 0.667 ± 0.010 0.402 ± 0.013 0.743 ± 0.019 0.358 ± 0.009 0.049 ± 0.002 0.179 ± 0.002 0.193 ± 0.008
LFLC 0.366 ± 0.011 0.631 ± 0.018 0.351 ± 0.007 0.645 ± 0.010 0.343 ± 0.008 0.866 ± 0.028 0.207 ± 0.004 0.158 ± 0.004

Approach
Ranking loss ↓

slashdot corel5k bibtex corel16k1 delicious eurlex-sm tmc2007 mediamill
WRAP 0.097 ± 0.009 0.142 ± 0.004 0.102 ± 0.003 0.145 ± 0.001 0.118 ± 0.002 0.013 ± 0.001 0.043 ± 0.001 0.048 ± 0.001
WRAPκ 0.105 ± 0.004 0.143 ± 0.002 0.073 ± 0.004 0.187 ± 0.009 0.135 ± 0.001 0.143 ± 0.020 0.066 ± 0.004 0.048 ± 0.001
BR 0.098 ± 0.004 0.123 ± 0.004 0.086 ± 0.003 0.162 ± 0.002 0.121 ± 0.001 0.009 ± 0.001 0.043 ± 0.001 0.036 ± 0.000
BRκ 0.087 ± 0.007 0.122 ± 0.004 0.074 ± 0.003 0.154 ± 0.002 0.109 ± 0.001 0.014 ± 0.001 0.029 ± 0.001 0.036 ± 0.001
ECC 0.107 ± 0.005 0.148 ± 0.003 0.088 ± 0.002 0.180 ± 0.002 0.141 ± 0.002 0.007 ± 0.001 0.043 ± 0.000 0.092 ± 0.002
RAKEL 0.681 ± 0.028 0.537 ± 0.012 0.743 ± 0.010 0.424 ± 0.015 0.488 ± 0.008 0.125 ± 0.007 0.438 ± 0.018 0.222 ± 0.014
ML-KNN 0.187 ± 0.011 0.149 ± 0.004 0.252 ± 0.006 0.196 ± 0.001 0.160 ± 0.002 0.013 ± 0.000 0.082 ± 0.002 0.046 ± 0.000
LIFT 0.093 ± 0.006 0.122 ± 0.002 0.075 ± 0.004 0.158 ± 0.004 0.129 ± 0.001 0.050 ± 0.001 0.039 ± 0.001 0.043 ± 0.000
LIFTκ 0.933 ± 0.021 0.924 ± 0.011 0.976 ± 0.024 0.840 ± 0.009 0.966 ± 0.022 0.952 ± 0.030 0.772 ± 0.116 0.621 ± 0.031
MLSF 0.094 ± 0.006 0.143 ± 0.004 0.092 ± 0.015 0.183 ± 0.006 0.127 ± 0.002 0.008 ± 0.001 0.038 ± 0.001 0.054 ± 0.005
LFLC 0.106 ± 0.008 0.162 ± 0.008 0.098 ± 0.003 0.171 ± 0.004 0.169 ± 0.002 0.308 ± 0.017 0.073 ± 0.001 0.047 ± 0.001

