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Abstract—Multi-dimensional classification (MDC) assumeshet-
erogeneousclass spaces for each example, where class variables
from different class spaces characterize semantics of the example
along different dimensions. The heterogeneity of class spaces
leads to incomparability of the modeling outputs from different
class spaces which is the major difficulty in designing MDC
approaches. In this paper, we make a first attempt towards
adapting maximum margin techniques for MDC problem and
a novel approach named M3M DC is proposed. Specifically,
M3M DC maximizes the margins between each pair of class labels
w.r.t. individual class variable while models relationship across
class variables (as well as class labels within individual class
variable) via covariance regularization. The resulting formulation
admits convex objective function with nonlinear constraints,
which can be solved via alternating optimization with quadratic
programming (QP) or closed-form solution in either alternating
step. Comparative studies on the most comprehensive real-world
MDC data sets to date are conducted and it is shown that M3M DC
achieves highly competitive performance against state-of-the-art
MDC approaches.

Index Terms—machine learning, multi-dimensional classifica-
tion, maximum margin, class dependencies.

I. I NTRODUCTION

I N traditional supervised learning, one popular learning task
is to train classification models supervised by one class

variable, e.g., multi-class classification. However, in many
real-world applications, the simplifying assumption that each
example is associated with only one class variable does not fit
well. For example, news websites usually need to simultane-
ously classify a news document from thetopic dimension
(with possible classesSci&Tech, politics, social, sports, etc.),
from the mood dimension (with possible classesgood news,
neutral news, bad news), and from thezone dimension
(with possible classesdomestic, intra-/inter-continental, etc.).
Actually, the need to characterize the semantics of objects from
different dimensions arises in diverse application scenarios
such as text classification [41], [40], computer vision [13],
[14], [48], bioinformatics [38], [7], [6], [32], [16], software
testing [39], resource allocation [34] etc., where the result-
ing learning problem can be naturally formalized under the
multi-dimensional classification (MDC) framework [35], [30],
[23]. Specifically, each MDC example is represented by a
single instance while associated with multiple class variables
simultaneously. Here, each class variable corresponds to one
heterogeneous class space which characterizes the object’s
semantics from one specific dimension.
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Formally speaking, letX = Rd denote the input (feature)
space andY = C1 × C2 × ∙ ∙ ∙ × Cq denote the output
space which corresponds to the Cartesian product ofq hetero-
geneous class spaces. Here, each heterogeneous class space
Cj (1 ≤ j ≤ q) consists of Kj possible class labels,
i.e., Cj = {cj

1, c
j
2, . . . , c

j
Kj

}. Given the MDC training set
D = {(xi, yi) | 1 ≤ i ≤ N}, for each MDC example
(xi, yi), xi = [xi1, xi2, . . . , xid]> ∈ X is a d-dimensional
feature vector andyi = [yi1, yi2, . . . , yiq]> ∈ Y is the class
vector associated withxi where each componentyij ∈ Cj

corresponds to the relevant class label forxi in Cj . The
learning task of multi-dimensional classification is to train a
predictive modelf : X 7→ Y over D which can predict a
proper class vectorf(x∗) ∈ Y for unseen instancex∗.

To learn predictive models from MDC training examples,
one intuitive strategy is to train a multi-class classification
model for each class space independently. However, depen-
dencies among class spaces are completely ignored by the
independent modeling which would impact the generalization
performance of resulting MDC predictive model. Another
intuitive strategy is to treat every distinct combination of class
variables appearing in the training set as a new class, and
then induce a single multi-class classification model in the
transformed class space. However, the resulting multi-class
classification model is difficult to be learned due to the huge
number of possible classes in the transformed class space and
is incapable of predicting combinations of class variables ab-
sent in the training set. Generally, modeling class dependencies
in appropriate ways is one of the key challenges in designing
MDC approaches. Therefore, existing MDC approaches aim to
model class dependencies in different ways such as specifying
chaining order over class spaces [51], [36], assuming directed
acyclic graph (DAG) structure over class spaces [2], [4], [1],
and grouping class spaces into super-classes [35].

Maximum margin is one of the most popular and powerful
machine learning techniques which has been successfully
adapted to tackle various learning tasks [45], [20], [49], [19],
[8]. As per the intrinsic characteristics of MDC problem,
modeling outputs from the heterogeneous class spaces are not
directly comparable. On the other hand, dependencies among
class spaces are expected to be exploited to help improve the
generalization performance of classification model. In light of
the above modeling challenges, a first attempt towards adapt-
ing maximum margin techniques for solving MDC problem is
investigated in this paper. Accordingly, a novel MDC approach
named M3MDC, i.e.,MaxiMum Margin for Multi-Dimensional
Classification, is proposed. To account for the incompati-
bility of modeling outputs from heterogeneous class spaces,
M3MDC chooses to maximize the classification margin on
individual class spaces via one-vs-one (OvO) decomposition.
Furthermore, dependencies among class spaces are modeled by
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M3MDC via covariance regularization. The derived M3MDC

formulation admits convex objective function with nonlinear
constraints, which can be solved via alternating optimization
with QP or closed-form solution in either alternating step.
Comparative studies are conducted over a total of fifteen real-
world MDC data sets, which serve as the most comprehensive
basis to date for MDC performance evaluation [2], [35], [30],
[23], [44]. Experimental results show that M3MDC achieves
highly competitive performance against state-of-the-art MDC
approaches.

