
1

LIFT: Multi-Label Learning with
Label-Specific Features

Min-Ling Zhang, Member, IEEE and Lei Wu

Abstract —Multi-label learning deals with the problem where each example is represented by a single instance (feature vector) while
associated with a set of class labels. Existing approaches learn from multi-label data by manipulating with identical feature set, i.e. the
very instance representation of each example is employed in the discrimination processes of all class labels. However, this popular
strategy might be suboptimal as each label is supposed to possess specific characteristics of its own. In this paper, another strategy to
learn from multi-label data is studied, where label-specific features are exploited to benefit the discrimination of different class labels.
Accordingly, an intuitive yet effective algorithm named LIFT, i.e. multi-label learning with Label specIfic FeaTures, is proposed. LIFT

firstly constructs features specific to each label by conducting clustering analysis on its positive and negative instances, and then
performs training and testing by querying the clustering results. Comprehensive experiments on a total of seventeen benchmark data
sets clearly validate the superiority of LIFT against other well-established multi-label learning algorithms as well as the effectiveness of
label-specific features.

Index Terms —machine learning, multi-label learning, label correlations, label-specific features

✦

1 INTRODUCTION

Multi-label learning aims to build classification models
for objects assigned with multiple class labels simulta-
neously [45]. Multi-label objects widely exist in vari-
ous real-world applications, such as text categorization
where a news document could cover several topics
including politics, economics, and reform [31], [39], [40],
multimedia content annotation where one image could
demonstrate several scenes including beach and building
[3], [4], [49], bioinformatics where one gene could have
a number of functionalities including metabolism, protein
synthesis, and transcription [1], [5], [13].

Formally, let X = R
d denote the d-dimensional input

space and Y = {l1, l2, · · · , lq} denote the label space with
q class labels. Then, the task of multi-label learning is to
derive a multi-label classification function h : X → 2Y

which assigns each instance x ∈ X with a set of relevant
labels h(x) ⊆ Y . In recent years, significant amount of
learning approaches have been proposed to dealing with
multi-label data [59]. One common strategy adopted by
existing approaches is that all the class labels in Y are
discriminated based on identical feature representation of
the instance, i.e. x. In other words, a family of q functions
{f1, f2, · · · , fq} are induced from the multi-label training
examples, where each function fk : X → R determines
the class membership of lk to each instance, i.e. h(x) =
{lk | fk(x) > 0, 1 ≤ k ≤ q}. Here, each function in the
family manipulates with the same feature set x.

Although the above strategy has been successful in

• Min-Ling Zhang and Lei Wu are with the School of Computer Science and
Engineering, Nanjing 210096, China, and the Key Laboratory of Computer
Network and Information Integration (Southeast University), Ministry of
Education, China. Email: {zhangml,wul}@seu.edu.cn

designing many multi-label learning algorithms [59], it
might be suboptimal as each class label is supposed
to possess specific characteristics of its own. For exam-
ple, in automatic image annotation, color-based features
would be preferred in discriminating sky and non-
sky images, texture-based features would be preferred
in discriminating desert and non-desert images, while
both color- and texture-based features might be useful in
discriminating other labels in the label space. For another
example, in text categorization, features related to word
terms such as government, national security and presidential
election would be informative in discriminating political
and non-political documents, while features related to
word terms such as GDP, tax reduction and stock markets
would be informative in discriminating economic and
non-economic documents.

Therefore, we hypothesize that if label-specific features,
i.e. the most pertinent and discriminative features for
each class label, could be used in the learning process,
a more effective approach to learning from multi-label
data could be achieved. In this paper, a new algorithm
named LIFT, i.e. multi-label learning with Label specIfic
FeaTures, is proposed. Briefly, LIFT learns from multi-
label data with two intuitive steps. Firstly, for each
class label lk ∈ Y , clustering analysis is performed on
its positive as well as negative training instances,and
then features specific to lk are constructed by querying
the clustering results. Secondly, a family of q classifiers
are induced with each of them being derived from the
generated label-specific features other than the original
ones.

To thoroughly evaluate the performance of the pro-
posed approach, comparative studies over seventeen
regular-scale and large-scale data sets have been con-
ducted. Experimental results show that: (a) LIFT achieves

2

superior performance against several state-of-the-art
multi-label learning algorithms; (b) LIFT’s label-specific
features have the potential of being a general strategy
to improve multi-label learning algorithms comprising
a number of binary classifiers; (c) LIFT’s label-specific
features are highly comparable to other feature manipu-
lation mechanisms including feature selection [17], meta-
level features [52] and shared subspace [23], [24].

The rest of this paper is organized as follows. Sec-
tion 2 briefly reviews existing approaches to multi-label
learning. Section 3 presents the proposed LIFT approach.
Section 4 reports comparative experimental results over
a wide range of multi-label data sets. Finally, Section 5
concludes and discusses several issues for future work.

2 RELATED WORK

Early researches on multi-label learning originate from
the investigation of multi-label text categorization tech-
niques [31], [40], [46]. In recent years, multi-label learn-
ing has drawn much attentions from machine learning
and related communities, which has been successfully
applied to diverse applications such as bioinformatics
[1], [5], multimedia contents analysis including image
[3], [4], [49], audio [27], [34], [42], and video [35], [41],
[48], web mining [25], [33], [36], information retrieval
[52], [54], etc. Accordingly, significant amount of algo-
rithms have been proposed to learning from multi-label
data [45], [59].

Generally speaking, the task of inducing multi-label
classification functions is challenging as the classifier’s
output space is exponential in size to the number of
possible class labels (i.e. |2Y | = 2q). To cope with
this issue, one common strategy adopted by existing
approaches is to exploit label correlations to facilitate
the learning process. Based on the order of correlations
being considered, existing approaches can be roughly
grouped into three major categories [56], namely first-
order approaches, second-order approaches and high-order
approaches.

First-order approaches tackle multi-label learning
problem by decomposing it into a number of independent
binary classification problems. Here, one function fk is
learned for each possible class label lk (1 ≤ k ≤ q) by
ignoring the co-existence of other labels lj (j 6= k). For
any multi-label training example (x, Y) (x ∈ X , Y ⊆ Y),
x will be regarded as one positive example to learn fk if
lk ∈ Y , and one negative example otherwise. Based on
those training examples, fk can be induced with popular
learning techniques such as AdaBoost [40], k-nearest
neighbor [58], kernel methods [3], decision trees [8], [9],
etc. The major advantage of first-order approaches lies in
their conceptual simplicity and high efficiency. While on
the other hand, these approaches could be less effective
due to their ignorance of label correlations.

Second-order approaches tackle multi-label learning
problem by exploiting pairwise relationships between the
labels. One way to consider pairwise relationship is to

impose the ranking criterion that for any multi-label
training example (x, Y), given its pair of relevant label
lk ∈ Y and irrelevant label lk′ /∈ Y , fk should yield
larger output than fk′ on x. The ranking criterion can be
incorporated into the objective function to be optimized
by learning models such as support vector machines [13],
neural networks [28], [57]. Another way to consider pair-
wise relationship is to exploit the co-occurrence patterns
over each of the

(

q
2

)

label pairs (lk, lj) (k 6= j). Label
co-occurrence patterns can be adopted as expectation
constraints for maximum entropy classifiers [15], [60],
or be utilized to decompose multi-label learning prob-
lem into

(

q

2

)

pairwise comparison problems [14], [29].
Second-order approaches address label correlations to
certain extent and thus are relatively effective. However,
in real-world scenarios label correlations could be rather
complex and go beyond second-order.

High-order approaches tackle multi-label learning
problem by exploring high-order relationships among
the labels. One straightforward choice is to model in-
teractions among all class labels, i.e. to consider all
other labels’ influences on each label. This choice can
be accomplished by assuming linear combination [7],
nonlinear mapping [16], [32], or shared subspace [24],
[51] over the whole label space. Another choice is to
model interactions among a subset of class labels instead
of all of them. This choice can be accomplished by
selecting the label subsets randomly [26], [38], [43] or by
determining the label subsets specified by graph struc-
ture [2], [18], [56]. Apparently, high-order approaches
have stronger correlation-modeling capabilities than the
first-order and second-order counterparts. Nevertheless,
these approaches would be more computationally de-
manding and less scalable.

As reviewed above, existing approaches have the com-
mon property of handling multi-label data by focusing
on the output space, while identical feature set inherited
from the original input space is employed in discrim-
inating all the class labels. In the next section, a new
approach named LIFT is proposed which handles multi-
label data by focusing on the input space via label-
specific features.

3 THE L IFT APPROACH

3.1 Algorithmic Details

Given a set of m multi-label training examples D =
{(xi, Yi) | 1 ≤ i ≤ m}, where xi ∈ X is a d-dimensional
feature vector and Yi ⊆ Y is the set of relevant labels
associated with xi. Then, LIFT learns from D by taking
two elementary steps, i.e. label-specific features construction
and classification models induction.

In the first step, LIFT aims to construct features which
could effectively capture the specific characteristics of
each label, so as to provide appropriate distinguishing
information to facilitate its discrimination process. To
achieve this, it is necessary to investigate the underlying
properties of the training instances with respect to each

3

class label. Specifically, for one class label lk ∈ Y , the
set of positive training instances Pk as well as the set of
negative training instances Nk correspond to:

Pk = {xi | (xi, Yi) ∈ D, lk ∈ Yi}

Nk = {xi | (xi, Yi) ∈ D, lk /∈ Yi} (1)

In other words, Pk and Nk consist of the training in-
stances with and without label lk respectively.

To gain insights on the properties of Pk and Nk, LIFT

chooses to employ clustering techniques which have been
widely used as stand-alone tools for data analysis. In this
paper, the popular k-means algorithm [22] is adopted
due to its effectiveness and simplicity. Therefore, sup-
pose Pk is partitioned into m+

k disjoint clusters whose

centers are denoted as
{

pk
1 ,p

k
2 , · · · ,p

k

m
+

k

}

. Similarly, Nk

is also partitioned into m−
k disjoint clusters whose center-

s are denoted as
{

nk
1 ,n

k
2 , · · · ,n

k

m
−

k

}

. Multi-label learning

tasks usually encounter the issue of class-imbalance [59],
where the number of positive instances for each class
label is much smaller than the number of negative ones,
i.e. |Pk| ≪ |Nk|. To mitigate potential risks brought
by the class-imbalance problem, LIFT sets equivalent
number of clusters for Pk and Nk, i.e. m+

k = m−
k = mk.

