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Abstract —Partial multi-label learning (PML) deals with the problem where each training example is associated with an overcomplete
set of candidate labels, among which only some candidate labels are valid. The task of PML naturally arises in learning scenarios with
inaccurate supervision, and the goal is to induce a multi-label predictor which can assign a set of proper labels for unseen instance.
The PML training procedure is prone to be misled by false positive labels concealed in the candidate label set, which serves as the
major modeling difficulty for partial multi-label learning. In this paper, a novel two-stage PML approach is proposed which works by
eliciting credible labels from the candidate label set for model induction. In the first stage, the labeling confidence of candidate label for
each PML training example is estimated via iterative label propagation. In the second stage, by utilizing credible labels with high
labeling confidence, multi-label predictor is induced via pairwise label ranking coupled with virtual label splitting or maximum a
posteriori (MAP) reasoning. Experimental studies show that the proposed approach can achieve highly competitive generalization
performance by excluding most false positive labels from the training procedure via credible label elicitation.

Index Terms —Machine learning, multi-label learning, partial label learning, candidate label set, credible label elicitation
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1 INTRODUCTION

Partial multi-label learning corresponds to one specific
learning framework with inaccurate supervision, where a
set of candidate labels are assigned to each training example
which are only partially valid. For instance, in crowdsourc-
ing image tagging (Fig. 1), among the set of candidate labels
given by crowdsourcing annotators only some of them are
valid ones due to potentially unreliable annotators. Actually,
the need to learn from PML examples naturally arises in
many real-world applications, where accurate supervision
is difficult to be obtained from the collected data [15], [16],
[21], [30], [32], [38].

Formally speaking, let X = Rd denote the d-dimensional
feature space and Y = {y1, y2, . . . , yq} denote the label
space with q possible class labels. Given the PML training
set D = {(xi, Yi) | 1 ≤ i ≤ m}, where xi ∈ X is a d-
dimensional feature vector and Yi ⊆ Y is the set of candidate
labels associated with xi. The key assumption adopted by
partial multi-label learning lies in that the ground-truth
label set Ỹi ⊆ Y for xi reside in the candidate label set,
i.e. Ỹi ⊆ Yi, and are not directly accessible to the learning
algorithm. Accordingly, the task of PML is to induce a multi-
label predictor f : X 7→ 2Y from D, which can assign a set
of proper labels for the unseen instance.

One straightforward strategy to learn from PML training
examples is to treat all candidate labels in Yi as ground-truth
ones, and then employ off-the-shelf multi-label learning
algorithms [11], [36], [40] to induce the multi-label predictor.
However, the labeling noise brought by false positive labels
in Yi will significantly compromise the resulting multi-
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Fig. 1. An exemplary partial multi-label learning scenario. In crowd-
sourcing image tagging, among the set of 7 candidate labels given
by crowdsourcing annotators, only 4 of them are valid ones including
house, tree, lavender and France.

label training procedure. Another strategy is to estimate the
confidence of each candidate label being the ground-truth
one, where the confidence scores and predictive model are
optimized in an iterative manner by confidence-weighted
ranking loss minimization [30] or low-rank confidence ma-
trix approximation [21], [32]. Nonetheless, the estimated
confidence scores could be error-prone especially when the
proportion of false positive labels is high, which in turn
would impact the predictive model due to the iterative
optimization procedure.

In this paper, a novel approach named PARTICLE, i.e.
PARTIal multi-label learning via Credible Label Elicitation, is
proposed to learning from PML training examples. The
basic idea of PARTICLE is to mitigate the negative impact
of false positive labels by eliciting credible labels from
candidate label set, which will be treated as reliable labeling
information for subsequent model induction. Briefly, in the
first stage, credible labels with high labeling confidence



2

are identified via iterative label propagation. In the second
stage, by making use of the identified credible labels, multi-
label predictor is induced via pairwise label ranking coupled
with virtual label splitting or maximum a posteriori rea-
soning. Extensive experimental studies show that credible
label elicitation serves as an effective strategy to tackle the
major PML modeling difficulty of ground-truth labels being
concealed in the candidate label set.

The rest of this paper is organized as follows. Firstly,
related works on partial multi-label learning are briefly
discussed. Secondly, the technical details of the proposed
PARTICLE approach are presented. Thirdly, detailed results
of comparative studies are reported. Finally, we conclude
and indicate several issues for future work.

2 RELATED WORK

Conceptually speaking, partial multi-label learning is
closely related to two popular learning frameworks, i.e.
multi-label learning [11], [36], [40] and partial label learning
[7], [18], [35].

Multi-label learning (MLL) deals with the problem
where each example is associated with multiple valid labels
simultaneously. Existing MLL approaches can be roughly
categorized into three groups based on the order of label
correlations exploited for model induction, including first-
order approaches assuming independence among class labels
[1], [33], second-order approaches assuming pairwise label cor-
relations [10], [14], [17], and high-order approaches assuming
label correlations among a subset of or whole set of class
labels [2], [19], [20], [22], [25]. MLL and PML share the
same goal of inducing predictive model which can assign
a set of proper labels for unseen instance. Nonetheless, the
task of PML is more challenging than MLL as the ground-
truth labeling information is not directly accessible to PML
learning algorithm. There are also studies on weak label
learning [23], [24], [27] where there are ground-truth labels
missing from the associated label set. Therefore, weak label
learning and PML can be viewed as dual variants of MLL
with noisy labeling, where weak label learning assumes
false negative labels within irrelevant label set while PML
assumes false positive labels within candidate label set.

Partial label learning (PLL) deals with the problem
where each example is associated with multiple candidate
labels among which only one is valid. The task of partial
label learning is to induce a multi-class predictive model
which can assign one proper label for unseen instance,
where existing PLL approaches work by disambiguating the
candidate label set [4], [7], [12], [18], [31] or transforming
partial label learning problem into canonical supervised
learning problems [5], [29], [35]. PLL and PML share similar
setting of learning from noisy training examples where false
positive labels reside in the candidate label set. Nonetheless,
the task of PML is more challenging than PLL as a multi-
label predictor rather than a single-label predictor needs to
be induced from PML training examples.

The most straightforward strategy to tackle the problem
of PML modeling is to treat all candidate labels as ground-
truth ones. Thereafter, any off-the-shelf multi-label learning
algorithms can be applied to induce the desired multi-label
predictor. Nevertheless, it is obvious that the effectiveness of

this straightforward strategy tends to suffer from the false
positive labels concealed in candidate label set. On the other
hand, one can choose to disambiguate candidate label set
by estimating the confidence of each candidate label being
the ground-truth one. An iterative procedure is thus em-
ployed to alternatively optimize the confidence scores and
predictive model via confidence-weighted ranking loss min-
imization [30], low-rank confidence matrix approximation
[21], [32], or discriminative modeling based on quadratic
programming (QP) [13], [26]. Due to alternative nature of
the optimization procedure, estimation errors on confidence
scores may keep accumulating over the optimization it-
erations and thus impair the coupled predictive model,
especially when the proportion of false positive labels in
candidate label set is high.