We organize the remainder of this paper as follows. Sec-
tion II presents thetechnical detailsof M3MDC. Section III
briefly discussesrelated workson MDC. Section IV reports
the experimental resultsof comparative studies. Finally, we
concludethis paper in Section V. This paper is an extension
of our preliminary work [22]. The main differences include:
(1) The introduction and related work parts have been updated
to reflect state-of-the-art research progress on MDC; (2) The
derivation of the proposed approach has been revised to
improve readability; (3) A kernelized version of the original
approach has been proposed; (4) The comparative studies
have been extended by adding five newly-collected bench-
mark datasets, one recently proposed compared approach [30],
analyses on the effects of initialization, and enriching the
correlation analyses.

II. T HE MAXIMUM MARGIN MDC APPROACH

To maximize the margin between a pair of modeling out-
puts, the essential prerequisite is that these modeling outputs
are comparable to each other. However, due to intrinsic char-
acteristics of MDC that class spaces areheterogeneous, the
modeling outputs of class labels from different class spaces are
not directly comparable. In this section we present technical
details of M3MDC, which considers the margins between each
pair of class labels on individual class spaces while models
class dependencies via covariance regularization.

To obtain margins between each pair of class labels,
M3MDC tackles the multi-class classification problem w.r.t.
each class space via OvO decomposition. Across all class
spaces, there will be a total ofm =

∑q
j=1

(
Kj

2

)
pairs of

class labels under the OvO decomposition. Without loss of
generality, for theith pair of class labelsli+ and li−, let
Di = {(xi

j , y
i
j) | 1 ≤ j ≤ ni} denote the corresponding

OvO decomposition training set. Here, we havexi
j ∈ X ,

yi
j = +1 (or −1) when li+ (or li−) is relevant, andni is the

number of examples in MDC training setD for which either
li+ or li− is relevant. Assuming that the examples inDi can
be separated perfectly by hyperplane(wi, bi), we can define
the margin of(wi, bi) as2/‖wi‖ by appropriately normalizing
(wi, bi) [10], where‖∙‖ returns the norm of vectors. Then,
the maximum margin hyperplane forDi can be obtained
by maximizing 2/‖wi‖ or equivalently minimizing‖wi‖

2
/2.

Considering the more general case where no hyperplane is
capable of correctly classifying all training examples inDi,
we can model the empirical risk by introducing slack variables
ξi = [ξi

1, . . . , ξ
i
ni

]. Considering all pairs of class labels, let
W = [w1, . . . , wm] ∈ Rd×m, b = (b1, . . . , bm)> and

ξ = [ξ1, ξ2, . . . , ξm]> ∈ R
∑m

i=1 ni×1, the maximum margin
formulation for MDC can be given as follows:

min
W,b,ξ

m∑

i=1

ni∑

j=1

ξi
j +

λ1

2
tr(WW>) (1)

s.t. yi
j(〈wi, x

i
j〉 + bi) ≥ 1 − ξi

j ,

ξi
j ≥ 0, i = 1, . . . ,m, j = 1, . . . , ni

whereλ1 is the trade-off parameter for model complexity term,
〈∙, ∙〉 computes two vectors’ inner product, andtr(∙) returns the
trace of a square matrix.

Obviously, the above formulation only deals with each
pair of class labels independently while ignores potential
dependencies among class spaces. Similar to the covariance
regularization strategy for dependency modeling [56], [27],
[25], [31], we introduce the column covariance matrix of
W (i.e. C ∈ Rm×m) to model the relationships among all
wis in W. Thereafter, the optimization problem in Eq.(1) is
transformed to:

min
W,b,ξ,C

m∑

i=1

ni∑

j=1

ξi
j +

λ1

2
tr(WW>) (2)

+
λ2

2
tr(WC−1W>)

s.t. C � 0, tr(C) ≤ 1,

yi
j(〈wi, x

i
j〉 + bi) > 1 − ξi

j ,

ξi
j ≥ 0, i = 1, . . . ,m, j = 1, . . . , ni

where λ2 is the trade-off parameter for covariance regu-
larization term. In addition,C � 0 ensures that the co-
variance matrix is positive semi-definite andtr(C) ≤ 1
further penalizes its complexity. Here, minimizing the covari-
ance regularization with above constraints can be regarded
as maximum a posteriori (logarithm) estimation ofW with
assuming the matrix-variate normal distribution1 over it, i.e.,
W ∼ MN d×m(W | 0d×m, Id ⊗C), where0d×m is ad×m
zero matrix andId is ad×d identity matrix which means the
features are assumed uncorrelated with each other.

For the objective function in Eq.(2), it is obvious that the
first two terms are convex w.r.t.W andb. For the third term,
it can be reformulated as the summation ofd items, i.e.,
tr(WC−1W>) =

∑d
i=1 Wi:C−1W>

i: , whereWi: denotes
theith row ofW. Note thatWi:C−1W>

i: is convex w.r.t.Wi:

andC whenC is positive semi-definite, and the convexity can
be preserved after summation operation which results in the
convexity of the third term w.r.t.W and C [56]. Therefore,
the objective function in Eq.(2) is convex w.r.t.W, b andC,
respectively. In this paper, an alternating procedure is derived
to accomplish the optimization task [54]. Specifically, the two
sets of parameters{W, b} and{C} are optimized alternately
until convergence.