In this way, clustering information gained from positive
instances as well as negative instances are treated with
equal importance.

Specifically, the number of clusters retained for Pk and
Nk is set as follows:

mk = ⌈r ·min (|Pk|, |Nk|)⌉ (2)

Here, | · | returns the set cardinality and r ∈ [0, 1] is a
ratio parameter controlling the number of clusters being
retained.

Conceptually, cluster centers identified by the k-means
algorithm characterize the underlying structure of the
training instances with regard to lk, which can be served
as appropriate building blocks (prototypes) for the con-
struction of label-specific features. Here, a mapping φk :
X → Zk from the original d-dimensional input space
X to the 2mk-dimensional label-specific feature space is
created as follows:1

φk(x) =
[

d(x,pk
1), · · · , d(x,p

k
mk

), d(x,nk
1), · · · , d(x,n

k
mk

)
]

(3)

Here, d(·, ·) returns the distance between two instances
and is set to Euclidean metric in this paper.

In the second step, a family of q classification models
{g1, g2, · · · , gq} are induced with the generated label-
specific features. Here, for each class label lk ∈ Y , a new
binary training set Bk with m examples is created from

1. As discussed above, the distribution of positive instances and neg-
ative instances for each label is usually imbalanced with |Pk| ≪ |Nk|.
Thus, the dimensionality of Zk , i.e. 2 · ⌈r ·min(|Pk|, |Nk|)⌉, would be
of reasonable size in most cases. As an instance, for the bibtex data set
with 7395 examples and 1836 features (Table 2), the dimensionality of
the label-specific feature space is only around 23± 20 across all labels
with r = 0.1.

TABLE 1
Pseudo-code of LIFT.

Y =LIFT(D, r, L, u)

Inputs:

D : multi-label training set {(xi, Yi) | 1 ≤ i ≤ m}

(xi ∈ X , Yi ⊆ Y,X = R
d,Y = {l1, l2, · · · , lq})

r : ratio parameter as used in Eq.(2)

L : binary learner for classifier induction

u : unseen example (u ∈ X)

Outputs:

Y : predicted label set for u (Y ⊆ Y)

Process:

1. for k = 1 to q do

2. Form Pk and Nk based on D according to Eq.(1);

3. Perform k-means clustering on Pk and Nk, each

with mk clusters as defined in Eq.(2);

4. Create the mapping φk for lk according to Eq.(3);

5. endfor

6. for k = 1 to q do

7. Form Bk according to Eq.(4);

8. Induce gk by invoking L on Bk, i.e. gk ← L(Bk);

9. endfor

10. Return Y according to Eq.(5)

the original multi-label training set D and the mapping
φk as follows:

Bk = {(φk(xi), Yi(k)) | (xi, Yi) ∈ D} where

Yi(k) = +1 if lk ∈ Yi; Otherwise, Yi(k) = −1 (4)

Based on Bk, any binary learner L can be applied to
induce a classification model gk : Zk → R for lk.

Given an unseen example u ∈ X , its associated label
set is predicted as:

Y = {lk | gk(φk(u)) > 0, 1 ≤ k ≤ q} (5)

In other words, classification model fk corresponding to
each label lk can be viewed as the composition of gk and
φk, i.e. fk(u)=[gk ◦ φk](u) = gk(φk(u)).

Table 1 illustrates the complete procedure of LIFT.
Given the multi-label training examples, LIFT firstly con-
structs label-specific features for each possible class label
(steps 1 to 5); After that, a family of q binary classification
models are induced based on the constructed features
successively (steps 6 to 9); Finally, the unseen example
is fed to the learned models for prediction (step 10).

3.2 Remarks

In terms of label-specific features construction, the pro-
cess shown in Table 1 (steps 1 to 5) only represents
an intuitive implementation and is not meant to be
the best possible practice for constructing label-specific

4

TABLE 2
Characteristics of the experimental data sets.

Data set |S| dim(S) L(S) F (S) LCard(S) LDen(S) DL(S) PDL(S) Domain URL⋆

CAL500 502 68 174 numeric 26.044 0.150 502 1.000 music URL 1
language log 1460 1004 75 nominal 1.180 0.016 286 0.196 text URL 2
enron 1702 1001 53 nominal 3.378 0.064 753 0.442 text URL 2
image 2000 294 5 numeric 1.236 0.247 20 0.010 images URL 3
scene 2407 294 6 numeric 1.074 0.179 15 0.006 images URL 1
yeast 2417 103 14 numeric 4.237 0.303 198 0.082 biology URL 3
slashdot 3782 1079 22 nominal 1.181 0.054 156 0.041 text URL 2
corel5k 5000 499 374 nominal 3.522 0.009 3175 0.635 images URL 1

rcv1 (subset 1) 6000 944 101 numeric 2.880 0.029 1028 0.171 text URL 1
rcv1 (subset 2) 6000 944 101 numeric 2.634 0.026 954 0.159 text URL 1
bibtex 7395 1836 159 nominal 2.402 0.015 2856 0.386 text URL 1
corel16k (sample 1) 13766 500 153 nominal 2.859 0.019 4803 0.349 images URL 1
corel16k (sample 2) 13761 500 164 nominal 2.882 0.018 4868 0.354 images URL 1
eurlex(subject matter) 19348 5000 201 numeric 2.213 0.011 2504 0.129 text URL 1
eurlex(directory code) 19348 5000 412 numeric 1.292 0.003 1615 0.084 text URL 1
tmc2007 28596 981 22 nominal 2.158 0.098 1341 0.047 text URL 1
mediamill 43907 120 101 numeric 4.376 0.043 6555 0.149 video URL 1

⋆ URL 1: http://mulan.sourceforge.net/datasets.html
URL 2: http://meka.sourceforge.net/#datasets
URL 3: http://cse.seu.edu.cn/people/zhangml/Resources.htm#data

features. Actually, the mapping φk can be implemented
in numerous alternative ways, such as setting different
number of clusters for positive and negative instances
(i.e. m+

k 6= m−
k), utilizing more sophisticated distance for

d(·, ·) other than the Euclidean metric, or even employing
kNN rule [47] to identify the prototypes for feature
mapping other than invoking the k-means procedure,
etc.2; In terms of classification models induction, the
process shown in Table 1 (steps 6 to 9) is similar to those
of the first-order approaches as discussed in Section 2.
The major difference lies that LIFT induces the classifier
on lk with label-specific feature set φk(x) instead of the
original feature set x.

In general sense, LIFT embodies three major merits
that any practically useful algorithm is desirable to have:
1) Flexibility: Besides the label-specific features which
could be generated in various ways as discussed above,
the classification models could also be induced with
various binary learners L to meet different requirements
(e.g. L=“decision tree” for low training cost; L=“rule
learner” for good comprehensibility, etc.); 2) Simplicity:
As shown in Table 1, the LIFT algorithm is succinct
and easy to implement. Specifically, LIFT is affiliated
with only one single parameter (i.e. r) which keeps the
algorithm away from the sophisticated (and often tricky)
issue of tuning a number of parameters simultaneously;
3) Effectiveness: As to be reported in Section 4, LIFT

shows highly competitive performance against the state-
of-the-art multi-label learning methods. To convincingly
validate the effectiveness of LIFT, a total of seventeen
benchmark multi-label data sets have been employed for
experimental studies.

2. Several variants of LIFT have been studied in Subsection 4.4.2.

4 EXPERIMENTS

4.1 Experimental Configuration

4.1.1 Data Sets

For each data set S = {(xi, Yi) | 1 ≤ i ≤ p}, we use |S|,
dim(S), L(S) and F (S) to denote the number of examples,
number of features, number of possible class labels, and feature
type for S respectively. In addition, several other multi-
label properties [38], [45] are denoted as:

• LCard(S) = 1
p

∑p

i=1 |Yi| : label cardinality which mea-
sures the average number of labels per example;

• LDen(S) = LCard(S)
L(S) : label density which normalizes

LCard(S) by the number of possible labels;

• DL(S) = |{Y |(x, Y) ∈ S}| : distinct label sets which
counts the number of distinct label combinations in S;

• PDL(S) = DL(S)
|S| : proportion of distinct label sets which

normalizes DL(S) by the number of examples.

Table 2 summarizes detailed characteristics of all
multi-label data sets used in the experiments. Roughly
ordered by |S|, eight regular-scale data sets (first part,
|S| ≤ 5000) as well as nine large-scale data sets (second
part, |S| > 5000) are included. Furthermore, dimension-
ality reduction is performed on three text data sets with
huge number of features (dim(S) > 47000), including
rcv1 (subset 1), rcv1 (subset 2), and tmc2007. Specifically,
the top 2% features with highest document frequency [53]
are retained.3

3. As a routine process, stop words frequently appearing in the
document (e.g. the function words) are not included in the vocabulary.
Furthermore, existing studies show that based on document frequency,
no loss will be incurred by retaining 10% features and just a small loss
will be incurred by retaining 1% features [53], [57].

5

As shown in Table 2, the seventeen data sets cov-
er a broad range of cases with diversified multi-label
properties. To the best of our knowledge, few works on
multi-label learning has conducted experimental evalu-
ation across such broad range of data sets. Few notable
exceptions are [30] and [38] where a total of 11 and 15
data sets have been considered respectively. Therefore,
experimental studies reported in this paper are quite
comprehensive which aim to provide a solid basis for
thorough evaluation of LIFT’s effectiveness.4

4.1.2 Evaluation Metrics

Performance evaluation on multi-label learning algo-
rithms is somewhat complicated as each object is asso-
ciated with multiple class labels simultaneously, where
traditional single-label criteria such as accuracy, precision,
recall, etc. can not be directly applied [59]. Given the test
data set T = {(xi, Yi) | 1 ≤ i ≤ t} and the family
of q learned functions {f1, f2, · · · , fq}, five evaluation
metrics widely-used in multi-label learning [45], [59] are
employed in this paper:

• Hamming loss:

hloss =
1

t

t
∑

i=1

|h(xi)∆Yi|

Here, h(xi) = {lk | fk(xi) > 0, 1 ≤ k ≤ q} corresponds
to the predicted set of relevant labels for xi, and ∆
stands for the symmetric difference between two sets.
Hamming loss evaluates the fraction of instance-label
pairs which have been misclassified, i.e. a relevant label
is missed or an irrelevant label is predicted.