Approach
Average precision ↑

slashdot corel5k bibtex corel16k1 delicious eurlex-sm tmc2007 mediamill
WRAP 0.715 ± 0.025 0.324 ± 0.008 0.578 ± 0.011 0.354 ± 0.002 0.367 ± 0.006 0.894 ± 0.003 0.831 ± 0.002 0.704 ± 0.003
WRAPκ 0.710 ± 0.011 0.325 ± 0.004 0.571 ± 0.011 0.314 ± 0.006 0.306 ± 0.005 0.383 ± 0.059 0.827 ± 0.003 0.708 ± 0.002
BR 0.673 ± 0.004 0.280 ± 0.009 0.539 ± 0.008 0.277 ± 0.008 0.329 ± 0.004 0.946 ± 0.006 0.839 ± 0.003 0.725 ± 0.003
BRκ 0.714 ± 0.016 0.290 ± 0.009 0.585 ± 0.005 0.299 ± 0.005 0.375 ± 0.002 0.874 ± 0.005 0.885 ± 0.003 0.725 ± 0.004
ECC 0.663 ± 0.009 0.252 ± 0.006 0.538 ± 0.011 0.296 ± 0.005 0.299 ± 0.005 0.951 ± 0.004 0.839 ± 0.003 0.640 ± 0.003
RAKEL 0.415 ± 0.028 0.257 ± 0.005 0.232 ± 0.007 0.201 ± 0.008 0.228 ± 0.006 0.792 ± 0.009 0.493 ± 0.042 0.264 ± 0.023
ML-KNN 0.456 ± 0.020 0.187 ± 0.006 0.193 ± 0.002 0.220 ± 0.006 0.199 ± 0.001 0.719 ± 0.004 0.706 ± 0.003 0.667 ± 0.002
LIFT 0.692 ± 0.011 0.290 ± 0.006 0.566 ± 0.010 0.324 ± 0.004 0.348 ± 0.003 0.365 ± 0.039 0.852 ± 0.002 0.728 ± 0.003
LIFTκ 0.183 ± 0.010 0.087 ± 0.006 0.079 ± 0.024 0.183 ± 0.001 0.088 ± 0.011 0.092 ± 0.030 0.503 ± 0.065 0.415 ± 0.046
MLSF 0.683 ± 0.017 0.267 ± 0.009 0.538 ± 0.014 0.273 ± 0.004 0.331 ± 0.006 0.944 ± 0.002 0.844 ± 0.003 0.714 ± 0.005
LFLC 0.713 ± 0.006 0.312 ± 0.010 0.588 ± 0.004 0.340 ± 0.006 0.362 ± 0.002 0.146 ± 0.023 0.796 ± 0.002 0.698 ± 0.003

Approach
Macro-averaging AUC ↑

slashdot corel5k bibtex corel16k1 delicious eurlex-sm tmc2007 mediamill
WRAP 0.703 ± 0.033 0.581 ± 0.010 0.870 ± 0.004 0.744 ± 0.008 0.755 ± 0.004 0.888 ± 0.016 0.927 ± 0.003 0.851 ± 0.003
WRAPκ 0.732 ± 0.014 0.683 ± 0.008 0.916 ± 0.002 0.639 ± 0.022 0.612 ± 0.013 0.697 ± 0.035 0.876 ± 0.044 0.758 ± 0.022
BR 0.702 ± 0.049 0.524 ± 0.015 0.874 ± 0.003 0.673 ± 0.003 0.738 ± 0.003 0.901 ± 0.010 0.913 ± 0.002 0.839 ± 0.004
BRκ 0.697 ± 0.020 0.527 ± 0.009 0.895 ± 0.004 0.683 ± 0.004 0.734 ± 0.007 0.897 ± 0.016 0.947 ± 0.001 0.839 ± 0.007
ECC 0.674 ± 0.036 0.531 ± 0.018 0.870 ± 0.004 0.658 ± 0.005 0.702 ± 0.002 0.906 ± 0.019 0.911 ± 0.003 0.776 ± 0.004
RAKEL 0.806 ± 0.040 0.804 ± 0.007 0.976 ± 0.001 0.915 ± 0.001 0.845 ± 0.003 0.916 ± 0.016 0.895 ± 0.013 0.712 ± 0.012
ML-KNN 0.809 ± 0.020 0.790 ± 0.023 0.938 ± 0.002 0.922 ± 0.001 0.918 ± 0.002 0.919 ± 0.012 0.919 ± 0.002 0.933 ± 0.000
LIFT 0.732 ± 0.006 0.595 ± 0.009 0.909 ± 0.004 0.689 ± 0.006 0.700 ± 0.004 0.824 ± 0.027 0.921 ± 0.002 0.810 ± 0.007
LIFTκ 0.845 ± 0.025 0.822 ± 0.006 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.916 ± 0.019 1.000 ± 0.000 1.000 ± 0.000
MLSF 0.685 ± 0.010 0.520 ± 0.004 0.873 ± 0.006 0.669 ± 0.007 0.730 ± 0.004 0.978 ± 0.004 0.928 ± 0.002 0.842 ± 0.003
LFLC 0.715 ± 0.053 0.568 ± 0.012 0.875 ± 0.005 0.726 ± 0.004 0.757 ± 0.003 0.549 ± 0.025 0.929 ± 0.004 0.832 ± 0.007

4.2 Experimental Results

On each data set, five-fold cross-validation is performed
where the mean metric value as well as standard deviation
on each evaluation metric is recorded for the comparing
approaches. Correspondingly, Tables 3 and 4 report the
detailed experimental results over all benchmark data sets.