1Let MN d×m(X | M,U ⊗ V) be a matrix-variate normal distribution
with meanM ∈ Rd×m, row covariance matrixU ∈ Rd×d and column co-
variance matrixV ∈ Rm×m. The corresponding probability density function

is defined asp(X | M,U ⊗ V) =
exp(− 1

2 tr(U−1(X−M)V−1(X−M)>))

(2π)md/2|U|m/2|V|d/2 .
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Optimizing w.r.t. W and b when C is fixed. When we fix
C, the optimization problem in Eq.(2) can be reformulated as
follows:

min
W,b,ξ

m∑

i=1

ni∑

j=1

ξi
j +

λ1

2
tr(WW>) (3)

+
λ2

2
tr(WC−1W>)

s.t. yi
j(〈wi, x

i
j〉 + bi) > 1 − ξi

j ,

ξi
j ≥ 0, i = 1, . . . ,m, j = 1, . . . , ni

For the above optimization problem, it is easy to obtain its
Lagrange function as follows:

L(W,b, ξ, α, β) =
m∑

i=1

ni∑

j=1

ξi
j +

λ1

2
tr(WW>) (4)

+
λ2

2
tr(WC−1W>)

−
m∑

i=1

ni∑

j=1

αi
j [y

i
j(〈wi, x

i
j〉 + bi) − 1 + ξi

j ]

−
m∑

i=1

ni∑

j=1

βi
jξ

i
j

whereα = (α1
1, . . . , α

1
n1

, . . . , αm
1 , . . . , αm

nm
)> ∈ R

∑m
j=1 nj×1,

β = (β1
1 , . . . , β1

n1
, . . . , βm

1 , . . . , βm
nm

)> ∈ R
∑m

j=1 nj×1, and
αi

j , β
i
j ≥ 0. Then, by setting the gradients ofL w.r.t. W, bi

andξi
j to 0, the following conditions can be obtained respec-

tively [55]:

∂L
∂W

= 0 ⇒

W =
m∑

i=1

ni∑

j=1

αi
jy

i
jx

i
je

>
i C(λ1C + λ2Im)−1 (5)

∂L
∂bi

= 0 ⇒
ni∑

j=1

αi
jy

i
j = 0, (1 ≤ i ≤ m) (6)

∂L
∂ξi

j

= 0 ⇒ αi
j + βi

j = 1 (7)

whereei is the ith column of identity matrixIm. Plugging
Eq.(6) and Eq.(7) into Eq.(4), the terms related tobi and ξi

j

will be eliminated respectively, then Eq.(4) can be simplified
as follows:

L(W, α) =
1
2
tr(W(λ1Im + λ2C

−1)W>) (8)

−
m∑

i=1

ni∑

j=1

αi
jy

i
j〈wi, x

i
j〉 +

m∑

i=1

ni∑

j=1

αi
j

Let M = (λ1C + λ2Im)−>C> and Mi1i2 = e>
i1
Mei2 .

Plugging Eq.(5) into the first term (denoted byL1) of Eq.(8),
we have:

L1 =
1
2

m∑

i1=1

ni1∑

j1=1

m∑

i2=1

ni2∑

j2=1

αi1
j1

αi2
j2

yi1
j1

yi2
j2

Mi1i2〈x
i1
j1

, xi2
j2
〉

Plugging Eq.(5) into the second term (denoted byL2) of Eq.(8)
and note thatwi = Wei, we have:

L2 = −
m∑

i1=1

ni1∑

j1=1

m∑

i2=1

ni2∑

j2=1

αi1
j1

αi2
j2

yi1
j1

yi2
j2

Mi1i2〈x
i1
j1

, xi2
j2
〉

Plugging L1 and L2 into Eq.(8), we can obtain the dual
function, i.e.,Γ(α) = minW ,b L(W,b), as follows:

Γ(α) = −
1

2

m∑

i1=1

ni1∑

j1=1

m∑

i2=1

ni2∑

j2=1

αi1
j1

αi2
j2

yi1
j1

yi2
j2

Mi1i2〈x
i1
j1

,xi2
j2
〉

+
m∑

i=1

ni∑

j=1

αi
j (9)

Then, the dual problemmaxα Γ(α) can be equivalently
formulated asminα − Γ(α):

min
α

1
2

m∑

i1=1

ni1∑

j1=1

m∑

i2=1

ni2∑

j2=1

αi1
j1

αi2
j2

yi1
j1

yi2
j2

Mi1i2〈x
i1
j1

, xi2
j2
〉

−
m∑

i=1

ni∑

j=1

αi
j (10)

s.t.
ni∑

j=1

αi
jy

i
j = 0 (1 ≤ i ≤ m), 0 ≤ αi

j ≤ 1

Obviously, the above problem is a QP problem withm equality
constraints which can be solved by any off-the-shelf QP solver.
However, the number of variablesαi

j is usually too large
making this QP problem difficult to be solved efficiently.
Specifically, the number of variables equals the total number
of training examples inm OvO binary training sets, i.e.,∑m

j=1 nj = N ∙
∑q

j=1(Kj − 1). Here, we further decompose
the dual QP problem intom sub-QP problems each with one
equality constraint as follows:

min
αi

1
2

ni∑

j1=1

ni∑

j2=1

αi
j1α

i
j2y

i
j1y

i
j2Mii〈x

i
j1 , x

i
j2〉

−
ni∑

j=1

(1 − Si
j)α

i
j (11)

s.t.
ni∑

j=1

αi
jy

i
j = 0, 0 ≤ αi

j ≤ 1

where1 ≤ i ≤ m, αi = (αi
1, . . . , α

i
ni

)> ∈ Rni×1, and

Si
j = yi

j

∑

i1 6=i

1
2
(Mii1 + Mi1i)

ni1∑

j1=1

αi1
j1

yi1
j1
〈xi

j , x
i1
j1
〉 (12)

To solve the optimization problem in Eq.(10), we can initialize
α = 0 and then repeatedly solve them sub-QP problems
in Eq. (11) until all αi

js meet Karush-Kuhn-Tucker (KKT)
conditions.