• One-error:

one-error =
1

t

t
∑

i=1

[[[argmax
lk∈Y

fk(xi)] /∈ Yi]]

Here, for any predicate π, [[π]] returns 1 if π holds and 0
otherwise. One-error evaluates the fraction of examples
whose top-ranked predicted label is not in the ground-
truth relevant label set.

• Coverage:

coverage =
1

q

(

1

t

t
∑

i=1

max
lk∈Yi

rank(xi, lk)− 1

)

Here, rank(xi, lk) =
∑q

j=1[[fj(xi) ≥ fk(xi)]] returns the
rank of lk when all class labels in Y are sorted in de-
scending order according to {f1(xi), f2(xi), · · · , fq(xi)}.
Coverage evaluates how many steps are needed, on av-
erage, to move down the ranked label list of an example
so as to cover all its relevant labels. Furthermore, the
coverage metric is normalized by the number of possible
class labels (i.e. q) in this paper.

4. For brevity, in the rest of this paper we use rcv1-s1, rcv1-s2,
corel16k-s1, corel16k-s2, eurlex-sm and eurlex-dc to rename data sets rcv1
(subset 1), rcv1 (subset 2), corel16k (sample 1), corel16k (sample 2),
eurlex (subject matter), and eurlex (directory code) respectively.

• Ranking loss:

rloss =
1

t

t
∑

i=1

|{(lk, lj) | fk(xi) ≤ fj(xi), (lk, lj) ∈ Yi × Ȳi}|

|Yi||Ȳi|

Here, Ȳi is the complementary set of Yi in Y . Ranking
loss evaluates the average fraction of misordered label
pairs, i.e. an irrelevant label of an example is ranked
higher than its relevant one.

• Average precision:

avgprec =
1

t

t
∑

i=1

1

|Yi|

∑

lk∈Yi

|R(xi, lk)|

rank(xi, lk)
, where

R(xi, lk) = {lj | rank(xi, lj) ≤ rank(xi, lk), lj ∈ Yi}

Average precision evaluates the average fraction of rele-
vant labels ranked higher than a particular label lk ∈ Yi.

The above metrics are example-based ones which work
by evaluating the classification models’ performance on
each test example separately, and then returning the
averaged value across the test set. Specifically, hamming
loss considers how {f1, f2, · · · , fq} perform in terms of
classification quality, while the other four metrics consid-
ers how they perform in terms of ranking quality.

In addition to example-based metrics, label-based met-
rics work by evaluating the binary classification perfor-
mance on each class label separately, and then returning
the averaged value across all class labels. In this paper,
we choose to employ the AUC criterion (area under the
ROC curve) for performance evaluation on each class
label:5

• Macro-averaging AUC:

AUCmacro =
1

q

q
∑

k=1

AUCk

=
1

q

q
∑

k=1

|(x′,x′′) | fk(x′) ≥ fk(x′′), (x′,x′′) ∈ Pk ×Nk|

|Pk||Nk|

Here, the AUC value on each class label (i.e. AUCk) is
calculated based on the relationship between AUC and
the Wilcoxon-Mann-Whitney statistic [20].

Note that for all the six multi-label metrics, their val-
ues vary between [0,1]. Furthermore, for average preci-
sion and macro-averaging AUC, the larger the values the
better the performance; While for the other four metrics,
the smaller the values the better the performance. These
metrics serve as good indicators for comprehensive com-
parative studies as they evaluate the performance of the
learned models from various aspects.

5. Here, it is possible to employ other single-label criteria such as
accuracy, precision, recall, etc. to yield the label-based metric. In this
paper, AUC criterion is used due to its capability of evaluating binary
classification performance in a more comprehensive way.

6

TABLE 3
Predictive performance of each comparing algorithm (mean±std. deviation) on the eight regular-scale data sets.

Comparing Hamming loss ↓
algorithm CAL500 language log enron image scene yeast slashdot corel5k

LIFT 0.137±0.002 0.015±0.001 0.048±0.001 0.163±0.003 0.084±0.002 0.197±0.002 0.040±0.001 0.010±0.001
BR 0.137±0.002 0.017±0.001 0.060±0.001 0.185±0.004 0.111±0.003 0.201±0.003 0.049±0.001 0.012±0.001

CLR 0.137±0.002 0.018±0.001 0.055±0.001 0.186±0.005 0.112±0.003 0.201±0.003 0.050±0.001 0.011±0.001
ECC 0.182±0.005 0.025±0.001 0.056±0.001 0.218±0.027 0.096±0.003 0.207±0.003 0.056±0.001 0.015±0.001

RAKEL 0.138±0.002 0.017±0.001 0.058±0.001 0.173±0.004 0.096±0.004 0.202±0.003 0.048±0.001 0.012±0.001

Comparing One-error ↓
algorithm CAL500 language log enron image scene yeast slashdot corel5k

LIFT 0.126±0.016 0.694±0.010 0.254±0.005 0.289±0.012 0.212±0.011 0.229±0.011 0.430±0.013 0.706±0.012
BR 0.362±0.039 0.858±0.009 0.498±0.012 0.406±0.012 0.348±0.007 0.256±0.008 0.501±0.007 0.849±0.008

CLR 0.121±0.016 0.756±0.008 0.279±0.010 0.328±0.017 0.255±0.009 0.228±0.007 0.436±0.005 0.721±0.007
ECC 0.137±0.021 0.720±0.012 0.293±0.008 0.408±0.069 0.247±0.010 0.244±0.009 0.418±0.009 0.699±0.006

RAKEL 0.286±0.039 0.838±0.014 0.412±0.016 0.312±0.010 0.247±0.009 0.251±0.008 0.453±0.005 0.819±0.010

Comparing Coverage ↓
algorithm CAL500 language log enron image scene yeast slashdot corel5k

LIFT 0.757±0.011 0.183±0.007 0.245±0.007 0.178±0.007 0.071±0.002 0.458±0.007 0.115±0.003 0.313±0.008
BR 0.972±0.001 0.468±0.010 0.595±0.010 0.280±0.008 0.158±0.004 0.641±0.005 0.238±0.005 0.898±0.003

CLR 0.751±0.008 0.155±0.010 0.229±0.006 0.190±0.007 0.083±0.003 0.462±0.005 0.109±0.003 0.267±0.004
ECC 0.806±0.016 0.309±0.014 0.349±0.014 0.229±0.034 0.084±0.002 0.464±0.005 0.130±0.004 0.562±0.007

RAKEL 0.971±0.001 0.459±0.011 0.523±0.008 0.209±0.009 0.104±0.003 0.558±0.006 0.212±0.005 0.886±0.004

Comparing Ranking loss ↓
algorithm CAL500 language log enron image scene yeast slashdot corel5k

LIFT 0.185±0.003 0.181±0.008 0.084±0.003 0.155±0.007 0.069±0.002 0.169±0.004 0.100±0.003 0.131±0.003
BR 0.518±0.008 0.421±0.008 0.308±0.007 0.285±0.009 0.171±0.005 0.315±0.005 0.216±0.005 0.655±0.004

CLR 0.181±0.002 0.121±0.007 0.079±0.002 0.171±0.008 0.083±0.004 0.172±0.004 0.094±0.003 0.114±0.002
ECC 0.204±0.008 0.367±0.011 0.133±0.004 0.224±0.043 0.085±0.003 0.186±0.003 0.131±0.005 0.292±0.003

RAKEL 0.444±0.005 0.412±0.010 0.241±0.005 0.196±0.008 0.107±0.003 0.245±0.004 0.190±0.005 0.627±0.004

Comparing Average precision ↑
algorithm CAL500 language log enron image scene yeast slashdot corel5k

LIFT 0.492±0.005 0.388±0.007 0.685±0.005 0.811±0.007 0.875±0.006 0.763±0.006 0.671±0.008 0.280±0.004
BR 0.275±0.006 0.178±0.009 0.449±0.011 0.709±0.008 0.771±0.005 0.672±0.005 0.572±0.005 0.101±0.003

CLR 0.499±0.005 0.377±0.008 0.675±0.005 0.789±0.009 0.850±0.006 0.758±0.005 0.674±0.003 0.274±0.002
ECC 0.482±0.008 0.316±0.009 0.651±0.006 0.739±0.043 0.853±0.005 0.752±0.006 0.680±0.006 0.264±0.003

RAKEL 0.353±0.006 0.197±0.013 0.539±0.006 0.788±0.006 0.843±0.005 0.720±0.005 0.617±0.004 0.122±0.004

Comparing Macro-averaging AUC ↑
algorithm CAL500 language log enron image scene yeast slashdot corel5k

LIFT 0.502±0.008 0.714±0.010 0.688±0.018 0.844±0.006 0.943±0.002 0.673±0.007 0.847±0.009 0.679±0.006
BR 0.500±0.001 0.517±0.002 0.579±0.007 0.705±0.007 0.801±0.003 0.565±0.003 0.656±0.009 0.518±0.001

CLR 0.533±0.007 0.676±0.014 0.698±0.013 0.816±0.007 0.917±0.004 0.645±0.007 0.833±0.016 0.678±0.005
ECC 0.507±0.005 0.544±0.004 0.646±0.008 0.807±0.030 0.931±0.004 0.646±0.003 0.767±0.010 0.568±0.003

RAKEL 0.547±0.007 0.520±0.002 0.596±0.007 0.803±0.005 0.884±0.004 0.614±0.003 0.687±0.011 0.521±0.001

4.2 Comparative Studies

In this subsection, we compare LIFT against several state-
of-the-art multi-label learning approaches to validate its
predictive performance:

• Binary relevance (BR) [3]: This is a first-order approach
which decomposes the multi-label learning problem into
q independent binary classification problems. Binary rel-
evance could be viewed as a plain version of LIFT where
the label-specific features φk(x) is kept to the original
features x.