In the next section, a two-stage partial multi-label learn-
ing strategy based on credible label elicitation will be intro-
duced, which aims to mitigate the negative impact of false
positive labels by exploiting reliable labeling information.

3 THE PROPOSED APPROACH

The proposed PARTICLE approach consists of two basic
stages, i.e. credible label elicitation aiming to identify reliable
labeling information from candidate label set, and predictive
model induction aiming to make use of the identified infor-
mation for follow-up model training. Technical details of
PARTICLE are scrutinized as follows.

3.1 Credible Label Elicitation

In the first stage, to elicit credible labels from the candidate
label set, PARTICLE works by adapting the label propagation
procedure based on weighted graph over training instances.
In this way, the structural information in feature space is
utilized to facilitate identifying reliable labeling information
in label space.

Given the PML training set D = {(xi, Yi) | 1 ≤ i ≤ m},
a weighted directed graph G = (V,E,W) is instanti-
ated based on kNN minimum error reconstruction. Here,
V = {xi | 1 ≤ i ≤ m} corresponds to the set of training
instances, E = {(xi, xj) | i ∈ N (xj) , 1 ≤ j ≤ m}
corresponds to the set of directed edges with N (xj) be-
ing the index set of xj ’s k nearest neighbors in D, and
W = [w1, w2, . . . , wm]> corresponds to the weight matrix
with wj = [w1,j , w2,j , . . . , wm,j ]> (1 ≤ j ≤ m) being the
weight vector w.r.t. xj .

Specifically, wj is optimized by solving the following
minimum error reconstruction problem:

minwj

∥
∥
∥xj −

∑m

i=1
wi,j ∙ xi

∥
∥
∥
2

2
(1)

s.t. wi,j ≥ 0 (i ∈ N (xj))

wi,j = 0 (i /∈ N (xj))

Conceptually, the goal of Eq.(1) is to minimize the loss of
reconstructing xj from its k nearest neighbors with non-
negative weights. Accordingly, the solution to the linear
least square problem of Eq.(1) can be obtained by applying
off-the-shelf QP solver.

Let D = diag [d1, d2, . . . , dm] be the diagonal ma-
trix with dj =

∑m
i=1 wi,j . Then, the propagation matrix
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H = WD−1 is formed by normalizing the columns of W.
Furthermore, let F = [fi,c]m×q denote the m × q matrix
with non-negative entries where fi,c ≥ 0 corresponds to the
confidence of yc being a valid label for xi.

The initial labeling confidence matrix F(0) is set w.r.t. the
PML training examples as follows:

∀ 1 ≤ i ≤ m : f
(0)
i,c =

{
1

|Yi|
, if yc ∈ Yi

0, otherwise
(2)

Specifically, PARTICLE chooses to evenly distribute the initial
labeling confidence over candidate label set. For the t-th
iteration, F is updated by propagating current labeling
confidence over H:

F̂(t) = α ∙H>F(t−1) + (1− α) ∙ F(0) (3)

Here, the parameter α ∈ [0, 1] controls the proportion of
labeling information inherited from iterative propagation
and initial labeling confidence F(0). Afterwards, PARTICLE

re-scales F̂(t) into F(t) by normalizing each row w.r.t. the
candidate label set:

∀ 1 ≤ i ≤ m : f
(t)
i,c =






f̂
(t)
i,c

∑
yl∈Yi

f̂
(t)
i,l

, if yc ∈ Yi

0, otherwise
(4)

As the iterative label propagation procedure terminates, we
use F∗ to denote the final labeling confidence matrix1.

Based on F∗, it is feasible to elicit credible labels for each
PML training example by identifying candidate labels with
high labeling confidence. To reduce the risk of overfitting
with label propagation, PARTICLE fulfills the elicitation task
by further performing kNN aggregation. Given xj and its k
nearest neighbors indexed in N (xj), an aggregation weight
vector ωj = [ωj

1, ω
j
2, . . . , ω

j
m]> is set as:

∀ 1 ≤ i ≤ m :

wj
i =






1− dist(xi,xj)∑
r∈N(xj) dist(xr,xj)

, if i ∈ N (xj)

0, otherwise
(5)

Here, dist(∙, ∙) calculates the Euclidean distance between
two instances. Accordingly, the resulting labeling confidence
vector λj = [λj

1, λ
j
2, . . . , λ

j
q]

> for xj is obtained by aggregat-
ing F∗ with ωj :

λj = F∗> ∙ ωj (6)

The set of credible labels Y C
j for xj is then identified by

thresholding λj :2

Y C
j =

{yl | λ
j
l ≥ thr, yl ∈ Yj}

⋃
{yl∗ | yl∗ = argmax

yl∈Yj

λj
l } (7)

Therefore, Y C
j ⊆ Yj is formed by candidate labels whose

labeling confidence are greater than the specified threshold
thr ∈ [0, 1]. In addition, Y C

j contains at least the candidate
label with highest labeling confidence (i.e. yl∗ ) so as to avoid
empty credible label set.

1. The iterative label propagation procedure terminates when F(t)

does not change or the maximum number of iterations (1,000 in this
paper) is reached.

2. To facilitate the thresholding operation, λj is further normalized

to [0,1] with λj
l =

λ
j
l −min1≤l≤q λ

j
l

max1≤l≤q λ
j
l −min1≤l≤q λ

j
l

.

3.2 Predictive Model Induction

In the second stage, PARTICLE makes use of the credible
labels elicited in the first stage for inducing the multi-label
predictive model.

Let DC = {(xi, Y
C
i ) | 1 ≤ i ≤ m} denote the trans-

formed PML training set, where each training example xi

is associated with the credible label set Y C
i other than the

original candidate label set Yi. Pairwise label ranking is
tailored to learn from DC , where similar techniques have
been successfully applied to learn from multi-label data [10],
[11], [36]. The results yielded by pairwise label ranking are
further coupled with virtual label splitting or maximum a
posteriori (MAP) reasoning to accomplish model induction.

For each transformed PML training example (xi, Y
C
i )

with Y C
i ⊆ Yi, let Ȳi = Y \ Yi denote the complementary

set of candidate label set Yi in Y . Pairwise label ranking
works by transforming the original learning problem into a
number of binary learning problems, one for each label pair
(yu, yz) (1 ≤ u < z ≤ q). Specifically, one binary training
set w.r.t (yu, yz) is generated from DC as follows:

DC
uz =

{
(xi, ϕ(Y C

i , Ȳi, yu, yz)) | (8)

τ(Y C
i , Ȳi, yu, yz) = true, 1 ≤ i ≤ m

}
where

τ(Y C
i , Ȳi, yu, yz) =






true, if (yu, yz) ∈ Y C
i × Ȳi or

(yz, yu) ∈ Y C
i × Ȳi

false, otherwise

ϕ(Y C
i , Ȳi, yu, yz) =

{
+1, if (yu, yz) ∈ Y C

i × Ȳi

−1, if (yz, yu) ∈ Y C
i × Ȳi

In other words, xi will be utilized as a binary training
example if yu and yz have different assignment w.r.t. Y C

i

and Ȳi. Otherwise, xi will not contribute to the generation
of binary training set DC

uz .
Thereafter, a total of

(q
2

)
binary classifiers guz : X 7→ R

can be induced from DC
uz by invoking some binary learning

algorithm B, i.e. guz ←[ B(DC
uz). Based on the modeling

outputs yielded by
(q
2

)
binary classifiers, PARTICLE proceeds

to predict the set of proper labels for unseen instance x via
virtual label splitting or MAP reasoning.