To validate KKT conditions, the decision value of eachxi
j ,

i.e., 〈wi, x
i
j〉+bi, needs to be obtained. For〈wi, x

i
j〉, its value

can be obtained by pluggingα into Eq.(5), i.e.,

〈wi, x
i
j〉 =

m∑

i1=1

ni1∑

j1=1

αi1
j1

yi1
j1

Mii1〈x
i1
j1

, xi
j〉 (13)
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For bi, however, the situation is somewhat complicated. When
there areαi

js in (0, 1), we haveyi
j(〈wi, x

i
j〉 + bi) = 1 such

that bi = yi
j − 〈wi, x

i
j〉. When there aren’tαi

js in (0, 1), i.e.,
eitherαi

j = 0 or αi
j = 1, the value ofbi can be obtained by

resorting to a number of inequalities. Specifically, in the case
that αi

j = 0, yi
j(〈wi, x

i
j〉 + bi) ≥ 1 should hold, while in the

case thatαi
j = 1, yi

j(〈wi, x
i
j〉 + bi) ≤ 1 should hold. Each

of the inequalities can give rise to one upper or lower bound
of bi. Let bup

i andblow
i denote the set of all these upper and

lower bounds respectively, the value ofbi can be determined
by bi = 1

2 (max(blow
i ) + min(bup

i )), where max(blow
i ) and

min(bup
i ) return the maximum ofblow

i and minimum ofbup
i

respectively.

Optimizing w.r.t. C when W and b are fixed. When we
fix W and b, the optimization problem in Eq.(2) can be
reformulated as follows:

min
C

tr(WC−1W>), s.t. C � 0, tr(C) ≤ 1 (14)

As per the propertytr(XYZ) = tr(YZX) and the constraint
tr(C) ≤ 1, we can lower-bound the objective in Eq.(14) as
follows:

tr(WC−1W>) = tr(C−1W>W) (15)

≥ tr(C−1W>W)tr(C)

= tr(C− 1
2 A

1
2 A

1
2 C− 1

2 )tr(C
1
2 C

1
2 )

≥ (tr(C− 1
2 A

1
2 C

1
2 ))2 = (tr(A

1
2 ))2

whereA = W>W. The last inequality in Eq.(15) holds based
on the fact that bothA andC are symmetric matrices as well
as the following Lemma:

Lemma 1. Given two matricesU,V ∈ R`1×`2 , then the
following inequality holds:

tr(U>U)tr(V>V) ≥
(
tr(U>V)

)2

The left-hand side of the inequality can reach its minimum in
the right-hand side whenU = μ ∙V whereμ is one constant.

Proof. According to the property of matrix,

tr(U>U) =
`2∑

i=1

`1∑

j=1

U2
ij = 〈vecU, vecU〉 = ‖vecU‖2

tr(V>V) =
`2∑

i=1

`1∑

j=1

V 2
ij = 〈vecV, vecV〉 = ‖vecV‖2

tr(U>V) =
`2∑

i=1

`1∑

j=1

UijVij = 〈vecU, vecV〉

Here, vecU, vecV denote the vectorized form ofU,V.
As per Cauchy-Schwarz inequality‖vecU‖ ∙ ‖vecV‖ ≥
|〈vecU, vecV〉|, and let’s square both sides of this inequality,
then we have‖vecU‖2 ∙ ‖vecV‖2 ≥ (〈vecU, vecV〉)2 which
is actually the result to be proved. The equality relationship
holds only whenvecU = μ ∙ vecV, i.e., U = μ ∙ V.

According to Eq.(15),tr(WC−1W>) can reach its mini-
mum value(tr(A

1
2 ))2 when bothtr(C) = 1 andA

1
2 C− 1

2 =

TABLE I
THE PSEUDO-CODE OFM3MDC.

Inputs:
D: MDC training set{(xi, yi) | 1 ≤ i ≤ N}
λ1, λ2: trade-off parameters
x∗: unseen instance

Outputs:
y∗: predicted class vector forx∗

Process:

1: Transform the MDC training setD into a total ofm =∑q
j=1

(
Kj

2

)
binary training sets via OvO decomposition

w.r.t. each class space;
2: Initialize C = 1

mIm andα = 0;
3: repeat
4: while not all α meet KKT conditionsdo
5: for i = 1 to m do
6: Solve the sub-QP problem in Eq.(11);
7: end for
8: end while
9: CalculateC according to Eq.(16);

10: until convergence
11: Obtain binary votingsyb

∗ for x∗ according to Eq.(18);
12: Returny∗ according toEq.(19).

μC
1
2 hold. Therefore, it is not difficult to have the following

closed-form solution forC:

C =
A

1
2

tr(A
1
2 )

(16)

Here, based on Eq.(5), the matrixA can be expressed in terms
of the inner product of instances:

A = W>W (17)

=
m∑

i1=1

ni1∑

j1=1

m∑

i2=1

ni2∑

j2=1

αi1
j1

αi2
j2

yi1
j1

yi2
j2

M:i1M
>
:i2〈x

i1
j1

, xi2
j2
〉

whereM:i1 (M:i2 ) denotes thei1th (i2th) column ofM.