• Calibrated label ranking (CLR) [14]: This is a second-
order approach which transforms the multi-label learning
problem into a label ranking problem, where pairwise
comparison [21] is employed to train

(

q

2

)

binary classi-
fiers to yield the ranking among labels which are further
bi-partitioned via an embedded calibration mechanism.

• Ensembles of classifier chains (ECC) [38]: This is a high-
order approach which transforms the multi-label learning

problem into a chain of binary classification problems,
where binary classifiers in the chain are successively
built upon the predictions of preceding ones. In addition,
ensemble learning is employed to address chain order
randomness. Here, the ensemble size is set to be 100 to
accommodate sufficient number of classifier chains.

• Random k-labelsets (RAKEL) [43]: This is a high-order ap-
proach which transforms the multi-label learning prob-
lem into an ensemble of multi-class classification prob-
lems, where each multi-class classification problem is
generated by applying the label powerset techniques
[37], [59] on a randomly chosen k-labelset in Y . Here,
the ensemble size is set to be 2q with k = 3 as suggested
in the literature.

The only parameter of LIFT, i.e. ratio r as used in
Eq.(2), is set to be 0.1 in this paper.6 Furthermore, for fair
comparison, LIBSVM (with linear kernel) [6] is employed

6. As discussed in Subsection 4.4.1, the performance of LIFT becomes
stable as r approaches 0.1.

7

TABLE 4
Predictive performance of each comparing algorithm (mean±std. deviation) on the nine large-scale data sets.

Comparing Hamming loss ↓
algorithm rcv1-s1 rcv1-s2 bibtex corel16k-s1 corel16k-s2 eurlex-sm eurlex-dc tmc2007 mediamill

LIFT 0.026±0.001 0.023±0.001 0.013±0.001 0.019±0.001 0.018±0.001 0.008±0.001 0.003±0.001 0.061±0.001 0.030±0.001
BR 0.031±0.001 0.028±0.001 0.015±0.001 0.020±0.001 0.019±0.001 0.007±0.001 0.002±0.001 0.071±0.001 0.031±0.001

CLR 0.029±0.001 0.025±0.001 0.014±0.001 0.019±0.001 0.018±0.001 0.008±0.001 0.002±0.001 0.068±0.001 0.031±0.001
ECC 0.030±0.001 0.024±0.001 0.017±0.001 0.030±0.001 0.018±0.001 0.010±0.001 0.003±0.001 0.066±0.001 0.035±0.001

RAKEL 0.031±0.001 0.027±0.001 0.015±0.001 0.020±0.001 0.019±0.001 0.007±0.001 0.002±0.001 0.068±0.001 0.031±0.001

Comparing One-error ↓
algorithm rcv1-s1 rcv1-s2 bibtex corel16k-s1 corel16k-s2 eurlex-sm eurlex-dc tmc2007 mediamill

LIFT 0.412±0.008 0.421±0.009 0.407±0.008 0.691±0.008 0.686±0.006 0.298±0.007 0.459±0.017 0.213±0.004 0.133±0.003
BR 0.602±0.011 0.522±0.009 0.559±0.004 0.920±0.006 0.920±0.005 0.460±0.015 0.601±0.008 0.339±0.003 0.200±0.003

CLR 0.421±0.005 0.418±0.004 0.401±0.004 0.702±0.005 0.697±0.005 0.345±0.010 0.495±0.008 0.242±0.003 0.157±0.002
ECC 0.427±0.008 0.427±0.008 0.404±0.003 0.706±0.006 0.712±0.005 0.346±0.007 0.537±0.013 0.232±0.003 0.150±0.005

RAKEL 0.548±0.014 0.472±0.007 0.506±0.005 0.886±0.007 0.897±0.006 0.447±0.016 0.600±0.009 0.253±0.003 0.181±0.002

Comparing Coverage ↓
algorithm rcv1-s1 rcv1-s2 bibtex corel16k-s1 corel16k-s2 eurlex-sm eurlex-dc tmc2007 mediamill

LIFT 0.120±0.002 0.123±0.005 0.149±0.006 0.326±0.003 0.315±0.004 0.096±0.003 0.093±0.003 0.129±0.001 0.184±0.001
BR 0.448±0.005 0.383±0.006 0.461±0.006 0.673±0.002 0.671±0.001 0.552±0.011 0.428±0.005 0.380±0.003 0.575±0.003

CLR 0.102±0.002 0.106±0.003 0.118±0.003 0.281±0.002 0.267±0.002 0.099±0.002 0.095±0.002 0.126±0.001 0.142±0.001
ECC 0.187±0.003 0.206±0.007 0.327±0.008 0.446±0.003 0.436±0.002 0.386±0.010 0.347±0.008 0.173±0.002 0.467±0.009

RAKEL 0.414±0.004 0.353±0.006 0.443±0.006 0.667±0.002 0.666±0.001 0.543±0.012 0.428±0.005 0.279±0.003 0.560±0.002

Comparing Ranking loss ↓
algorithm rcv1-s1 rcv1-s2 bibtex corel16k-s1 corel16k-s2 eurlex-sm eurlex-dc tmc2007 mediamill

LIFT 0.048±0.001 0.050±0.002 0.082±0.003 0.165±0.002 0.158±0.002 0.052±0.002 0.078±0.003 0.051±0.001 0.053±0.001
BR 0.279±0.004 0.251±0.004 0.303±0.004 0.422±0.001 0.424±0.001 0.396±0.011 0.395±0.005 0.216±0.003 0.230±0.001

CLR 0.040±0.001 0.042±0.001 0.065±0.002 0.146±0.001 0.139±0.001 0.057±0.002 0.082±0.002 0.050±0.001 0.038±0.001
ECC 0.079±0.002 0.096±0.004 0.192±0.003 0.233±0.002 0.229±0.001 0.263±0.007 0.333±0.008 0.074±0.001 0.179±0.008

RAKEL 0.243±0.004 0.216±0.004 0.286±0.003 0.414±0.002 0.418±0.001 0.388±0.011 0.395±0.005 0.139±0.002 0.222±0.001

Comparing Average precision ↑
algorithm rcv1-s1 rcv1-s2 bibtex corel16k-s1 corel16k-s2 eurlex-sm eurlex-dc tmc2007 mediamill

LIFT 0.605±0.003 0.617±0.006 0.542±0.008 0.311±0.003 0.306±0.003 0.661±0.006 0.579±0.013 0.814±0.002 0.714±0.002
BR 0.383±0.007 0.434±0.005 0.363±0.004 0.085±0.002 0.078±0.002 0.427±0.013 0.388±0.008 0.643±0.002 0.502±0.002

CLR 0.628±0.003 0.641±0.003 0.564±0.004 0.306±0.003 0.303±0.002 0.625±0.007 0.546±0.007 0.798±0.002 0.731±0.001
ECC 0.606±0.004 0.616±0.005 0.515±0.004 0.282±0.003 0.276±0.002 0.572±0.007 0.458±0.012 0.787±0.002 0.597±0.014

RAKEL 0.436±0.006 0.487±0.005 0.399±0.004 0.103±0.003 0.092±0.003 0.440±0.013 0.389±0.008 0.735±0.002 0.521±0.001

Comparing Macro-averaging AUC ↑
algorithm rcv1-s1 rcv1-s2 bibtex corel16k-s1 corel16k-s2 eurlex-sm eurlex-dc tmc2007 mediamill

LIFT 0.917±0.004 0.901±0.007 0.902±0.004 0.695±0.002 0.709±0.004 0.812±0.008 0.765±0.007 0.908±0.001 0.692±0.004
BR 0.609±0.003 0.599±0.004 0.624±0.002 0.516±0.001 0.519±0.001 0.589±0.005 0.562±0.003 0.724±0.002 0.510±0.001

CLR 0.898±0.005 0.884±0.003 0.908±0.002 0.723±0.003 0.739±0.003 0.888±0.003 0.895±0.005 0.902±0.001 0.831±0.002
ECC 0.777±0.005 0.763±0.005 0.763±0.003 0.627±0.004 0.633±0.002 0.624±0.004 0.582±0.004 0.880±0.002 0.524±0.001

RAKEL 0.637±0.004 0.627±0.004 0.641±0.002 0.523±0.001 0.525±0.001 0.591±0.006 0.562±0.003 0.796±0.002 0.513±0.001

as the binary learner for binary classifier induction for
LIFT, BR, CLR and ECC.7

Tables 3 and 4 report the detailed experimental results
of each comparing algorithm on the regular-scale and
large-scale data sets respectively. On each data set, 50%
examples are randomly sampled without replacement to
form the training set, and the rest 50% examples are used
to form the test set. The sampling process is repeated for
ten times and the average predictive performance across
ten training/testing trials are recorded. For each evalua-
tion metric, “↓” indicates “the smaller the better” while
“↑” indicates “the larger the better”. Furthermore, the
best performance among the four comparing algorithms
is shown in boldface.

7. As shown in Table 1, the clustering procedure (step 3) for LIFT

is accomplished by invoking the k-means algorithm. Note that better
choice other than k-means can be adopted by taking into account
peculiarities of the data set, e.g. clustering algorithm based on LSA
or PLSA [11] is a popular choice for text data sets with sparse feature
representation.

TABLE 5
Summary of the Friedman statistics FF (k = 5, N = 17)
and the critical value in terms of each evaluation metric

(k: # comparing algorithms; N : # data sets).