3.2.1 Virtual Label Splitting
In this case, one virtual label yV is introduced to serve as
an artificial splitting point between credible labels and non-
candidate labels. Accordingly, for each class label yu (1 ≤
u ≤ q), one extra binary training set is generated from DC

as follows:

DC
uV =

{
(xi, ψ(Y C

i , Ȳi, yu)) | (9)

ζ(Y C
i , Ȳi, yu) = true, 1 ≤ i ≤ m

}
where

ζ(Y C
i , Ȳi, yu) =

{
true, if yu ∈ Y C

i

⋃
Ȳi

false, otherwise

ψ(Y C
i , Ȳi, yu) =

{
+1, if yu ∈ Y C

i

−1, if yu ∈ Ȳi

In other words, xi will be utilized as a binary training
example if yu belongs to Y C

i or Ȳi. Otherwise, xi will not
contribute to the generation of binary training set DC

uV .
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Accordingly, a total of q extra binary classifiers guV :
X 7→ R can be induced from DC

uV by invoking B as well, i.e.
guV ←[ B(DC

uV ). Furthermore, let ruz and ruV be the empir-
ical accuracy of guz and guV in classifying binary training
examples in DC

uz and DC
uV respectively. Given all these(q

2

)
+ q classifiers, for unseen instance x, their (weighted)

votes on each class label yu (1 ≤ u ≤ q) and the virtual
label yV correspond to:

Γ(x, yu) =
∑u−1

l=1
rlu ∙ Jglu(x) ≤ 0K+ (10)

∑q

l=u+1
rul ∙ Jgul(x) > 0K+ ruV ∙ JguV (x) > 0K

Γ(x, yV ) =
∑q

l=1
rlV ∙ JglV (x) ≤ 0K (11)

Here, JπK returns 1 if predicate π holds and 0 otherwise.
Thereafter, the predicted label set for x is determined as:

f(x) = {yu | Γ(x, yu) > Γ(x, yV ), 1 ≤ u ≤ q} (12)

3.2.2 MAP Reasoning
In this case, a simple counting statistic is utilized to enable
model prediction based on MAP reasoning. For unseen
instance x, let Cu denote the statistic which counts the
average number of binary classifiers which vote for yu on
the k nearest neighbors of x indexed in N (x):

Cu = (13)





1
k
∙
∑

r∈N (x)

(
u−1∑

l=1

Jglu(xr) ≤ 0K+
q∑

l=u+1

Jgul(xr) > 0K

)





Here, 0 ≤ Cu ≤ q − 1 as among the
(q
2

)
binary classifiers

generated by pairwise label ranking, q−1 of them are related
to yu.

We use Hu to denote the event that yu is a relevant
label for x. Accordingly, let P(Hu | Cu) be the posteriori
probability that Hu holds given Cu, and P(¬Hu | Cu) be
the posteriori probability that Hu does not hold given the
same condition. Thereafter, the predicted label set for x is
determined by the MAP rule:

f(x) = {yu | P(Hu | Cu) > P(¬Hu | Cu), 1 ≤ u ≤ q} (14)

Based on Bayes theorem, we have:

P(Hu | Cu)
P(¬Hu | Cu)

=
P(Hu) ∙ P(Cu | Hu)
P(¬Hu) ∙ P(Cu | ¬Hu)

(15)

To carry out MAP reasoning, it suffices to compute the four
terms P(Hu), P(¬Hu), P(Cu | Hu) and P(Cu | ¬Hu) in
Eq.(15).

For the prior terms P(Hu) and P(¬Hu), their values are
estimated via relative frequency counting with Laplacian
smoothing:

P(Hu) =
1 +

∑m
i=1Jyu ∈ YiK
2 + m

(16)

P(¬Hu) = 1− P(Hu)

For the likelihood terms P(Cu | Hu) and P(Cu | ¬Hu), two
frequency arrays κu and κ̄u each with q elements are defined
as follows:

∀ 0 ≤ p ≤ q − 1 : (17)

κu[p] =
∑m

i=1
Jyu ∈ YiK ∙ Jδu(xi) = pK

κ̄u[p] =
∑m

i=1
Jyu /∈ YiK ∙ Jδu(xi) = pK

TABLE 1
The pseudo-code of PARTICLE.

Inputs:
D: PML training set {(xi, Yi) | 1 ≤ i ≤ m}

(xi ∈ X , Yi ⊆ Y,X = Rd,Y = {y1, y2, . . . , yq})
k: number of nearest neighbors considered
α: balancing parameter
thr: thresholding parameter
B: binary learning algorithm
mode: virtual label splitting or MAP reasoning
x: unseen instance

Outputs:
Y : predicted label set for x

Process:

1: Instantiate the weighted graph G = (V, E,W) by solving Eq.(1)
with kNN minimum error reconstruction;

2: Initialize F(0) according to Eq.(2) and obtain the final labeling
confidence matrix F∗ by conducting iterative label propagation
according to Eq.(3) and Eq.(4);

3: Identify the credible label set Y C
j for each example xj (1 ≤ j ≤ m)

according to Eq.(7) (together with Eq.(5) and Eq.(6));
4: For each label pair (yu, yz) (1 ≤ u < z ≤ q), generate binary

training set DC
uz according to Eq.(8);

5: Induce binary classifier guz ← [ B(DC
uz);

6: switch mode do
7: case virtual label splitting
8: For each label yu (1 ≤ u ≤ q), generate binary training set

DC
uV according to Eq.(9);

9: Induce binary classifier guV ← [ B(DC
uV );

10: Return Y = f(x) according to Eq.(12) (together with Eq.(10)
and Eq.(11));

11: case MAP reasoning
12: For each label yu (1 ≤ u ≤ q), set the counting statistic Cu

according to Eq.(13);
13: Return Y = f(x) according to Eq.(14) (together with Eqs.(15)-

(18));
14: end switch

Accordingly, δu(xi) =
⌈

1
k ∙
∑

r∈N (xi)

(∑u−1
l=1 Jglu(xr) ≤ 0K

+
∑q

l=u+1Jgul(xr) > 0K
)⌉

counts the average number of bi-
nary classifiers which vote for yu on the k nearest neighbors
of xi. Therefore, κu[p] (κ̄u[p]) records the number of training
examples which have (don’t have) label yu and whose k
nearest neighbors receive an average of p votes for yu from
all the binary classifiers.