As the above two alternating optimizing steps converge, we
can obtain the predictive model, i.e., the optimal values ofW
(or Lagrange multiplier vectorα) andb. Then, the class vector
for unseen instancex∗ can be predicted. Specifically, a binary
voting vectoryb

∗ with m elements is returned as follows:

yb
∗ = sign(W>x∗ + b) (18)

= sign(
m∑

i=1

ni∑

j=1

αi
jy

i
jMei〈x

i
j , x∗〉 + b)

where sign(∙) represents the (element-wise) signed function.
Conceptually, for theith pair of class labelsli+ and li−, one
vote is recorded forli+ (li−) if the ith elementyb

∗ takes the
value of +1 (−1). Here, the

∑j−1
a=1

(
Ka

2

)
+ 1 ∼

∑j
a=1

(
Ka

2

)

binary votes inyb
∗ correspond to thejth class space. Corre-

spondingly, among the
(
Kj

2

)
binary votes w.r.t. thejth class

spaceCj = {cj
1, c

j
2, . . . , c

j
Kj

}, let sj
r denote the number of
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recorded votes forcj
r (1 ≤ r ≤ Kj). Then, the multi-

dimensional predictiony∗ = [y∗1, . . . , y∗q]> ∈ Y for x∗

is determined by the OvO decoding rule (ties are broken at
random):

y∗j = cj
ṙ, where ṙ = arg max

1≤r≤Kj

sj
r (1 ≤ j ≤ q) (19)

In summary, the complete procedure of the proposed
M3MDC approach is presented in Table I. Specifically, we
firstly decompose the original MDC problem via OvO rule
w.r.t. each class space (Step 1), based on which the covariance
regularization is introduced for dependency modeling among
class spaces. Then, an alternating procedure is invoked to solve
the resulting optimization problem (Steps 2-10). Finally, the
multi-dimensional prediction on unseen instance is obtained
by querying the modeling outputs with OvO decoding rule
(Steps 11-12).

Computational complexity. The QP problem in Eq.(11) with
r variables can be solved withO(r3) time complexity [33],
and the square root for one matrix in Eq.(16) withs × s
elements can be obtained withO(s3) time complexity [3].
Then, the proposed M3MDC approach has computational
complexity ofO(T1∙T2∙m∙N3+T1∙m3), whereT1 corresponds
to the number of alternating rounds (i.e., Steps 3-10) andT2

corresponds to the number of iterations in solvingm sub-QP
problems (i.e., Steps 4-8). Note thatO(N3) is the worse-case
complexity of solving each Eq.(11) because the number of
examples belonging to each OvO decomposition problem is
less than the number of training examples inD, i.e., N .

Kernel extension.The above derivations for M3MDC aim to
learn linear model in thed-dimensional original feature space.
When the data distribution is complicated, it might be better to
learn nonlinear model in ad′-dimensional transformed feature
space with the help of mapping functionφ : Rd → Rd′

. Then,
we can reformulate the linear maximum margin MDC model
in Eq.(2) as the following nonlinear version:

min
W,b,ξ,C

m∑

i=1

ni∑

j=1

ξi
j +

λ1

2
tr(WW>) (20)

+
λ2

2
tr(WC−1W>)

s.t. C � 0, tr(C) ≤ 1,

yi
j(〈wi, φ(xi

j)〉 + bi) > 1 − ξi
j ,

ξi
j ≥ 0, i = 1, . . . ,m, j = 1, . . . , ni

Here, note thatW = [w1, . . . , wm] ∈ Rd′×m. This problem
can also be solved by alternately optimizing the two sets of
parameters{W, b} and{C}. When we fixC, the optimization
problem in Eq.(20) can be reformulated as follows:

min
W,b,ξ

m∑

i=1

ni∑

j=1

ξi
j +

λ1

2
tr(WW>) (21)

+
λ2

2
tr(WC−1W>)

s.t. yi
j(〈wi, φ(xi

j)〉 + bi) > 1 − ξi
j ,

ξi
j ≥ 0, i = 1, . . . ,m, j = 1, . . . , ni

The dual problem of Eq.(21) is as follows:

min
α

1
2

m∑

i1=1

ni1∑

j1=1

m∑

i2=1

ni2∑

j2=1

αi1
j1

αi2
j2

yi1
j1

yi2
j2

Mi1i2〈φ(xi1
j1

), φ(xi2
j2

)〉

−
m∑

i=1

ni∑

j=1

αi
j

s.t.
ni∑

j=1

αi
jy

i
j = 0 (1 ≤ i ≤ m), 0 ≤ αi

j ≤ 1

The computation of inner product ind′-dimensional space
would be intractable ifd′ is large (or even approaching
infinity). To avoid such operation, kernel trick can be utilized
where a kernel function can be defined as follows:

κ(xi1
j1

, xi2
j2

) = 〈φ(xi1
j1

), φ(xi2
j2

)〉

Then, the dual problem of Eq.(21) can be rewritten as follows:

min
α

1
2

m∑

i1=1

ni1∑

j1=1

m∑

i2=1

ni2∑

j2=1

αi1
j1

αi2
j2

yi1
j1

yi2
j2

Mi1i2κ(xi1
j1

, xi2
j2

)

−
m∑

i=1

ni∑

j=1

αi
j (22)

s.t.
ni∑

j=1

αi
jy

i
j = 0 (1 ≤ i ≤ m), 0 ≤ αi

j ≤ 1

which can be solved similarly to the problem in Eq.(10). When
we fix W andb, the optimization problem in Eq.(20) can also
be reformulated as Eq.(14). For its closed-form solution, the
matrix A in Eq.(16) can be obtained with the help of kernel
function κ(∙, ∙) as follows:

A =
m∑

i1=1

ni1∑

j1=1

m∑

i2=1

ni2∑

j2=1

αi1
j1

αi2
j2

yi1
j1

yi2
j2

M:i1M
>
:i2κ(xi1

j1
, xi2

j2
)

When the optimal values ofW (actually the Lagrange mul-
tiplier vectorα) andb are obtained, the binary voting vector
yb
∗ with m elements can be obtained similarly to Eq.(18) as

follows:

yb
∗ = sign(

m∑

i=1

ni∑

j=1

αi
jy

i
jMeiκ(xi

j , x∗) + b) (23)

Based onyb
∗, we can obtain the final prediction for unseen

instance via OvO decoding according to Eq.(19).