Furthermore, we employ the widely-used Friedman test
[9] to statistically analyze the relative performance among
the comparing approaches. Let k, T and rj

i denote the
number of comparing approaches, the number of data sets

and the rank of the j-th algorithm on the i-th data set respec-
tively. In case of ties, the mean ranks are shared among the
corresponding algorithms. Accordingly, let Rj = 1

T

∑T
i=1 rj

i

denote the average rank for the j-th algorithm over all
data sets. Then, the following Friedman statistic FF will
be distributed according to F -distribution under the null
hypothesis of all algorithms having “equal” performance,
with k−1 numerator degrees of freedom and (k−1)(T −1)
denominator degrees of freedom:
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TABLE 5
Summary of the Friedman statistics FF in terms of each evaluation
metric and the critical value at 0.05 significance level for WRAP and

WRAPκ (# comparing approaches k = 8, # data sets T = 16).

Evaluation FF Critical
metric for WRAP for WRAPκ value
Hamming loss 11.8375 28.4366
One-error 27.0767 45.0447
Ranking loss 16.7699 31.9451 2.0980
Average precision 25.2445 21.7841
Macro-averaging AUC 7.8070 16.4233

FF =
(T − 1)χ2

F

T (k − 1) − χ2
F

, where

χ2
F =

12T

k(k + 1)




n∑

j=1

R2
j −

k(k + 1)2

4



 , (25)

Table 5 summarizes the Friedman statistics FF in terms
of each evaluation metric and the corresponding critical
value at 0.05 significance level for WRAP and WRAPκ (#
learning approaches k = 8, # data sets T = 16).3 As
shown in Table 5, the null hypothesis of equal performance
among the comparing approaches is clearly rejected for all
evaluation metrics.

To show whether WRAP achieves significantly different
performance against the other comparing approaches, we
employ Holm’s procedure [9] as the post-hoc test by treating
WRAP as the control approach. The same procedure also
applies to WRAPκ by treating it as the control approach.
Without loss of generality, WRAP is denoted as the first
comparing approach A1. For the other k − 1 comparing
approaches Aj (2≤ j ≤ k), the one having the (j-1)-th
largest average rank over all data sets is denoted as Aj .
Then, we have the test statistic for comparing A1 (i.e. WRAP)
and Aj as follows:

zj = (R1 − Rj)

/√
k(k + 1)

6T
(2 ≤ j ≤ k), (26)

Accordingly, we use pj to denote the p-value of zj

under normal distribution. At significance level α, the
Holm’s procedure works by sequentially checking whether
pj < α/(k−j+1) holds in ascending order of j. Specifically,
the Holm’s procedure terminates at j∗ with j∗ being the first
j such that pj < α/(k − j + 1) does not hold.4 Accordingly,
WRAP is deemed to have significantly different performance
against Aj with j ∈ {2, . . . , j∗ − 1}.

Tables 6 and 7 report the statistics by taking Holm’s
procedure as the post-hoc test at 0.05 significance level,
where WRAP and WRAPκ are treated as the control ap-
proach respectively. Accordingly, we can have the following
observations based on the reported experimental results:

3. For fairer comparison, BR and LIFT are compared against WRAP

while BRκ and LIFTκ are compared against WRAPκ. The other ap-
proaches ECC, RAKEL, ML-KNN, MLSF and LFLC are compared against
both WRAP and WRAPκ.

4. If pj < α/(k − j + 1) holds for all j, j∗ is set to be k + 1.

TABLE 6
Comparison of WRAP (control approach) against other comparing
approaches with Holm’s procedure as the post-hoc test in terms of
each evaluation metric (significance level α = 0.05, # comparing

approaches k = 8).

Hamming loss
j approach zj pj α/(k − j + 1)
2 RAKEL -5.449 5.073e-8 0.007
3 ML-KNN -2.346 1.900e-2 0.008
4 ECC -2.309 2.092e-2 0.010
5 BR -2.093 3.636e-2 0.013
6 MLSF -0.794 4.273e-1 0.017
7 LFLC -0.361 7.182e-1 0.025
8 LIFT 0.361 1.000e0 0.050