Thereafter, P(Cu | Hu) and P(Cu | ¬Hu) can be
estimated via relative frequency counting with Laplacian
smoothing as well:

P(Cu | Hu) =
1 + κu[Cu]

q +
∑q−1

p=0 κu[p]
(18)

P(Cu | ¬Hu) =
1 + κ̄u[Cu]

q +
∑q−1

p=0 κ̄u[p]

To summarize, Table 1 gives the complete procedure of
the proposed PARTICLE approach. In the first stage, credible
labels are elicited from the candidate label set for each PML
training example via iterative label propagation (steps 1-
3). In the second stage, a total of

(q
2

)
binary classifiers are

generated by pairwise label ranking (steps 4-5), which are in
turn coupled with virtual label splitting (steps 7-10) or MAP
reasoning (steps 11-13) to induce the multi-label predictive
model. Specifically, the two variants of PARTICLE instan-
tiated with virtual label splitting and MAP reasoning are
termed as PARTICLE-VLS and PARTICLE-MAP respectively.



5

TABLE 2
Characteristics of the PML experimental data sets. For each PML data set, the average number of candidate labels (avg. #CLs) and the average

number of ground-truth labels (avg. #GLs) are also recorded.

Data Set #Examples #Features #Class Labels avg. #CLs avg. #GLs
music emotion 6,833 98 11 5.29 2.42

music style 6,839 98 10 6.04 1.44
mirflickr 10,433 100 7 3.35 1.77
yeastBP 560 5,548 217 30.43 21.56

emotions 593 72 6 3, 4, 5 1.86
scene 2,407 294 6 3, 4, 5 1.07
yeast 2,417 103 14 5, 7, 9, 11, 13 4.23

reference 5,411 860 14 5, 7, 9, 11, 13 1.15
eurlex dc 8,636 100 15 5, 7, 9, 11, 13 1.01
eurlex sm 12,679 100 15 5, 7, 9, 11, 13 1.53

health 8,109 1,483 20 5, 7, 9, 11, 13 1.64
entertainment 8,166 545 20 5, 7, 9, 11, 13 1.43

eurlex ed 9,792 100 25 5, 7, 9, 11, 13 3.07
computer 11,235 880 25 5, 7, 9, 11, 13 1.51
CAL500 502 68 100 25, 30, 35, 40, 45 23.91

TABLE 3
Experimental results of each learning approach on synthetic as well as real-world PML data sets in terms of hamming loss, where the best

performance (the smaller the better) is shown in bold face.

Data Set avg. #CLs PARTICLE-VLS PARTICLE-MAP PML-LC PML-FP FPML PML-LRS ML-KNN LIFT

music emotion 5.29 .215±.003 .222±.006 .274±.004 .268±.004 .401±.019 .333±.005 .360±.010 .340±.004
music style 6.04 .120±.002 .209±.013 .212±.004 .162±.003 .855±.002 .833±.004 .842±.008 .847±.005

mirflickr 3.35 .173±.004 .160±.006 .236±.006 .220±.005 .222±.006 .209±.006 .221±.006 .221±.005
yeastBP 30.43 .042±.008 .044±.008 .059±.009 .054±.008 .093±.009 .134±.008 .088±.009 .049±.009

emotions
3 .200±.015 .228±.018 .259±.031 .247±.019 .329±.018 .329±.024 .257±.026 .271±.027
5 .359±.030 .275±.023 .299±.020 .281±.013 .688±.015 .688±.015 .687±.015 .687±.015

scene
3 .120±.008 .119±.018 .299±.013 .226±.008 .394±.123 .300±.009 .170±.021 .260±.009
5 .398±.010 .182±.013 .378±.015 .273±.010 .821±.001 .819±.002 .820±.001 .820±.001

yeast
5 .208±.008 .215±.009 .250±.009 .392±.009 .239±.008 .302±.005 .198±.008 .207±.010
13 .697±.008 .266±.010 .343±.007 .399±.008 .697±.008 .302±.008 .697±.008 .697±.008

reference
5 .085±.002 .148±.005 .145±.002 .154±.015 .092±.001 .118±.005 .088±.003 .090±.002
13 .867±.003 .197±.022 .173±.004 .174±.004 .917±.001 .294±.015 .917±.001 .917±.001

eurlex dc
5 .025±.001 .036±.002 .089±.001 .089±.001 .081±.007 .075±.004 .025±.001 .058±.018
13 .848±.008 .065±.002 .108±.002 .108±.002 .924±.005 .744±.021 .932±.000 .920±.037

eurlex sm
5 .066±.001 .079±.004 .161±.001 .111±.002 .112±.005 .115±.004 .060±.002 .111±.024
13 .850±.007 .102±.003 .195±.003 .130±.002 .724±.241 .679±.014 .897±.000 .897±.000

health
5 .075±.001 .123±.003 .127±.001 .098±.002 .081±.002 .096±.001 .077±.002 .083±.010

13 .094±.004 .148±.004 .130±.003 .108±.001 .917±.001 .255±.013 .917±.001 .917±.001

entertainment
5 .069±.002 .134±.009 .159±.002 .137±.002 .070±.002 .087±.004 .068±.002 .070±.002

13 .087±.003 .162±.007 .168±.002 .137±.001 .927±.002 .190±.013 .926±.001 .927±.001

eurlex ed
5 .056±.000 .080±.003 .109±.001 .085±.001 .070±.002 .070±.002 .085±.001 .083±.024
13 .057±.001 .090±.002 .133±.001 .094±.002 .286±.221 .218±.014 .633±.012 .847±.027

computer
5 .054±.001 .124±.003 .093±.001 .103±.012 .057±.001 .072±.003 .050±.001 .057±.001
13 .064±.001 .135±.004 .095±.001 .097±.010 .939±.001 .181±.013 .557±.015 .551±.052

CAL500
25 .239±.005 .231±.005 .282±.005 .282±.005 .263±.005 .282±.000 .253±.005 .268±.004
45 .231±.008 .231±.008 .273±.007 .272±.006 .241±.008 .259±.001 .242±.006 .272±.008

4 EXPERIMENTS

4.1 Experimental Setup

4.1.1 Data Sets

A total of fifteen synthetic as well as real-world PML data
sets have been employed for comparative studies in this
paper, whose characteristics are summarized in Table 2.

Specifically, a synthetic PML data set can be generated
from one multi-label data set by adding random labeling
noise. Given the multi-label example, some of its irrelevant
labels are randomly drawn to form the candidate label set
along with its relevant labels. As shown in Table 2, eleven
benchmark multi-label data sets [36] are used to gener-
ate synthetic PML data sets, including emotions , scene ,
yeast , reference , eurlex_dc , eurlex_sm , health ,
entertainment , eurlex_ed , computer and CAL500.
For each multi-label data set, different configurations are

considered by varying the average number of candidate
labels (avg. #CLs). Accordingly, a total of fifty-one syn-
thetic PML data sets have been generated. Furthermore,
four real-world PML data sets, including music_emotion ,
music_style , mirflickr and yeastBP , are also em-
ployed in this paper. The first three real-world PML data
sets are derived from the image retrieval task [15], where
candidate labels are collected from web users and further
examined by human labelers to specify the ground-truth
labels. The fourth real-world PML data set is derived from
the protein-protein interaction prediction task [32], where
candidate labels correspond to the biological process anno-
tations of Yeast proteins archived on different periods from
the Gene Ontology3 with those annotations available in
history but absent in recent periods as false positive labels.