III. R ELATED WORK

In this section, we briefly discuss learning settings related
to MDC as well as existing approaches in learning from MDC
examples.

On one hand, MDC can be regarded as a specific instantia-
tion of multi-output learning [46], where each output in MDC
corresponds to a discrete class variable taking values among
a number of possible class labels. On the other hand, the
traditional multi-class classification (MCC) can be regarded
as a degenerated version of MDC by assuming only one class
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space.2 If ordinal relationship exists among the class labels
of each class space, the MDC problem can be generalized to
the problem of multiple ordinal output classification [31]. The
MDC problem is also closely-related to multi-label classifi-
cation (MLC) [53], [17], [52], which can be regarded as a
degenerated version of MDC by only assuming binary-valued
class variable for each class space. More importantly, the
essential difference between MDC and MLC lies in whether
the class space isheterogeneousor homogeneous. Generally,
MDC assumesheterogeneousclass spaces which characterize
object’s semantics along different dimensions, while MLC
assumeshomogeneousclass space which characterizes the
relevancy of specific concepts along one dimension. Therefore,
one should avoid directly aligning the modeling outputs of
class labels residing in different class spaces when designing
MDC models.

By treating each class space independently, the MDC prob-
lem can be tackled by solving a number of multi-class classifi-
cation problems. However, this intuitive strategy ignores pos-
sible dependencies among class spaces and would lead to sub-
optimal solutions. A straightforward strategy to consider class
dependencies is to train a single multi-class classifier where
every distinct class combination appearing in the training set
is regarded as a new class. However, this strategy is incapable
of predicting class combinations absent in the training set and
is difficult to be learned due to the huge number of possible
classes in the transformed class space. Therefore, it might
be helpful to group all class spaces into several super-classes
before subsequent MDC model induction [35]. Moreover, the
q MDC class spaces can be jointly solved by training a chain
of q multi-class classifiers (one per class space) where the
predictive outputs of preceding classifiers in the chain are
treated as extra features by subsequent classifiers [51], [36].
Besides, a number of existing MDC approaches assume a DAG
structure over class spaces to explicitly model potential class
space dependencies, where different DAG structures lead to
a family of MDC models called multi-dimensional Bayesian
network classifier [43], [11], [37], [18]. Recent works further
explore efficient structure learning strategies [50], [5], [57],
[1] to tackle the demanding training complexity of DAG-based
MDC approaches.

Maximum margin techniques have been widely adapted
to solve learning problems related to MDC such as MCC
and MLC. For MCC problem, one can work with margin-
based classification models by transforming the original MCC
problem into a number of binary classification problems
via different decompositions (e.g., one-vs-one, one-vs-rest,
and many-vs-many), or by maximizing multi-class margins
directly [21], [49]. For MLC, one can also work with margin-
based classification models via binary decomposition, such as
maximizing margins between a pair of class labels [15], [47],
or by maximizing output coding margins [28], [29], [42], etc.
It is worth noting that, to model dependencies among class
spaces, the regularization covariance termtr(WC−1W>)
in Eq.(2) has been utilized by M3MDC to help learn a set

2Furthermore, the recently proposed dual set multi-label learning prob-
lem [26] can also be regarded as a degenerated version of MDC by assuming
two class spaces.

TABLE II
CHARACTERISTICS OF THE BENCHMARK DATA SETS.

Data Set #Exam. #Dim. #Labels/Dim. #Features†

Edm 154 2 3 16n
Flare1 323 3 3,4,2 10x
Cal500 502 10 2 68n
Music 591 6 2 71n
Enb 768 2 2,4 6n
Song 785 3 3 98n
WQplants 1060 7 4 16n
WQanimals 1060 7 4 16n
WaterQuality 1060 14 4 16n
BeLaE 1930 5 5 44n,1x
Yeast 2417 14 2 103n
Voice 3136 2 4,2 19n
Thyroid 9172 7 5,5,3,2,4,4,3 7n,22x
TIC2000 9822 3 6,4,2 83x
Adult 18418 4 7,7,5,2 5n,5x
† n and x denote numeric and nominal features respec-

tively.

of classifiers in a joint manner. Nonetheless, different from
existing works on covariance regularization [56], [27], [31],
M3MDC aims at solving MDC problem by coupling covari-
ance regularization with empirical loss of OvO decomposition
w.r.t. each class space.

IV. EXPERIMENTS

To validate the effectiveness of M3MDC in learning from
multi-dimensional examples, extensive comparative studies
are conducted in this section. Firstly, Subsection IV-A intro-
duces experimental setup including the employed data sets,
compared approaches and evaluation metrics. Then, Sub-
section IV-B reports the detailed experimental results with
statistical comparisons. Lastly, Subsection IV-C further inves-
tigates properties of M3MDC based on correlation, sensitivity,
convergence and parameter initialization analyses.