One-error
j approach zj pj α/(k − j + 1)
2 RAKEL -6.423 1.336e-10 0.007
3 ML-KNN -5.377 7.592e-8 0.008
4 MLSF -3.789 1.513e-4 0.010
5 ECC -3.500 4.649e-4 0.013
6 BR -1.876 6.060e-2 0.017
7 LIFT -1.335 1.818e-1 0.025
8 LFLC -0.794 4.273e-1 0.050

Ranking loss
j approach zj pj α/(k − j + 1)
2 RAKEL -5.521 3.372e-8 0.007
3 ML-KNN -3.753 1.749e-4 0.008
4 ECC -1.985 4.718e-2 0.010
5 MLSF -1.407 1.593e-1 0.013
6 LFLC -1.335 1.818e-1 0.017
7 BR -0.108 9.138e-1 0.025
8 LIFT 0.541 1.000e0 0.050

Average precision
j approach zj pj α/(k − j + 1)
2 RAKEL -5.918 3.262e-9 0.007
3 ML-KNN -5.629 1.811e-8 0.008
4 ECC -3.428 6.080e-4 0.010
5 MLSF -2.815 4.884e-3 0.013
6 BR -2.201 2.772e-2 0.017
7 LIFT -0.722 4.705e-1 0.025
8 LFLC -0.650 5.160e-1 0.050

Macro-averaging AUC
j approach zj pj α/(k − j + 1)
2 ECC -2.490 1.278e-2 0.007
3 BR -1.804 7.120e-2 0.008
4 MLSF -1.083 2.790e-1 0.010
5 LIFT 0.180 1.000e0 0.013
6 LFLC 0.577 1.000e0 0.017
7 RAKEL 0.650 1.000e0 0.025
8 ML-KNN 2.815 1.000e0 0.050

• Across all data sets, WRAP and WRAPκ achieve the
best or second best performance in 93.8%, 68.7%,
56.3% and 62.5% cases in terms of hamming loss, one-
error, ranking loss and average precision respectively.
Although LIFTκ achieves the best performance in
terms of macro-averaging AUC, its performance on the
other evaluation metrics are less competitive.

• Across all data sets, WRAP achieves a lower average
rank than the comparing approaches in 29 out of 35
cases (7 comparing approaches × 5 evaluation met-
rics). Furthermore, WRAPκ achieves a lower average
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TABLE 7
Comparison of WRAPκ (control approach) against other comparing
approaches with Holm’s procedure as the post-hoc test in terms of
each evaluation metric (significance level α = 0.05, # comparing

approaches k = 8).

Hamming loss
j approach zj pj α/(k − j + 1)
2 RAKEL -6.315 2.706e-10 0.007
3 LIFTκ -6.026 1.680e-9 0.008
4 ML-KNN -3.067 2.161e-3 0.010
5 ECC -2.634 8.435e-3 0.013
6 MLSF -1.516 1.296e-1 0.017
7 LFLC -1.443 1.489e-1 0.025
8 BRκ -1.227 2.199e-1 0.050

One-error
j approach zj pj α/(k − j + 1)
2 LIFTκ -6.062 1.343e-9 0.007
3 RAKEL -5.124 2.992e-7 0.008
4 ML-KNN -3.717 2.019e-4 0.010
5 MLSF -2.418 1.562e-2 0.013
6 ECC -2.057 3.970e-2 0.017
7 LFLC -0.036 9.712e-1 0.025
8 BRκ 0.289 1.000e0 0.050

Ranking loss
j approach zj pj α/(k − j + 1)
2 LIFTκ -5.918 3.262e-9 0.007
3 RAKEL -4.475 7.660e-6 0.008
4 ML-KNN -2.887 3.892e-3 0.010
5 ECC -1.443 1.489e-1 0.013
6 MLSF -0.830 4.066e-1 0.017
7 LFLC -0.577 5.637e-1 0.025
8 BRκ 1.480 1.000e0 0.050

Average precision
j approach zj pj α/(k − j + 1)
2 LIFTκ -5.052 4.376e-7 0.007
3 RAKEL -4.475 7.660e-6 0.008
4 ML-KNN -4.186 2.842e-5 0.010
5 ECC -2.309 2.092e-2 0.013
6 MLSF -1.660 9.694e-2 0.017
7 LFLC -0.180 9.138e-1 0.025
8 BRκ 0.613 1.000e0 0.050

Macro-averaging AUC
j approach zj pj α/(k − j + 1)
2 ECC -1.732 8.326e-2 0.007
3 MLSF -0.505 6.134e-1 0.008
4 LFLC 0.505 1.000e0 0.010
5 RAKEL 1.010 1.000e0 0.013
6 BRκ 1.119 1.000e0 0.017
7 ML-KNN 2.815 1.000e0 0.025
8 LIFTκ 4.871 1.000e0 0.050

rank than ECC and MLSF in terms of all evaluation
metrics, and achieves a lower average rank than
ML-KNN, LIFTκ and LFLC in terms of all evaluation
metrics except macro-averaging AUC.