Evaluation metric FF critical value (α = 0.05)
Hamming loss 9.0555

2.5153

One-error 52.1503
Coverage 256.8024
Ranking loss 256.8024
Average precision 115.3636
Macro-averaging AUC 77.6981

To perform performance analysis among the com-
paring algorithms systematically, Friedman test [10] is
employed here which is widely-accepted as the favorable
statistical test for comparisons of multiple algorithms
over a number of data sets. Given k comparing algo-
rithms and N data sets, let rji denote the rank of the j-th
algorithm on the i-th data set (mean ranks are shared in

case of ties). Let Rj =
1
N

∑N

i=1 r
j
i denote the average rank

8

5 4 3 2 1

BR

LIFT

ECC
CLR

RAKEL

5 4 3 2 1

CLR

RAKEL

ECC
BR

LIFT

(a) Hamming loss (b) One-error

5 4 3 2 1

CLR

RAKEL

BR
LIFT

ECC

5 4 3 2 1

CLR

RAKEL

BR
LIFT

ECC

(c) Coverage (d) Ranking loss

RAKEL

5 4 3 2 1

CLR

ECC
BR

LIFT
RAKEL

5 4 3 2 1

CLR

ECC
BR

LIFT

(e) Average precision (f) Macro-averaging AUC

Fig. 1. Comparison of LIFT (control algorithm) against other comparing algorithms with the Bonferroni-Dunn test.
Algorithms not connected with LIFT in the CD diagram are considered to have significantly different performance from
the control algorithm (significance level α = 0.05).

for the j-th algorithm, under the null hypothesis (i.e.
all algorithms have “equal” performance), the following
Friedman statistic FF will be distributed according to the
F -distribution with k− 1 numerator degrees of freedom
and (k − 1)(N − 1) denominator degrees of freedom:

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

, where

χ2
F =

12N

k(k + 1)

k
∑

j=1

R2
j −

k(k + 1)2

4

Table 5 summarizes the Friedman statistics FF and the
corresponding critical values on each evaluation metric.
As shown in Table 5, at significance level α = 0.05,
the null hypothesis of “equal” performance among the
comparing algorithms is clearly rejected in terms of each
evaluation metric. Consequently, we need to proceed
with certain post-hoc test [10] to further analyze the rel-
ative performance among the comparing algorithms. As
we are interested in whether the proposed LIFT approach
achieves competitive performance against other state-
of-the-art approaches, the Bonferroni-Dunn test [12] is
employed to serve the above purpose by treating LIFT as
the control algorithm. Here, the difference between the
average ranks of LIFT and one comparing algorithm is
compared with the following critical difference (CD):

CD = qα

√

k(k + 1)

6N
(6)

For Bonferroni-Dunn test, we have qα = 2.498 at sig-
nificance level α = 0.05 and thus CD = 1.3547 (k = 5,
N = 17). Accordingly, the performance between LIFT

and one comparing algorithm is deemed to be signifi-
cantly different if their average ranks over all data sets
differ by at least one CD.

To visually present the relative performance of LIFT

and other comparing algorithms, Fig. 1 illustrates the
CD diagrams [10] on each evaluation metric, where the
average rank of each comparing algorithm is marked a-
long the axis (lower ranks to the right). In each subfigure,
any comparing algorithm whose average rank is within
one CD to that of LIFT is interconnected with a thick
line. Otherwise, any algorithm not connected with LIFT

is considered to have significantly different performance
between each other.

Based on the above results, the following observations
can be made:

1) As shown in Fig. 1, LIFT significantly outperforms
BR in terms of each evaluation metric. As BR can
be regarded a plain version of LIFT by keeping
the original feature vector untouched, the superior
performance of LIFT against BR clearly verifies the
effectiveness of employing label-specific features.

2) As shown in Fig. 1, LIFT achieves statistically su-
perior or at least comparable performance against
ECC and RAKEL in terms of each evaluation met-
ric. Note that ensemble learning strategy has been

9

TABLE 6
Predictive performance of LIFTed versions of CLR and ECC (mean±std. deviation) on regular-scale (upper part) and

large-scale (lower part) data sets.

LIFTed version
Hamming loss ↓

CAL500 language log enron image scene yeast slashdot corel5k
LIFTed CLR 0.138±0.002 0.016±0.001 0.047±0.001 0.182±0.020 0.085±0.002 0.198±0.002 0.049±0.001 0.010±0.001
LIFTed ECC 0.174±0.006 0.017±0.001 0.053±0.001 0.188±0.020 0.083±0.003 0.208±0.003 0.067±0.003 0.015±0.001

LIFTed version
One-error ↓

CAL500 language log enron image scene yeast slashdot corel5k
LIFTed CLR 0.115±0.015 0.716±0.011 0.218±0.013 0.315±0.057 0.214±0.012 0.241±0.010 0.442±0.013 0.648±0.012
LIFTed ECC 0.119±0.013 0.820±0.012 0.267±0.019 0.330±0.050 0.213±0.011 0.255±0.008 0.510±0.023 0.688±0.012

LIFTed version
Coverage ↓

CAL500 language log enron image scene yeast slashdot corel5k
LIFTed CLR 0.744±0.006 0.140±0.008 0.227±0.005 0.195±0.024 0.071±0.002 0.451±0.004 0.125±0.005 0.262±0.004
LIFTed ECC 0.826±0.011 0.380±0.015 0.399±0.015 0.199±0.024 0.077±0.004 0.474±0.007 0.167±0.007 0.707±0.006

LIFTed version
Ranking loss ↓

CAL500 language log enron image scene yeast slashdot corel5k
LIFTed CLR 0.179±0.003 0.154±0.008 0.078±0.002 0.188±0.030 0.070±0.003 0.169±0.003 0.137±0.005 0.117±0.002
LIFTed ECC 0.208±0.009 0.468±0.010 0.153±0.004 0.182±0.030 0.076±0.004 0.198±0.005 0.174±0.008 0.431±0.006

LIFTed version
Average precision ↑

CAL500 language log enron image scene yeast slashdot corel5k
LIFTed CLR 0.505±0.005 0.377±0.008 0.698±0.008 0.785±0.035 0.874±0.006 0.755±0.006 0.641±0.009 0.313±0.004
LIFTed ECC 0.483±0.010 0.194±0.011 0.646±0.008 0.786±0.031 0.871±0.006 0.741±0.006 0.592±0.016 0.231±0.003

LIFTed version
Macro-averaging AUC ↑

CAL500 language log enron image scene yeast slashdot corel5k
LIFTed CLR 0.555±0.008 0.685±0.018 0.706±0.014 0.824±0.019 0.933±0.002 0.635±0.007 0.791±0.016 0.697±0.005
LIFTed ECC 0.538±0.007 0.518±0.001 0.604±0.006 0.829±0.023 0.932±0.003 0.615±0.006 0.726±0.010 0.522±0.001

LIFTed version
Hamming loss ↓

rcv1-s1 rcv1-s2 bibtex corel16k-s1 corel16k-s2 eurlex-sm eurlex-dc tmc2007 mediamill
LIFTed CLR 0.026±0.001 0.023±0.001 0.013±0.001 0.019±0.001 0.017±0.001 0.008±0.001 0.003±0.001 0.060±0.001 0.031±0.001
LIFTed ECC 0.030±0.001 0.027±0.001 0.014±0.001 0.028±0.001 0.026±0.001 0.009±0.001 0.003±0.001 0.061±0.001 0.033±0.001

LIFTed version
One-error ↓

rcv1-s1 rcv1-s2 bibtex corel16k-s1 corel16k-s2 eurlex-sm eurlex-dc tmc2007 mediamill
LIFTed CLR 0.409±0.007 0.411±0.009 0.397±0.003 0.644±0.003 0.643±0.004 0.379±0.006 0.561±0.010 0.197±0.004 0.131±0.003
LIFTed ECC 0.435±0.009 0.428±0.008 0.522±0.005 0.674±0.006 0.680±0.005 0.516±0.014 0.661±0.007 0.219±0.004 0.138±0.003

LIFTed version
Coverage ↓

rcv1-s1 rcv1-s2 bibtex corel16k-s1 corel16k-s2 eurlex-sm eurlex-dc tmc2007 mediamill
LIFTed CLR 0.095±0.001 0.100±0.003 0.114±0.003 0.266±0.002 0.256±0.002 0.116±0.003 0.113±0.002 0.117±0.001 0.159±0.001
LIFTed ECC 0.266±0.004 0.298±0.010 0.465±0.005 0.605±0.004 0.608±0.004 0.534±0.010 0.433±0.006 0.227±0.003 0.464±0.004

LIFTed version
Ranking loss ↓

rcv1-s1 rcv1-s2 bibtex corel16k-s1 corel16k-s2 eurlex-sm eurlex-dc tmc2007 mediamill
LIFTed CLR 0.036±0.001 0.039±0.001 0.063±0.002 0.132±0.002 0.127±0.001 0.068±0.002 0.097±0.002 0.048±0.001 0.046±0.001
LIFTed ECC 0.138±0.004 0.163±0.007 0.316±0.004 0.336±0.003 0.341±0.004 0.411±0.008 0.425±0.007 0.108±0.002 0.177±0.002

LIFTed version
Average precision ↑

rcv1-s1 rcv1-s2 bibtex corel16k-s1 corel16k-s2 eurlex-sm eurlex-dc tmc2007 mediamill
LIFTed CLR 0.636±0.003 0.648±0.004 0.563±0.004 0.350±0.002 0.343±0.002 0.586±0.004 0.482±0.007 0.820±0.002 0.717±0.002
LIFTed ECC 0.571±0.007 0.575±0.005 0.375±0.005 0.269±0.002 0.255±0.003 0.397±0.009 0.335±0.007 0.776±0.002 0.604±0.004

LIFTed version
Macro-averaging AUC ↑

rcv1-s1 rcv1-s2 bibtex corel16k-s1 corel16k-s2 eurlex-sm eurlex-dc tmc2007 mediamill
LIFTed CLR 0.924±0.003 0.907±0.006 0.916±0.002 0.744±0.003 0.756±0.002 0.839±0.004 0.835±0.006 0.910±0.001 0.774±0.003
LIFTed ECC 0.685±0.006 0.664±0.006 0.618±0.003 0.533±0.001 0.532±0.002 0.552±0.001 0.528±0.001 0.784±0.003 0.525±0.001

incorporated into ECC and RAKEL to deal with the
inherent randomness in their learning procedure,
similar strategy may also be utilized by LIFT to
account for the randomness in its clustering pro-
cedure (Table 1, step 3).