A. Experimental Setup

1) Benchmark Data Sets:In this paper, we have collected a
total of fifteen real-world MDC data sets for thorough compar-
ative studies. To the best of our knowledge, this serves as the
most comprehensive basis for MDC performance evaluation
in terms of the number of benchmark data sets [2], [35],
[30], [23], [44]. The characteristics of all benchmark data sets
are summarized in Table II, includingnumber of examples
(#Exam.),number of class spaces(#Dim.), number of class
labels w.r.t each class space(#Labels/Dim.),3 and number of
features(#Features).

2) Compared Approaches:In this paper, five well-
established MDC approaches have been employed as com-
pared approaches, including BR [35], [24], ECC [36],
ECP [35], [23], ESC [35] and gMML [30]:

3If the number of class labels w.r.t. each class space is identical, then only
this number is recorded; Otherwise, the number of class labels w.r.t. each
class space is recorded in turn.
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• BR works by training a number of independent multi-
class classifiers, one per class space. Therefore, BR does
not consider dependencies among class spaces in model
induction.

• ECC works by training a chain of multi-class classifiers,
one per class space, where the predictions of preceding
classifiers in the chain are used as extra features in
training the subsequent ones. Therefore, ECC exploits
dependency modeling via the specified chaining order
over class spaces.

• ECP works by training a single multi-class classifier
via powerset transformation in output space, where all
distinct class combinations in output space are treated
as new classes. Therefore, ECP exploits dependency
modeling via powerset transformation.

• ESC works by grouping the original class variables into
super-classes, where each super-class is treated as a new
class variable and all distinct class combinations in this
super-class are treated as its new classes.

• gMML works by alternately learning regression models
for each class label and a Mahalanobis metric characteriz-
ing the closeness between regression outputs and ground-
truth labeling information.

For ensemble approaches ECC, ECP and ESC, the base
MDC model is trained over a random cut of 67% examples
from the original MDC training set and a total of ten base
classifiers are used [35], [23]. Furthermore, we aggregate
predictions of base MDC models via majority voting. For
all the compared approaches (except gMML which doesn’t
necessitate base multi-class classifier), support vector machine
(SVM) is used as the base multi-class classifier. Specifically,
LIBSVM [9] with either linear kernel or RBF kernel is
used to implement the base multi-class classifier. Here, it is
worth noting that we employ LIBSVM to implement the base
classifier which solves the multi-class classification problems
via OvO decomposition for fair comparison between M3MDC

and the compared approaches. For ESC, the classifier chains
model is used to solve the resulting problem obtained by
super-class partition, and the fine-tune mechanism is not
used because it does not bring significant performance im-
provements [35]. For gMML, parametersλ, t, γ and k are
tuned from the range{1, 10, 100}, {0.3, 0.5, 0.7}, {0, 0.1, 0.2}
and {5, 10, 15, 20, 25} respectively, andη is fixed as 3 as
recommended in the corresponding literature [30]. As shown
in Table I, the two trade-off parametersλ1, λ2 for M3MDC

are set as 0.001 and 0.1 respectively.

Table III summarizes the computational complexity of all
compared approaches. For M3MDC and gMML, its time
complexity has been analyzed in Section II and in [30]
(Subsection 4.4). For BR, ECC, ECP, ESC, the multi-class
classification problem is solved by the binary classifier SVM
with the help of OvO decomposition. The main complexity of
SVM [10] corresponds to solving the dual QP problem [33].
In Table III, E denotes the number of base learners (i.e.,
ensemble size) in ECC, ECP, ESC. For ESC [35],θ andKθ

j

denote the number of super-classes and the number of class
labels in thejth super-class. For gMML [30],k denotes the

TABLE III
THE TIME COMPLEXITY OF M3MDC AND ALL COMPARED APPROACHES.

Algo. Time complexity
M3MDC O(T1 ∙ T2 ∙ m ∙ N3 + T1 ∙ m3)

BR O(m ∙ N3)

ECC O(E ∙ m ∙ N3)

ECP O(E ∙ (
∏q

j=1 Kj)
2 ∙ N3)

ESC O(E ∙ m ∙ N3 + E ∙ (
∏θ

j=1 Kθ
j )2 ∙ N3)

gMML O(d3 + (
∑q

j=1 Kj)
3 + Nd3 + Nd(

∑q
j=1 Kj) + Nk)

number of nearest neighbors considered.
3) Evaluation Metrics:In this paper, the widely-used three

metrics, i.e.,Hamming Score, Exact Match and Sub-Exact
Match [2], [35], [30], [23], [24], are employed to measure
the generalization performance of MDC approaches.4 Specif-
ically, let S = {(xi, yi) | 1 ≤ i ≤ p} be the test set
where the ground-truth class vector associated withxi is
yi = [yi1, yi2, . . . , yiq]>. For the MDC predictive functionf
to be evaluated, the class vector ofxi predicted byf is denoted
as ŷi = f(xi) = [ŷi1, ŷi2, . . . , ŷiq]>. Then, the number of
class spaces whichf predicts correctly can be calculated as
r(i) =

∑q
j=1Jyij = ŷijK. Here, the predicateJπK returns 1 if

π holds and 0 otherwise. Accordingly, formal definitions of
the employed evaluation metrics correspond to:

• Hamming Score:

HScoreS(f) =
1
p

p∑

i=1

1
q
∙ r(i)

• Exact Match:

EMatchS(f) =
1
p

p∑

i=1

Jr(i) = qK

• Sub-Exact Match:

SEMatchS(f) =
1
p

p∑

i=1

Jr(i) ≥ q − 1K

In a nutshell,Hamming Scorereturns the average fraction
of correctly predicted class spaces.Exact Matchreturns the
proportion of test examples whose class spaces are predicted
correctly in full. Sub-Exact Matchreturns the proportion of
test examples for which at leastq − 1 class spaces are
predicted correctly. Obviously,Sub-Exact Matchcorresponds
to a relaxed version ofExact Match, where the value ofExact
Match might be rather low when the MDC task has a large
number of class spaces. For all three metrics, thelarger the
values the better the performance. In this paper, ten-fold cross
validation5 is conducted on all benchmark data sets, and both

4In some literatures,Hamming ScoreandExact Matchare also termed as
Class Accuracyand Example Accuracy[35], or Mean Accuracyand Global
Accuracy[2].