• WRAP significantly outperforms RAKEL in terms of
all evaluation metrics except macro-averaging AUC,
significantly outperforms ML-KNN in terms of one-
error, ranking loss and average precision, and signifi-
cantly outperforms MLSF in terms of one-error and
average precision. Furthermore, WRAPκ significantly
outperforms RAKEL, ML-KNN and LIFTκ in terms

of all evaluation metrics except macro-averaging AUC,
and significantly outperforms ECC in terms of ham-
ming loss.

• Similar to LIFTκ, ML-KNN achieves better perfor-
mance than the comparing approaches in terms of
macro-averaging AUC, which measures the predictive
performance by taking each class label indepen-
dently. Nonetheless, its performance becomes worse
on the other evaluation metrics which measure the
predictive performance by considering the ranking
relations among class labels.

4.3 Further Analysis

4.3.1 Usefulness of Embedding

For the proposed WRAP approach, an embedding matrix V
is employed to facilitate the procedure of joint label-specific
features generation and classification model induction. In
this subsection, the usefulness of taking the embedding
operation is further investigated. Specifically, a degenerated
version of the proposed approach named WRAPdeg is con-
sidered which works by fixing the embedding matrix V as
an identity matrix.

Fig. 1 illustrates the predictive performance of WRAP,
WRAPκ and WRAPdeg in terms of each evaluation metric.
Pairwise t-test at 0.05 significance level show that, out of
80 cases (16 data sets × 5 evaluation metrics), the proposed
approach achieves superior or at least comparable perfor-
mance to its degenerated version in 97.5% (linear mode)
and 72.5% (kernel mode) cases respectively. These results
clearly show the usefulness of exploiting the embedding
matrix adaptively in the wrapped optimization procedure
to improve the generalization performance of the resulting
model.

4.3.2 Sensitivity Analysis

To show the performance sensitivity of the proposed ap-
proach, Fig. 2 gives an illustrative example on how the
performance of WRAP (linear mode) changes with varying
configurations of parameters α (d = α min(m, l)), λ1, λ2

and λ3 (data set: slashdot ; evaluation metric: hamming
loss). As shown in Fig. 2, the performance of WRAP is
relatively stable as the parameter values change within a
reasonable range. This serves as a desirable property in
using the proposed approach, which can be observed on
other data sets and evaluation metrics as well.

4.3.3 Convergence Analysis

To show the convergence property of the proposed ap-
proach, Fig. 3 gives an illustrative example on how the
objective function value of WRAP (linear mode; Eq.(3))
and WRAPκ (kernel mode; Eq.(17)) changes as the number
of iterations increases on four data sets birds , CAL500,
emotions and medical . As shown in Fig. 3, the objective
function value decreases significantly in initial iterations
and gradually converges as the optimization procedure pro-
ceeds. Therefore, for the experiments conducted in this pa-
per, the optimization procedure for the proposed approach
is terminated if the decrease in objective function value is
less than 10−4 after one alternating iteration.
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(a) Hamming loss (b) One-error

(c) Ranking loss (d) Average precision

(e) Macro-averaging AUC

Fig. 1. Performance of WRAP, WRAPκ and the degenerated version WRAPdeg in terms of each evaluation metric.

5 CONCLUSION

In this paper, the strategy of label-specific features for
multi-label classification is investigated. Different to existing
approaches which work in the generation-then-induction
two-stage manner, a novel approach is proposed which
performs label-specific feature generation and classification
model induction in a joint manner. The wrapping procedure
is instantiated based on (kernelized) linear implementation
with empirical loss minimization and pairwise label corre-
lation regularization. Extensive experiments show that the
proposed wrapping approach serves as a promising solution
for multi-label classification based on label-specific features.

The proposed approach serves as one feasible solution
to jointly consider generating label-specific features and
inducing classification model, it is interesting to investigate
alternative instantiations for wrapped multi-label classifica-
tion with label-specific features generation in the future.
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