3) Furthermore, Fig. 1 shows that LIFT achieves com-
parable performance against CLR in terms of each
evaluation metric. However, CLR needs to train

(

q
2

)

binary classifiers leading to quadratic (i.e. O(q2))
computational complexity. On the other hand, LIFT

owns preferable scalability with only linear (i.e.

O(q)) computational complexity.

4) As shown in Tables 3 and 4, across all evaluation
metrics, LIFT ranks 1st in 50.0% cases on the text
data sets (language log, enron, slashdot, rcv1-s1, rcv1-
s2, bibtex, eurlex-sm, eurlex-dc and tmc2007). On the
other hand, LIFT ranks 1st in more than 65.0%
cases on the images data sets (image, scene, corel5k,
corel16k-s1 and corel16k-s2). These results indicate
that LIFT tends to work better in application do-
mains with dense feature representation (e.g. im-
ages) than those with sparse feature representation

10

TABLE 7
Wilcoxon signed-ranks test for BR, CLR and ECC against their LIFTed versions in terms of each evaluation metric

(significance level α = 0.05; p-values shown in the brackets).

Comparing algorithm Hamming loss One-error Coverage Ranking loss Avg. precision Macro-avg. AUC
LIFTed BR versus BR win [7.7e-4] win [2.9e-4] win [2.9e-4] win [2.9e-4] win [2.9e-4] win [2.9e-4]
LIFTed CLR versus CLR win [3.2e-3] win [4.4e-2] tie [6.0e-1] tie [6.0e-1] tie [4.4e-1] tie [6.9e-1]
LIFTed ECC versus ECC tie [1.3e-1] tie [8.1e-1] loss [1.2e-3] loss [1.9e-3] loss [1.1e-2] loss [2.1e-3]

(e.g. text).

5) Furthermore, across all evaluation metrics, LIFT

ranks 1st in 60.4% cases on regular-scale data sets
(Table 3). On the other hand, LIFT ranks 1st in
46.3% cases on large-scale data sets (Table 4). These
results indicate that LIFT tends to work better with
moderate number of training examples.

To summarize, LIFT achieves highly competitive perfor-
mance against other well-established multi-label learn-
ing algorithms, and the performance advantage is more
pronounced on data sets with regular-scale and dense
feature presentation.

4.3 Generality of Label-Specific Features

As shown in the above subsection, LIFT can signifi-
cantly improve the performance of BR by employing
label-specific features in inducing each binary classifier.
Specifically, the label-specific features generation process
for LIFT (Table 1, steps 2 to 4) is applicable to binary
classification problem with positive training instances
P and negative training instances N . Therefore, label-
specific features can be applied internally to any multi-
label learning algorithm whenever its learning system
comprises a number of binary classifiers. In this subsec-
tion, the generality of label-specific features is studied by
incorporating them into two state-of-the-art multi-label
learning algorithms CLR [14] and ECC [38].

CLR works by constructing a total of
(

q
2

)

binary clas-
sifiers, each for a pair of possible class labels. Given a
label pair (lj , lk) (1 ≤ j < k ≤ q), the corresponding
positive and negative training instances are determined
as P = {xi | (xi, Yi) ∈ D, lj ∈ Yi, lk /∈ Yi} and
N = {xi | (xi, Yi) ∈ D, lj /∈ Yi, lk ∈ Yi}. By applying
the label-specific generation process of LIFT on P and
N while keeping other components of CLR unchanged,
a LIFTed version of CLR can be instantiated.

ECC works by constructing a chain of q binary clas-
sifiers, where each binary classifier in the chain takes
predictions of preceding ones as extra input features. To
induce the binary classifier in the chain for class label
lk, the corresponding positive and negative training in-
stances are determined as P = {xi | (xi, Yi) ∈ D, lk ∈ Yi}
and N = {xi | (xi, Yi) ∈ D, lk /∈ Yi}. By applying the
label-specific generation process of LIFT on P and N
while keeping other components of ECC unchanged, a
LIFTed version of ECC can be instantiated.

Table 6 reports the detailed experimental results of
LIFTed CLR and LIFTed ECC on all the experimental data

sets.8 Similar to Subsection 4.2, linear kernel LIBSVM [6]
is employed as the binary learner for LIFTed CLR and
LIFTed ECC, and the ensemble size for LIFTed ECC is set
to be 100.

For CLR (Tables 3 and 4) and its LIFTed version
(Table 6), out of the 17 benchmark data sets, LIFTed
CLR achieves better performance on 12, 13, 12, 11, 9 and
12 of them in terms of hamming loss, one-error, coverage,
ranking loss, average precision and macro-averaging AUC
respectively. Accordingly, for ECC (Tables 3 and 4) and
its LIFTed version (Table 6), LIFTed ECC only achieves
better performance on 10, 9, 3, 3, 4 and 3 data sets in
terms of each evaluation metric respectively.

Furthermore, to show whether the LIFTed version
performs significantly better than the original algorithm,
the traditional Wilcoxon signed-ranks test [10], [50] is
employed to serve this purpose. Table 7 summarizes the
statistical test results at significance level α = 0.05, where
the p-values for the corresponding tests are also shown
in the brackets.

As shown in Table 7, label-specific features do help
improve performance of BR and CLR, where the LIFTed
versions achieve statistically superior or at least compa-
rable performance in terms of each evaluation metric.
On the other hand, LIFTed ECC performs inferiorly to
ECC in terms of coverage, ranking loss, average precision
and macro-averaging AUC. One possible reason might
be that the extra features introduced by preceding clas-
sifiers in the chain are not well compatible with the
label-specific features created in the k-means clustering
procedure (Table 1, step 3). In summary, these results
indicate that LIFT’s label-specific features are capable of
providing more useful representation than the original
features, while its generality in improving multi-label
learning algorithms’ performance needs to be further
investigated.

4.4 Auxiliary Results

4.4.1 Properties of LIFT

In this subsection, the parameter sensitivity as well as
efficiency of LIFT will be further studied. To this end,
additional experiments are conducted on two regular-
scale data sets image, yeast and two large-scale data sets
rcv1-s2, corel16k-s2 (with the same experimental setup as

8. In this sense, the LIFT algorithm studied in Subsection 4.2 can be
regarded as LIFTed BR.

11

0.01 0.05 0.1 0.2 0.3 0.4 0.5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

ratio parameter r

H
a
m

m
in

g
lo

s
s

image

yeast

rcv1−s2

corel16k−s2

(a) Hamming loss

0.01 0.05 0.1 0.2 0.3 0.4 0.5
0.10

0.25

0.40

0.55

0.70

0.85

1.00

ratio parameter r

O
n
e
-e

r
r
o
r

image

yeast

rcv1−s2

corel16k−s2

(b) One-error

0.01 0.05 0.1 0.2 0.3 0.4 0.5
0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

ratio parameter r

C
o
v
e
r
a
g
e

image

yeast

rcv1−s2

corel16k−s2

(c) Coverage

0.01 0.05 0.1 0.2 0.3 0.4 0.5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

ratio parameter r

R
a
n
k
in

g
lo

s
s

image

yeast

rcv1−s2

corel16k−s2

(d) Ranking loss

0.01 0.05 0.1 0.2 0.3 0.4 0.5
0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

ratio parameter r

A
v
e
r
a
g
e

p
r
e
c
is

io
n

image

yeast

rcv1−s2

corel16k−s2

(e) Average precision

0.01 0.05 0.1 0.2 0.3 0.4 0.5
0.50

0.60

0.70

0.80

0.90

1.00

1.10

ratio parameter r

M
a
c
r
o
-a

v
e
r
a
g
in

g
A

U
C

image

yeast

rcv1−s2

corel16k−s2

(f) Macro-averaging AUC

Fig. 2. Performance of LIFT changes in terms of each evaluation metric (mean±std. deviation) as the ratio parameter
r increases from 0.01 to 0.5 on four benchmark multi-label data sets.

TABLE 8
Execution time of each comparing algorithm (mean±std. deviation) on four benchmark multi-label data sets.

Execution time Data set
Comparing algorithm

LIFT BR CLR ECC RAKEL

image 0.101±0.002 0.057±0.002 0.083±0.005 5.314±0.526 0.245±0.011
Training phase yeast 0.286±0.010 0.097±0.004 0.243±0.012 9.994±0.133 0.450±0.012
(in minutes) rcv1-s2 24.378±1.186 43.982±1.346 67.423±2.905 4952.000±122.827 246.675±27.620

corel16k-s2 130.258±3.435 195.257±8.187 377.542±14.047 27650.351±379.670 1870.362±41.279

image 2.058±0.071 0.719±0.026 0.778±0.012 22.951±0.422 1.052±0.333
Testing phase yeast 5.469±0.431 0.945±0.034 1.149±0.044 42.887±0.906 0.992±0.016
(in seconds) rcv1-s2 1174.895±114.488 22.568±0.975 1132.485±6.224 4155.692±61.199 73.078±1.720

corel16k-s2 3207.250±308.109 115.006±3.887 9280.370±236.442 11669.953±298.015 333.022±5.548

in Subsection 4.2). Due to page limit, although experi-
mental results on only four data sets are reported, similar
observations hold for the other data sets as well.

• Parameter Sensitivity: As shown in Table 1, the only
parameter needed to be specified for LIFT is r, which is
set to be 0.1 in Subsection 4.2. To study the sensitivity
of LIFT with respect to r, Fig. 2 illustrates how the
performance of LIFT changes with increasing value of
r in terms of each evaluation metric. Specifically, the
ratio parameter r successively takes values of 0.01, 0.05,
0.1, 0.2, 0.3, 0.4 and 0.5. It is obvious from Fig. 2 that
in most cases: (a) LIFT has slightly worse performance
when the value of r is small (r = 0.01 and r = 0.05);
b) The performance of LIFT becomes stable as the value
of r increases beyond 0.1. Therefore, these observations
justify LIFT’s parameter setting in Subsection 4.2.