3. http://www.geneontology.org
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TABLE 4
Experimental results of each learning approach on synthetic as well as real-world PML data sets in terms of ranking loss, where the best

performance (the smaller the better) is shown in bold face.

Data Set avg. #CLs PARTICLE-VLS PARTICLE-MAP PML-LC PML-FP FPML PML-LRS ML-KNN LIFT

music emotion 5.29 .261±.007 .245±.006 .268±.005 .276±.007 .331±.008 .284±.007 .302±.008 .276±.008
music style 6.04 .161±.005 .161±.006 .268±.011 .146±.005 .224±.007 .175±.005 .199±.006 .202±.010

mirflickr 3.35 .207±.006 .093±.007 .143±.007 .126±.011 .159±.018 .102±.006 .175±.019 .114±.009
yeastBP 30.43 .935±.037 .283±.040 .393±.047 .363±.041 .416±.057 .406±.048 .408±.060 .316±.054

emotions
3 .184±.024 .170±.016 .215±.037 .189±.017 .472±.031 .333±.042 .181±.028 .197±.032
5 .261±.026 .222±.019 .247±.016 .262±.040 .469±.043 .464±.032 .323±.031 .330±.046

scene
3 .115±.014 .104±.015 .318±.021 .141±.010 .185±.020 .094±.012 .142±.013 .082±.009
5 .217±.013 .192±.015 .430±.029 .237±.014 .409±.038 .171±.016 .283±.023 .265±.033

yeast
5 .193±.009 .180±.011 .200±.011 .421±.014 .212±.011 .380±.011 .173±.007 .176±.009
13 .235±.012 .252±.014 .324±.014 .391±.012 .229±.012 .470±.019 .237±.012 .242±.016

referece
5 .272±.017 .282±.011 .244±.011 .330±.092 .248±.019 .282±.019 .254±.014 .250±.013
13 .356±.017 .354±.009 .344±.012 .349±.014 .275±.014 .371±.019 .283±.016 .274±.020

eurlex dc
5 .045±.004 .056±.004 .061±.004 .061±.004 .243±.036 .073±.004 .080±.010 .155±.061
13 .113±.005 .122±.006 .137±.008 .137±.008 .326±.067 .160±.010 .201±.020 .283±.024

eurlex sm
5 .102±.007 .105±.008 .402±.012 .133±.008 .311±.039 .138±.008 .119±.007 .248±.030
13 .186±.006 .171±.007 .305±.005 .198±.003 .361±.015 .201±.005 .249±.006 .364±.032

health
5 .154±.006 .197±.007 .347±.008 .136±.007 .131±.006 .174±.010 .128±.005 .132±.005

13 .217±.006 .267±.007 .229±.008 .183±.003 .148±.008 .220±.007 .163±.008 .180±.108

entertainment
5 .201±.009 .228±.008 .520±.013 .586±.008 .162±.005 .215±.006 .154±.005 .158±.006

13 .283±.009 .292±.009 .408±.006 .582±.011 .172±.009 .268±.009 .187±.008 .180±.033

eurlex ed
5 .134±.004 .150±.005 .445±.014 .166±.007 .326±.017 .172±.008 .169±.005 .304±.041
13 .174±.007 .189±.007 .498±.026 .235±.009 .397±.021 .212±.006 .252±.010 .358±.024

computer
5 .129±.007 .240±.007 .317±.010 .373±.183 .128±.008 .200±.012 .257±.006 .131±.005
13 .198±.005 .324±.010 .199±.004 .301±.103 .140±.010 .260±.007 .327±.007 .139±.008

CAL500
25 .479±.015 .258±.008 .363±.013 .363±.013 .261±.007 .272±.002 .268±.009 .264±.006
45 .350±.011 .260±.006 .325±.009 .325±.010 .266±.007 .261±.001 .285±.005 .266±.008

TABLE 5
Experimental results of each learning approach on synthetic as well as real-world PML data sets in terms of one-error, where the best

performance (the smaller the better) is shown in bold face.

Data Set avg. #CLs PARTICLE-VLS PARTICLE-MAP PML-LC PML-FP FPML PML-LRS ML-KNN LIFT

music emotion 5.29 .473±.019 .474±.018 .532±.019 .540±.018 .592±.012 .556±.012 .544±.019 .554±.021
music style 6.04 .370±.016 .450±.034 .593±.021 .406±.017 .404±.012 .404±.012 .384±.015 .406±.014

mirflickr 3.35 .141±.013 .145±.016 .393±.023 .312±.049 .317±.068 .179±.014 .456±.116 .314±.042
yeastBP 30.43 .906±.054 .912±.054 .926±.038 .922±.036 .980±.015 .970±.014 .953±.048 .913±.119

emotions
3 .232±.041 .269±.036 .389±.070 .331±.077 .554±.055 .530±.053 .288±.033 .318±.060
5 .322±.056 .389±.048 .471±.029 .408±.083 .576±.097 .552±.042 .503±.068 .477±.059

scene
3 .245±.035 .289±.048 .509±.033 .364±.016 .468±.038 .287±.029 .300±.019 .243±.009
5 .363±.028 .447±.031 .709±.023 .531±.031 .728±.064 .484±.041 .583±.029 .574±.045

yeast
5 .221±.023 .248±.028 .244±.026 .370±.025 .248±.027 .417±.031 .240±.025 .235±.025
13 .252±.030 .397±.035 .586±.033 .516±.028 .255±.031 .636±.058 .254±.031 .259±.028

referece
5 .536±.017 .679±.021 .572±.016 .610±.096 .554±.019 .614±.024 .543±.021 .553±.020
13 .654±.021 .815±.021 .765±.022 .764±.026 .573±.017 .739±.022 .572±.020 .552±.018

eurlex dc
5 .154±.012 .213±.013 .260±.016 .260±.016 .729±.083 .304±.014 .203±.016 .489±.095
13 .288±.016 .374±.013 .394±.017 .394±.017 .812±.102 .433±.016 .567±.017 .696±.131

eurlex sm
5 .228±.017 .267±.017 .595±.008 .347±.016 .708±.058 .371±.014 .268±.015 .609±.137
13 .338±.009 .404±.019 .843±.010 .464±.016 .815±.043 .471±.019 .611±.009 .821±.038

health
5 .430±.016 .451±.034 .524±.018 .445±.018 .488±.020 .462±.027 .465±.014 .494±.038

13 .456±.011 .478±.025 .675±.017 .520±.017 .495±.016 .533±.013 .488±.017 .515±.080

entertainment
5 .571±.021 .610±.024 .910±.010 .689±.007 .672±.007 .602±.021 .618±.013 .657±.018