• Execution Time: To study the runtime efficiency of LIFT,

Table 8 records the execution time (training phase as
well as testing phase) of all the comparing algorithms in-
vestigated in Subsection 4.2. Each comparing algorithm
is implemented within the MULAN multi-label learning
library [44], which is built upon the well-known WEKA

platform [19]. A Linux server equipped with Intel Xeon
CPU (48 cores @ 2.67GHz) and 250GB memory is used
for supporting the experiments. As shown in Table 8,
on regular-scale data sets (image, yeast), LIFT consumes
comparable execution time to the other algorithms. On
large-scale data sets (rcv1-s2, corel16k-s2), LIFT consumes
least execution time in training phase and is comparable
to CLR and more efficient than ECC in the testing phase.
These results validate the efficiency of LIFT in learning
from multi-label data.

12

TABLE 9
Wilcoxon signed-ranks test for LIFT against LIFT-IG, LIFT-MLF and MLLS in terms of each evaluation metric

(significance level α = 0.05; p-values shown in the brackets).

Comparing algorithm Hamming loss One-error Coverage Ranking loss Avg. precision Macro-avg. AUC
LIFT versus LIFT-IG win [1.2e-4] win [2.9e-4] win [4.2e-4] win [2.9e-4] win [2.9e-4] win [3.5e-4]

LIFT versus LIFT-MLF win [6.1e-5] win [2.9e-4] win [2.9e-4] win [2.9e-4] win [2.9e-4] win [2.9e-4]
LIFT versus MLLS win [4.9e-4] tie [2.5e-1] tie [8.8e-2] win [4.4e-2] tie [8.8e-1] win [1.0e-3]

4.4.2 Complementary Comparing Algorithms

In a broader sense, generating label-specific features (i.e.
creating the mapping function φk in Eq.(3)) could be
viewed as a form of feature manipulation mechanism to
multi-label learning. By retaining the classification models
induction process of LIFT (Table 1, steps 6 to 9), variants
of LIFT can be instantiated by replacing the label-specific
features construction process (Table 1, steps 1 to 5) with
other feature manipulation mechanisms:

• Feature selection: One straightforward feature manipu-
lation mechanism to multi-label learning is to conduct
supervised feature selection on each class label. Here, a
subset of features X (k) = R

dk are selected by keeping
those with highest information gain in discriminating lk.
Let x(k) be the feature vector derived by projecting x on
X (k). Thereafter, the mapping functions φk (1 ≤ k ≤ q)
are set by associating each selected feature subset to one
class label, i.e.:

φk(x) = x(k) (7)

The resulting variant of LIFT is termed as LIFT-IG.

•Meta-level features: Another feature manipulation mech-
anism to multi-label learning is to derive meta-level
features from the original feature space to capture re-
lationships between instances and class labels. Here,
meta-level features employed by the MLF method [52]
are used to instantiate the third variant of LIFT. MLF

transforms each instance x into a meta-level feature
vector [ψ(x, l1), ψ(x, l2), · · · , ψ(x, lq)] with q · (3r + 2)
features, where ψ(x, lk) (1 ≤ k ≤ q) is a (3r + 2)-
dimensional meta-level representation derived from the
r nearest neighbors of x in Pk. Specifically, ψ(x, lk)
corresponds to the concatenation of the L2-distance, L1-
distance, and cosine similarity distance of x with respect
to each of the r nearest neighbors, as well as the L2-
distance and cosine similarity distance of x with respect
to the centroid of Pk. Thereafter, the mapping functions
φk are set by associating each meta-level representation
ψ(x, ·) to one class label, i.e.:

φk(x) = ψ(x, lk) (8)

The resulting variant of LIFT is termed as LIFT-MLF.

In addition to the above variants of LIFT, another work
closely-related to label-specific features is also studied in
this subsection:

• Shared subspace: In shared subspace model [23], [24],
the learning system is composed of q linear classifiers

defined over an extended instance space with shared
features:

fk(x) = (wk +Θ
⊤vk)

⊤x (1 ≤ k ≤ q) (9)

Here, Θ is an r × d linear transformation matrix with
orthonormal rows (ΘΘ

⊤ = I) parameterizing the r-
dimensional shared subspace (r ≪ d). Therefore, Θ · x
can be regarded as a common part shared by all class
labels which is handled by weight vector vk specific
to each class label. The model parameters Θ, W =
[w1, · · · ,wq] and V = [v1, · · · ,vq] are optimized by
solving a regularized least squares problem, where the
corresponding algorithm is termed as MLLS.

For LIFT-IG, the number of selected features (i.e. dk) is
set to be the same as the number of features constructed
by LIFT (i.e. 2mk). For LIFT-MLF, the number of nearest
neighbors (i.e. r) are tuned within the range [10,100] as
suggested in the literature. As a result, r is set to be
10 which turns out to yield stable performance. Similar
to LIFT, LIBSVM (with linear kernel) is also employed
as the binary learner for classifier induction for LIFT-IG

and LIFT-MLF. For MLLS, the dimensionality of shared
subspace (i.e. r) is set to be q − 1 as suggested in the
literature.

Following the same experimental setup as used in
Subsection 4.2, experiments on LIFT-IG, LIFT-MLF and
MLLS are conducted on the regular-scale as well as large-
scale data sets. Furthermore, Wilcoxon signed-ranks test
[10], [50] is employed to show whether LIFT performs
significantly better than LIFT-IG, LIFT-MLF and MLLS.
Table 9 summarizes the statistical test results at sig-
nificance level α = 0.05, where the p-values for the
corresponding tests are also shown in the brackets.9

As shown Table 9, LIFT achieves statistically superior
performance than LIFT-IG and LIFT-MLF in terms of each
evaluation metric. In addition, LIFT outperforms MLLS

in terms of hamming loss, ranking loss and macro-averaging
AUC and is comparable to MLLS in terms of the other
evaluation metrics. These results clearly validate the
effectiveness of LIFT’s label-specific features generation
process based on clustering analysis.

5 CONCLUSION

There have been numerous multi-label algorithms which
learn from training examples by manipulating the label

9. Detailed experimental results on LIFT-IG, LIFT-MLF and MLLS can
be found in the online complementary file.

13

space, i.e. exploiting label correlations. In this paper, an
extension to our preliminary research [55] is presented
which learns from training examples by manipulating
the input space, i.e. exploiting features specific to each
class label. The major contribution of our work is to
utilize label-specific features for multi-label learning,
which suggests a promising direction for learning from
multi-label data.10

Experiments across the largest number of benchmark
data sets up to date show that: (a) LIFT achieves highly
competitive performance against other state-of-the-art
multi-label learning algorithms; (b) Multi-label learning
algorithms comprising binary classifiers might be im-
proved by utilizing label-specific features; (c) Exploiting
label-specific features is rather effective compared to
other feature manipulation mechanisms. In the future, it
is interesting to design other label-specific features gen-
eration strategies, incorporate label-specific features into
other multi-label learning algorithms such as ML-KNN

[58], and investigate how to consider label correlations
in generating label-specific features.

REFERENCES

[1] Z. Barutcuoglu, R. E. Schapire, and O. G. Troyanskaya, “Hier-
archical multi-label prediction of gene function,” Bioinformatics,
vol. 22, no. 7, pp. 830–836, 2006.

[2] C. Bielza, G. Li, and P. Larrañaga, “Multi-dimensional classifica-
tion with Bayesian networks,” International Journal of Approximate
Reasoning, vol. 52, no. 6, pp. 705–727, 2011.

[3] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, “Learning multi-
label scene classification,” Pattern Recognition, vol. 37, no. 9, pp.
1757–1771, 2004.

[4] R. S. Cabral, F. De la Torre, J. P. Costeira, and A. Bernardino, “Ma-
trix completion for multi-label image classification,” in Advances
in Neural Information Processing Systems 24, J. Shawe-Taylor, R. S.
Zemel, P. Bartlett, F. C. N. Pereira, and K. Q. Weinberger, Eds.
Cambridge, MA: MIT Press, 2011, pp. 190–198.

[5] N. Cesa-Bianchi, M. Re, and G. Valentini, “Synergy of multi-label
hierarchical ensembles, data fusion, and cost-sensitive methods
for gene functional inference,” Machine Learning, vol. 88, no. 1-2,
pp. 209–241, 2012.

[6] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, no. 3, p. Article 27, 2011.

[7] W. Cheng and E. Hüllermeier, “Combining instance-based learn-
ing and logistic regression for multilabel classification,” Machine
Learning, vol. 76, no. 2-3, pp. 211–225, 2009.

[8] A. Clare and R. D. King, “Knowledge discovery in multi-label
phenotype data,” in Lecture Notes in Computer Science 2168, L. De
Raedt and A. Siebes, Eds. Berlin: Springer, 2001, pp. 42–53.

[9] F. D. Comité, R. Gilleron, and M. Tommasi, “Learning multi-label
altenating decision tree from texts and data,” in Lecture Notes in
Computer Science 2734, P. Perner and A. Rosenfeld, Eds. Berlin:
Springer, 2003, pp. 35–49.

[10] J. Demšar, “Statistical comparisons of classifiers over multiple
data sets,” Journal of Machine Learning Research, vol. 7, no. Jan,
pp. 1–30, 2006.

[11] S. T. Dumais, “Latent semantic analysis,” Annual Review of Infor-
mation Science and Technology, vol. 38, no. 1, pp. 188–230, 2004.

[12] O. J. Dunn, “Multiple comparisons among means,” Journal of the
American Statistical Association, vol. 56, no. 293, pp. 52–64, 1961.

[13] A. Elisseeff and J. Weston, “A kernel method for multi-labelled
classification,” in Advances in Neural Information Processing Systems
14, T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cam-
bridge, MA: MIT Press, 2002, pp. 681–687.

10. Source code of LIFT (with usage guide) is publicly-available at
http://cse.seu.edu.cn/PersonalPage/zhangml/files/LIFT.rar.

[14] J. Fürnkranz, E. Hüllermeier, E. Loza Mencı́a, and K. Brinker,
“Multilabel classification via calibrated label ranking,” Machine
Learning, vol. 73, no. 2, pp. 133–153, 2008.

[15] N. Ghamrawi and A. McCallum, “Collective multi-label classifi-
cation,” in Proceedings of the 14th ACM International Conference on
Information and Knowledge Management, Bremen, Germany, 2005,
pp. 195–200.