13 .665±.018 .675±.010 .983±.003 .701±.019 .682±.014 .686±.018 .667±.019 .697±.062

eurlex ed
5 .394±.012 .498±.018 .732±.012 .548±.020 .746±.044 .563±.022 .685±.013 .782±.134
13 .459±.021 .577±.015 .908±.008 .615±.021 .831±.044 .601±.022 .578±.013 .731±.077

computer
5 .390±.015 .736±.021 .496±.015 .710±.101 .470±.011 .463±.017 .419±.012 .470±.014
13 .454±.010 .898±.014 .554±.014 .617±.095 .474±.011 .599±.014 .453±.013 .474±.011

CAL500
25 .102±.042 .114±.038 .366±.057 .366±.057 .114±.038 .080±.000 .114±.040 .120±.042
45 .350±.060 .111±.044 .366±.044 .366±.044 .116±.045 .200±.000 .114±.044 .130±.046

4.1.2 Learning Approaches

On the one hand, two well-established multi-label learning
approaches ML-KNN [37], and LIFT [34] are employed for
comparative studies, which are tailored to learn from PML
training examples by treating all candidate labels as ground-
truth ones. On the other hand, several state-of-the-art PML
approaches which work by iteratively optimizing labeling
confidences and predictive model are also employed for
comparative studies, including PML-LC and PML-FP [30]
based on confidence-weighted ranking loss minimization,

FPML [32] and PML-LRS [21] based on low-rank confidence
matrix approximation.

For compared learning approaches, parameters sug-
gested in respective literature are used and Libsvm [3] is
employed as the base learner to instantiate LIFT. As shown
in Table 1, parameters for PARTICLE are set as follows:
k = 10 (number of nearest neighbors considered), α = 0.95
(balancing parameter) and thr = 0.9 (credible label elicita-
tion threshold). Furthermore, Libsvm [3] is also employed
as the binary learning algorithm B for PARTICLE.
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TABLE 6
Experimental results of each learning approach on synthetic as well as real-world PML data sets in terms of coverage, where the best

performance (the smaller the better) is shown in bold face.

Data Set avg. #CLs PARTICLE-VLS PARTICLE-MAP PML-LC PML-FP FPML PML-LRS ML-KNN LIFT

music emotion 5.29 .411±.005 .409±.008 .438±.004 .434±.004 .484±.006 .442±.006 .466±.007 .434±.005
music style 6.04 .203±.006 .218±.008 .323±.011 .203±.007 .288±.010 .234±.006 .263±.005 .264±.012

mirflickr 3.35 .268±.005 .207±.005 .243±.005 .228±.005 .261±.014 .216±.005 .266±.011 .219±.006
yeastBP 30.43 .800±.075 .419±.079 .480±.063 .499±.072 .650±.050 .604±.038 .645±.048 .580±.038

emotions
3 .305±.023 .311±.019 .320±.030 .314±.025 .588±.028 .451±.049 .320±.028 .334±.036
5 .366±.019 .352±.018 .370±.027 .378±.027 .542±.031 .531±.024 .433±.022 .437±.045

scene
3 .099±.013 .102±.013 .283±.019 .133±.009 .170±.018 .093±.011 .135±.011 .083±.008
5 .170±.011 .177±.014 .368±.023 .214±.012 .356±.031 .156±.014 .250±.019 .236±.028

yeast
5 .465±.011 .473±.015 .498±.015 .780±.021 .489±.014 .652±.012 .463±.013 .466±.011
13 .541±.013 .575±.019 .595±.016 .660±.012 .544±.017 .750±.021 .559±.011 .564±.026

referece
5 .260±.018 .289±.013 .255±.013 .338±.083 .261±.020 .291±.019 .266±.014 .262±.012
13 .322±.017 .355±.008 .346±.012 .350±.014 .285±.013 .372±.019 .293±.015 .284±.020

eurlex dc
5 .039±.003 .054±.005 .059±.004 .059±.004 .229±.034 .070±.004 .077±.009 .147±.056
13 .092±.005 .116±.005 .131±.008 .131±.008 .307±.062 .152±.010 .191±.018 .268±.023

eurlex sm
5 .149±.008 .162±.009 .460±.012 .192±.009 .364±.036 .194±.009 .174±.009 .312±.031
13 .222±.006 .231±.008 .355±.005 .263±.004 .424±.016 .267±.006 .312±.007 .427±.034

health
5 .211±.008 .264±.009 .420±.009 .208±.014 .197±.010 .243±.012 .191±.006 .195±.008

13 .276±.008 .341±.010 .295±.010 .256±.006 .214±.011 .296±.006 .238±.012 .249±.119

entertainment
5 .226±.010 .267±.010 .544±.013 .608±.010 .199±.006 .255±.008 .193±.007 .196±.007

13 .293±.010 .330±.009 .431±.008 .604±.009 .210±.008 .310±.010 .230±.008 .219±.035

eurlex ed
5 .177±.005 .207±.006 .509±.015 .217±.008 .390±.015 .222±.009 .226±.005 .376±.046
13 .216±.009 .250±.010 .544±.014 .291±.012 .471±.023 .269±.009 .323±.012 .432±.028

computer
5 .174±.009 .291±.007 .378±.011 .435±.169 .180±.009 .256±.012 .173±.008 .181±.007
13 .246±.008 .374±.010 .252±.004 .365±.094 .197±.012 .316±.006 .374±.009 .194±.009

CAL500
25 .941±.007 .856±.018 .943±.012 .943±.012 .882±.008 .865±.008 .885±.013 .878±.006
45 .926±.011 .860±.012 .912±.011 .910±.010 .887±.016 .865±.007 .899±.015 .885±.014

TABLE 7
Experimental results of each learning approach on synthetic as well as real-world PML data sets in terms of average precision, where the best

performance (the larger the better) is shown in bold face.

Data Set avg. #CLs PARTICLE-VLS PARTICLE-MAP PML-LC PML-FP FPML PML-LRS ML-KNN LIFT

music emotion 5.29 .605±.006 .614±.007 .564±.010 .567±.010 .520±.008 .562±.007 .554±.007 .569±.009
music style 6.04 .716±.010 .677±.015 .551±.016 .703±.009 .654±.007 .680±.006 .683±.009 .665±.008

mirflickr 3.35 .690±.009 .858±.008 .748±.010 .780±.008 .771±.034 .836±.008 .701±.036 .795±.017
yeastBP 30.43 .086±.019 .158±.016 .141±.026 .143±.021 .095±.020 .086±.016 .110±.029 .169±.058

emotions
3 .807±.027 .791±.020 .758±.042 .783±.027 .550±.026 .630±.027 .783±.026 .761±.032
5 .734±.029 .728±.023 .698±.016 .724±.038 .554±.040 .565±.019 .642±.034 .651±.030

scene
3 .828±.023 .824±.027 .635±.024 .774±.012 .707±.024 .829±.018 .802±.012 .855±.008
5 .713±.019 .714±.021 .492±.024 .655±.020 .493±.044 .708±.025 .615±.023 .625±.032