[16] S. Godbole and S. Sarawagi, “Discriminative methods for multi-
labeled classification,” in Lecture Notes in Artificial Intelligence 3056,
H. Dai, R. Srikant, and C. Zhang, Eds. Berlin: Springer, 2004, pp.
22–30.

[17] K. Gold and A. Petrosino, “Using information gain to build mean-
ingful decision forests for multilabel classification,” in Proceedings
of the 9th IEEE International Conference on Development and Learning,
Ann Arbor, MI, 2010, pp. 58–63.

[18] Y. Guo and S. Gu, “Multi-label classification using conditional
dependency networks,” in Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, Barcelona, Spain, 2011, pp.
1300–1305.

[19] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The WEKA data mining software: An update,”
SIGKDD Explorations, vol. 11, no. 1, pp. 10–18, 2009.

[20] J. A. Hanley and B. J. McNeil, “The meaning and use of the area
under a receiver operating characteristic (ROC) curve,” Radiology,
vol. 143, no. 1, pp. 29–36, 1982.

[21] E. Hüllermeier, J. Fürnkranz, W. Cheng, and K. Brinker, “Label
ranking by learning pairwise preferences,” Artificial Intelligence,
vol. 172, no. 16, pp. 1897–1916, 2008.

[22] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A
review,” ACM Computing Surveys, vol. 31, no. 3, pp. 264–323, 1999.

[23] S. Ji, L. Tang, S. Yu, and J. Ye, “Extracting shared subspace for
multi-label classification,” in Proceedings of the 14th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, Las Vegas, NV,
2008, pp. 381–389.

[24] S. Ji, L. Tang, S. Yu, and J. Ye, “A shared-subspace learning
framework for multi-label classification,” ACM Transactions on
Knowledge Discovery from Data, vol. 4, no. 2, 2010, Article 8.

[25] I. Katakis, G. Tsoumakas, and I. Vlahavas, “Multilabel text classi-
fication for automated tag suggestion,” in Proceedings of the ECML
PKDD 2008 Discovery Challenge, Antwerp, Belgium, 2008, pp. 75–
83.

[26] A. Kumar, S. Vembu, A. K. Menon, and C. Elkan, “Learning and
inference in probabilisic classifier chains with beam search,” in
Lecture Notes in Computer Science 7523, P. A. Flach, T. D. Bie, and
N. Cristianini, Eds. Berlin: Springer, 2012, pp. 665–680.

[27] H.-Y. Lo, J.-C. Wang, H.-M. Wang, and S.-D. Lin, “Cost-sensitive
multi-label learning for audio tag annotation and retrieval,” IEEE
Transactions on Multimedia, vol. 13, no. 3, pp. 518–529, 2011.

[28] E. Loza Mencı́a and J. Fürnkranz, “Pairwise learning of multilabel
classifications with perceptrons,” in Proceedings of the International
Joint Conference on Neural Networks, Hong Kong, 2008, pp. 2899–
2906.

[29] G. Madjarov, D. Gjorgjevikj, and T. Delev, “Efficient two stage vot-
ing architecture for pairwise multi-label classification,” in Lecture
Notes in Computer Science 6464, J. Li, Ed. Berlin: Springer, 2011,
pp. 164–173.

[30] G. Madjarov, D. Kocev, D. Gjorgjevikj, and S. Džeroski, “An
extensive experimental comparison of methods for multi-label
learning,” Pattern Recognition, vol. 45, no. 9, pp. 3084–3104, 2012.

[31] A. McCallum, “Multi-label text classification with a mixture mod-
el trained by EM,” in Working Notes of the AAAI’99 Workshop on
Text Learning, Orlando, FL, 1999.

[32] E. Montañes, R. Senge, J. Barranquero, J. Ramón Quevedo,
J. José del Coz, and E. Hüllermeier, “Dependent binary relevance
models for multi-label classification,” Pattern Recognition, vol. 47,
no. 3, pp. 1494–1508, 2014.

[33] K. Ozonat and D. Young, “Towards a universal marketplace over
the web: Statistical multi-label classification of service provider
forms with simulated annealing,” in Proceedings of the 15th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, Paris,
France, 2009, pp. 1295–1303.

[34] F. Pachet and P. Roy, “Improving multilabel analysis of music
titles: A large-scale validation of the correction approach,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 17,
no. 2, pp. 335–343, 2009.

[35] G.-J. Qi, X.-S. Hua, Y. Rui, J. Tang, T. Mei, and H.-J. Zhang, “Cor-
relative multi-label video annotation,” in Proceedings of the 15th

14

ACM International Conference on Multimedia, Augsburg, Germany,
2007, pp. 17–26.

[36] R. Rak, L. Kurgan, and M. Reformat, “Multi-label associative
classification of medical documents from medline,” in Proceedings
of the 4th International Conference on Machine Learning and Applica-
tions, Los Angeles, CA, 2005, pp. 177–186.

[37] J. Read, B. Pfahringer, and G. Holmes, “Multi-label classification
using ensembles of pruned sets,” in Proceeding of the 8th IEEE
International Conference on Data Mining, Pisa, Italy, 2008, pp. 995–
1000.

[38] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains
for multi-label classification,” Machine Learning, vol. 85, no. 3, pp.
333–359, 2011.

[39] T. N. Rubin, A. Chambers, P. Smyth, and M. Steyvers, “Statistical
topic models for multi-label document classification,” Machine
Learning, vol. 88, no. 1-2, pp. 157–208, 2012.

[40] R. E. Schapire and Y. Singer, “Boostexter: a boosting-based system
for text categorization,” Machine Learning, vol. 39, no. 2/3, pp.
135–168, 2000.

[41] C. G. M. Snoek, M. Worring, J. C. van Gemert, J.-M. Geusebroek,
and A. W. M. Smeulders, “The challenge problem for automated
detection of 101 semantic concepts in multimedia,” in Proceedings
of the 14th Annual ACM International Conference on Multimedia,
Santa Barbara, CA, USA, 2006, pp. 421–430.

[42] K. Trohidis, G. Tsoumakas, G. Kalliris, and I. Vlahavas, “Multil-
abel classification of music into emotions,” in Proceedings of the 9th
International Conference on Music Information Retrieval, Philadephia,
PA, 2008, pp. 325–330.

[43] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Random k-labelsets
for multi-label classification,” IEEE Transactions on Knowledge and
Data Engineering, vol. 23, no. 7, pp. 1079–1089, 2011.

[44] G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and I. Vlahavas,
“MULAN: A java library for multi-label learning,” Journal of
Machine Learning Research, vol. 12, no. Jul, pp. 2411–2414, 2011.

[45] G. Tsoumakas, M.-L. Zhang, and Z.-H. Zhou, “Tutorial on
learning from multi-label data,” in European Conference on
Machine Learning and Principles and Practice of Knowledge
Discovery in Databases, Bled, Slovenia, 2009 [http://www.ecml
pkdd2009.net/wp-content/uploads/2009/08/learning-from-
multi-label-data.pdf].

[46] N. Ueda and K. Saito, “Parametric mixture models for multi-
label text,” in Advances in Neural Information Processing Systems
15, S. Becker, S. Thrun, and K. Obermayer, Eds. Cambridge,
MA: MIT Press, 2003, pp. 721–728.

[47] H. Wang, C. Ding, and H. Huang, “Multi-label classification: In-
consistency and class balanced k-nearest neighbor,” in Proceedings
of the 24th AAAI Conference on Artificial Intelligence, Atlanta, GA,
2010, pp. 1264–1266.

[48] J. Wang, Y. Zhao, X. Wu, and X.-S. Hua, “A transductive multi-
label learning approach for video concept detection,” Pattern
Recognition, vol. 44, no. 10-11, pp. 2274–2286, 2011.

[49] M. Wang, X. Zhou, and T.-S. Chua, “Automatic image annotation
via local multi-label classification,” in Proceedings of the 7th ACM
International Conference on Image and Video Retrieval, Niagara Falls,
Canada, 2008, pp. 17–26.

[50] F. Wilcoxon, “Individual comparisons by ranking methods,” Bio-
metrics, vol. 1, pp. 80–83, 1945.

[51] R. Yan, J. Tešić, and J. R. Smith, “Model-shared subspace boosting
for multi-label classification,” in Proceedings of the 13th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, San
Jose, CA, 2007, pp. 834–843.

[52] Y. Yang and S. Gopal, “Multilabel classification with meta-level
features in a learning-to-rank framework,” Machine Learning,
vol. 88, no. 1-2, pp. 47–68, 2012.

[53] Y. Yang and J. O. Pedersen, “A comparative study on feature selec-
tion in text categorization,” in Proceedings of the 14th International
Conference on Machine Learning, Nashville, TN, 1997, pp. 412–420.

[54] K. Yu, S. Yu, and V. Tresp, “Multi-label informed latent semantic
indexing,” in Proceedings of the 28th Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval,
Salvador, Brazil, 2005, pp. 258–265.

[55] M.-L. Zhang, “LIFT: Multi-label learning with label-specific fea-
tures,” in Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, Barcelona, Spain, 2011, pp. 1609–1614.

[56] M.-L. Zhang and K. Zhang, “Multi-label learning by exploiting
label dependency,” in Proceedings of the 16th ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data Mining,
Washington D. C., 2010, pp. 999–1007.

[57] M.-L. Zhang and Z.-H. Zhou, “Multilabel neural networks with
applications to functional genomics and text categorization,” IEEE
Transactions on Knowledge and Data Engineering, vol. 18, no. 10, pp.
1338–1351, 2006.

[58] M.-L. Zhang and Z.-H. Zhou, “ML-kNN: A lazy learning ap-
proach to multi-label learning,” Pattern Recognition, vol. 40, no. 7,
pp. 2038–2048, 2007.

[59] M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning
algorithms,” IEEE Transactions on Knowledge and Data Engineering,
in press.

[60] S. Zhu, X. Ji, W. Xu, and Y. Gong, “Multi-labelled classification
using maximum entropy method,” in Proceedings of the 28th Annu-
al International ACM SIGIR Conference on Research and Development
in Information Retrieval, Salvador, Brazil, 2005, pp. 274–281.