yeast
5 .751±.014 .743±.018 .729±.015 .563±.012 .702±.016 .584±.012 .755±.012 .750±.016
13 .710±.016 .655±.019 .549±.016 .527±.013 .689±.019 .454±.015 .685±.019 .677±.020

referece
5 .557±.015 .473±.012 .548±.009 .493±.087 .552±.018 .510±.018 .556±.016 .550±.018
13 .457±.015 .361±.011 .391±.016 .390±.020 .524±.015 .395±.016 .521±.014 .533±.015

eurlex dc
5 .882±.008 .849±.009 .821±.009 .821±.009 .468±.061 .793±.009 .844±.014 .645±.069
13 .762±.011 .725±.008 .703±.013 .703±.013 .381±.092 .669±.013 .581±.020 .471±.074

eurlex sm
5 .783±.013 .764±.013 .441±.007 .708±.013 .428±.050 .694±.012 .764±.012 .509±.072
13 .669±.008 .652±.012 .363±.004 .608±.009 .341±.031 .597±.011 .515±.005 .337±.027

health
5 .637±.011 .491±.018 .479±.013 .645±.012 .621±.013 .622±.016 .481±.011 .618±.021

13 .590±.009 .382±.014 .456±.011 .577±.010 .606±.010 .554±.008 .605±.011 .583±.090

entertainment
5 .538±.017 .539±.019 .196±.008 .336±.006 .504±.008 .524±.013 .539±.011 .513±.012

13 .451±.011 .501±.009 .173±.002 .333±.013 .488±.011 .445±.013 .492±.013 .477±.041

eurlex ed
5 .633±.006 .578±.010 .324±.010 .545±.013 .349±.025 .535±.014 .564±.010 .347±.069
13 .571±.013 .508±.010 .188±.009 .469±.014 .273±.031 .489±.013 .475±.012 .345±.040

computer
5 .653±.010 .402±.013 .504±.013 .385±.120 .614±.008 .591±.016 .401±.009 .607±.011
13 .576±.007 .262±.015 .507±.007 .454±.092 .600±.009 .472±.009 .301±.010 .596±.013

CAL500
25 .431±.013 .523±.013 .382±.013 .382±.013 .527±.013 .541±.002 .515±.015 .526±.015
45 .432±.012 .526±.012 .403±.010 .403±.010 .522±.011 .505±.001 .501±.011 .523±.014

For performance evaluation, five widely-used multi-
label metrics hamming loss, one-error, coverage, ranking loss
and average precision are employed whose detailed defini-
tions can be found in [11], [36], [40]. For the first four met-
rics, the smaller the metric value the better the performance.
For average precision, the larger the metric value the better the
performance. On each data set, ten-fold cross-validation is
performed where the mean metric value as well as standard
deviation are recorded for each learning approach.

4.2 Experimental Results

Tables 3 to 7 report the detailed experimental results of each
learning approach in terms of each evaluation metric. For
brevity, among all the synthetic PML data sets, detailed
results on some of the synthetic configurations are given,
i.e. avg. #CLs being 3 and 5 for emotions and scene , 5
and 13 for yeast , reference , eurlex_dc , eurlex_sm ,
health , entertainment , eurlex_ed , computer , and
25 and 45 for CAL500.

Furthermore, Friedman test [8] is utilized as the statistical
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Fig. 2. Comparison of PARTICLE-VLS (control approach) against other learning approaches with the Bonferroni-Dunn test. Approaches not
connected with PARTICLE-VLS in the CD diagram are considered to have significantly different performance from the control approach (CD=1.0867
at 0.05 significance level).

TABLE 8
Summary of the Friedman statistics FF in terms of each evaluation

metric and the critical value at 0.05 significance level for PARTICLE-VLS
(# learning approaches n = 7, # data sets N = 55).

Evaluation metric FF critical value

Hamming loss 12.3060

2.1266
Ranking loss 4.1607
One-error 12.8526
Coverage 15.1603
Average precision 9.5029

TABLE 9
Summary of the Friedman statistics FF in terms of each evaluation

metric and the critical value at 0.05 significance level for
PARTICLE-MAP (# learning approaches n = 7, # data sets N = 55).

Evaluation metric FF critical value

Hamming loss 10.4953

2.1266
Ranking loss 3.6695
One-error 13.3240
Coverage 14.4883
Average precision 8.9515

test to analyze the relative performance among learning
approaches. Given n learning approaches and N data sets,
let rj

i denote the rank of the j-th approach on the i-
th data set where mean ranks are shared in case of ties.
Let Rj = 1

N

∑N
i=1 rj

i denote the average rank for the j-
th algorithm, under the null hypothesis of all algorithms

having indistinguishable performance, the following Fried-
man statistic FF will be distributed according to the F -
distribution with n − 1 numerator degrees of freedom and
(n− 1)(N − 1) denominator degrees of freedom:

FF =
(N − 1)χ2

F

N(n− 1)− χ2
F

, where

χ2
F =

12N

n(n + 1)




n∑

j=1

R2
j −

n(n + 1)2

4





For PARTICLE-VLS and PARTICLE-MAP, Table 8 and
Table 9 summarize the Friedman statistics FF and the
corresponding critical value respectively in terms of each
evaluation metric (# learning approaches n = 7, # data sets
N = 55). As shown in Tables 8 and 9, at 0.05 significance
level, the null hypothesis of indistinguishable performance
among the learning approaches is clearly rejected for all
evaluation metrics.

Thereafter, to show the relative performance among the
learning approaches, Bonferroni-Dunn test [8] is employed as
the post-hoc test by treating PARTICLE-VLS or PARTICLE-
MAP as the control approach. Here, the difference between
the average ranks of control approach and one learning
approach is calibrated with the critical difference (CD):

CD = κ ∙

√
n(n + 1)

6N
(19)

Here, κ = 2.638 at 0.05 significance level and thus
CD=1.0867 in this paper. Accordingly, the performance
between control approach and one learning approach is
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Fig. 3. Comparison of PARTICLE-MAP (control approach) against other learning approaches with the Bonferroni-Dunn test. Approaches not
connected with PARTICLE-MAP in the CD diagram are considered to have significantly different performance from the control approach (CD=1.0867
at 0.05 significance level).

deemed to be significantly different if their average ranks
differ by at least one CD.

Figs. 2 and 3 illustrate the CD diagrams [8] on each
evaluation metric by treating PARTICLE-VLS or PARTICLE-
MAP as the control approach respectively. Here, the average
rank of each learning approach is marked along the axis
with lower ranks to the right. In each subfigure, any learning
approach whose average rank is within one CD to that of
the control approach is interconnected to each other with a
thick line. Otherwise, it is considered to have significantly
different performance against the control approach.

Based on the reported experimental results, the follow-
ing observations of the comparative studies can be made:

• As shown in Fig. 2, it is impressive that PARTICLE-
VLS has the lowest average rank on each evaluation
metric. Regarding the tailored multi-label learning
approaches, the performance of PARTICLE-VLS is
statistically comparable to ML-KNN and LIFT on
ranking loss and coverage, and superior to both of
them in the rest cases. Regarding the existing PML
approaches, the performance of PARTICLE-VLS is
statistically comparable to FPML and PML-LRS on
ranking loss, and superior to PML-LC, PML-FP, FPML

and PML-LRS in the rest cases.

• As shown in Fig. 3, PARTICLE-MAP has the second
lowest average rank on one-error and has the lowest
average rank on the other evaluation metrics. Re-
garding the tailored multi-label learning approaches,
the performance of PARTICLE-MAP is statistically
superior to ML-KNN on hamming loss, superior to
LIFT on hamming loss and one-error, and comparable

to ML-KNN and LIFT in the rest cases. Regarding
the existing PML approaches, the performance of
PARTICLE-MAP is statistically comparable to PML-FP

on hamming loss, comparable to PML-LRS on coverage,
and superior to PML-LC, PML-FP, FPML and PML-LRS

in the rest cases.

• As shown in Tables 3 to 7, on the four real-world
PML data sets music_emotion , music_style ,
mirflickr and yeastBP , the two variants of PAR-
TICLE achieve optimal performance in almost all
cases (except on music_style where PML-FP out-
performs PARTICLE on ranking loss, on yeastBP
where LIFT outperforms PARTICLE on average pre-
cision). Furthermore, the performance advantage of
PARTICLE is more pronounced on synthetic PML
data sets with a moderate number of features includ-
ing emotions , yeast , eurlex_dc , eurlex_sm ,
eurlex_ed and CAL500. One potential reason lies
in that the weighted kNN graph constructed by PAR-
TICLE would be more reliable in low-dimensional
feature space, which coincides with the observation
that dimensionality reduction works well for learn-
ing with noisy labeling information [28].

In summary, these results clearly validate the effectiveness
of the two-stage credible label elicitation strategy for learn-
ing from PML examples.

4.3 Further Analysis

4.3.1 Parameter Sensitivity
As shown in Table 1, thr serves as the crucial parameter
which controls the number of credible labels elicited in the
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Fig. 4. Properties of PARTICLE-VLS and PARTICLE-MAP change as parameter thr varies from 1 to 0.5 with an interval of 0.1. First row: the predictive
performance of PARTICLE-VLS on ranking loss, coverage, and average precision; Second row: the predictive performance of PARTICLE-MAP on
ranking loss, coverage, and average precision; Third row: the mean size of credible labels elicited by PARTICLE.

first stage. Fig. 4 gives an illustrative example on how the
properties of PARTICLE change as the value of parameter
thr varies, including the predictive performance in terms of
ranking loss, coverage and average precision (first and second
rows) and the mean size of credible labels (third row).

As shown in Fig. 4(a)-(f), the predictive performance
of PARTICLE becomes relatively stable as thr decrease to
0.9, which is the value used in this paper. Furthermore,
as shown in Fig. 4(g)-(i), the mean size of elicited credible
labels increases in linear or sub-linear rate as thr decreases.

4.3.2 Algorithmic Complexity

Table 10 summarizes the (worst-case) algorithmic complex-
ity of each learning approach considered in this paper w.r.t.
several common factors, i.e. m (# training examples), d
(# features), q (# class labels) and T (# iterations). Fur-
thermore, to account for specific algorithmic components
employed by each learning approach, the following terms
are introduced in complexity characterization: a) FB(m, d)

and F ′
B(d) represent the training and testing complexity

for binary learning algorithm B respectively; b) FQP(a, b)
represents the time complexity of solving a QP problem with
a variables and b constraints; c) FNMF(a, b, k′) represents
the time complexity of solving the non-negative matrix
factorization problem V = AB with V, A and B being the
a × b, a × k′ and k′ × b non-negative matrices respectively,
and FAGD(a) represents the time complexity of minimizing
the a-variate function based on accelerated gradient descent
techniques; d) FKM(m, d,K) represents the time complexity
of invoking the K-Means clustering procedure over m d-
dimensional feature vectors.

Furthermore, Fig. 5 illustrates the training time and
testing time of each learning approach on the four real-
world PML data sets. Generally, the empirical training time
of PARTICLE is relatively comparable to the other learning
approaches. On the other hand, the empirical testing time
of PARTICLE is higher than the other four PML learning
approaches due to its quadratic complexity w.r.t. q.
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TABLE 10
Summary of algorithmic complexity of each learning approach.

Learning Algorithmic Complexity
Approach Train Test
PARTICLE-VLS O

(
m2(d + k + Tq) + m ∙ FQP(m, m) + q2(FB(m, d) + m ∙ F ′

B(d))
)

O
(
q2 ∙ F ′

B(d)
)

PARTICLE-MAP O
(
m2(d + k + Tq) + m ∙ FQP(m, m) + q2(FB(m, d) + mk ∙ F ′

B(d))
)

O
(
mq(d + k + q) + q2k ∙ F ′

B(d)
)

PML-LC O
(
q2m + T (FQP(dq, mq2) + FQP(mq, mq))

)
O (dq)

PML-FP O
(
mdq + T (FQP(dq, mq2) + FQP(mq, mq))

)
O (dq)

FPML O (T (FNMF(q, n, k′) + FAGD(dq))) O (dq)

PML-LRS O
(
T (dq2 + d2(m + d + q))

)
O (dq)

ML-KNN O
(
m2d + qmk

)
O (md + qk)

LIFT O (q(FKM(m, d, K) + mdk + FB(m, K))) O (q(dk + F ′
B(K)))
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Fig. 5. Running time (train/test) of each learning approach on the four real-world PML data sets (for histogram illustration, the y-axis corresponds
to the value of log t + 2 with t being the running time measured in seconds).

5 CONCLUSION

Partial multi-label learning is an emerging weakly super-
vised learning framework which considers a specific setting
of inaccurate supervision, where each example is associated
with a set of candidate labels which are only partially valid.
In this paper, an extension to our earlier research [9] is
presented which tackles PML problem by eliciting credible
labels from the candidate label set. In this way, the negative
impact of false positive labels on model induction is mit-
igated by exploiting credible labeling information. Exten-
sive comparative studies against state-of-the-art approaches
show that credible label elicitation serves as an effective
strategy to deal with the labeling noise in PML examples.

The PARTICLE approach proposed in this paper corre-
sponds to one feasible implementation towards credible
label elicitation and utilization with iterative label prop-
agation and pairwise label ranking.4 In the future, it is
interesting to investigate other ways to elicit credible label-
ing information and induce predictive model with credible
labels. Furthermore, the effectiveness of disambiguating the
candidate label set of PML training example can be en-
hanced by trying to leverage auxiliary information such as
domain knowledge [39], multi-view representation [6], etc.

4. Code: http://palm.seu.edu.cn/zhangml/files/PARTICLE.rar
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[8] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” Journal of Machine Learning Research, vol. 7, no. 1, pp. 1–30,
2006.

[9] J.-P. Fang and M.-L. Zhang, “Partial multi-label learning via cred-
ible label elicitation,” in Proceedings of the 33rd AAAI Conference on
Artificial Intelligence, Honolulu, HI, 2019, pp. 3518–3525.



12
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