5In this paper, each data set is randomly split into ten equal-sized folds.
Generally, the random splitting would result in stratified sampling approxi-
mately and ensure that the training examples in each fold cover all classes.
Exceptions might occur when the number of examples belonging to one class
is limited. In ten-fold cross validation, M3MDC (as well as the compared
methods) is trained on nine folds where the training examples do cover all
classes in our experimental studies.
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TABLE IV
PREDICTIVE PERFORMANCE(MEAN±STD. DEVIATION ) OF EACH COMPARED APPROACH ON THE BENCHMARK DATA SETS(LINEAR KERNEL FOR

M3MDC, BR, ECC, ECPAND ESC). THE PERFORMANCE RANK ON EACH DATA SET IS SHOWN IN THE PARENTHESES WHERE WE ALSO HIGHLIGHT THE

BEST PERFORMANCE IN BOLDFACE AND UNDERLINE THE SECOND PERFORMANCE.

(a) HammingScore

Data Set M3MDC BR [35], [24] ECC [36] ECP [35], [23] ESC [35] gMML[30]
Edm 0.727±0.089(1) 0.689±0.070(6) 0.695±0.065(5) 0.721±0.082(2) 0.698±0.089(4) 0.714±0.083(3)
Flare1 0.923±0.033(2) 0.922±0.034(4) 0.922±0.034(4) 0.921±0.036(6) 0.923±0.033(2) 0.925±0.034(1)
Cal500 0.630±0.010(2) 0.628±0.011(3) 0.625±0.015(4) 0.616±0.015(5) 0.616±0.019(5) 0.631±0.014(1)
Music 0.811±0.022(3) 0.808±0.023(4) 0.814±0.025(1) 0.799±0.032(6) 0.813±0.028(2) 0.800±0.018(5)
Enb 0.793±0.026(1) 0.734±0.029(5) 0.754±0.033(3) 0.728±0.043(6) 0.759±0.043(2) 0.742±0.027(4)
Song 0.796±0.028(1) 0.793±0.023(2) 0.790±0.024(3) 0.786±0.029(6) 0.790±0.029(3) 0.788±0.027(5)
WQplants 0.660±0.013(1) 0.657±0.016(2) 0.654±0.016(4) 0.647±0.015(6) 0.651±0.017(5) 0.655±0.015(3)
WQanimals 0.632±0.014(1) 0.630±0.014(3) 0.630±0.014(3) 0.629±0.013(6) 0.631±0.014(2) 0.630±0.015(3)
WaterQuality 0.646±0.012(1) 0.644±0.013(2) 0.643±0.013(3) 0.628±0.015(6) 0.641±0.013(5) 0.643±0.013(3)
BeLaE 0.454±0.021(1) 0.447±0.015(4) 0.451±0.018(2) 0.413±0.017(6) 0.450±0.015(3) 0.417±0.020(5)
Yeast 0.802±0.006(1) 0.801±0.006(3) 0.797±0.007(5) 0.795±0.007(6) 0.802±0.006(1) 0.800±0.005(4)
Voice 0.970±0.008(1) 0.964±0.007(2) 0.961±0.008(3) 0.955±0.013(5) 0.961±0.009(3) 0.842±0.009(6)
Thyroid 0.965±0.002(1) 0.965±0.002(1) 0.965±0.002(1) 0.965±0.002(1) 0.965±0.002(1) 0.960±0.002(6)
TIC2000 0.935±0.004(1) 0.934±0.004(4) 0.935±0.004(1) 0.926±0.005(5) 0.935±0.004(1) 0.895±0.007(6)
Adult 0.711±0.004(1) 0.710±0.004(2) 0.710±0.004(2) 0.708±0.004(4) 0.708±0.004(4) 0.705±0.004(6)

(b) ExactMatch

Data Set M3MDC BR [35], [24] ECC [36] ECP [35], [23] ESC [35] gMML[30]
Edm 0.500±0.151(3) 0.442±0.125(6) 0.454±0.123(5) 0.559±0.136(1) 0.512±0.142(2) 0.487±0.145(4)
Flare1 0.821±0.073(1) 0.821±0.073(1) 0.817±0.078(5) 0.817±0.078(5) 0.821±0.073(1) 0.821±0.075(1)
Cal500 0.016±0.016(3) 0.016±0.016(3) 0.020±0.016(2) 0.026±0.028(1) 0.014±0.013(5) 0.014±0.013(5)
Music 0.281±0.074(4) 0.272±0.075(5) 0.346±0.079(2) 0.343±0.076(3) 0.350±0.078(1) 0.252±0.056(6)
Enb 0.586±0.051(1) 0.469±0.059(5) 0.508±0.066(3) 0.456±0.086(6) 0.518±0.085(2) 0.483±0.053(4)
Song 0.486±0.069(1) 0.479±0.059(6) 0.481±0.057(4) 0.484±0.054(2) 0.481±0.062(4) 0.484±0.059(2)
WQplants 0.100±0.034(1) 0.097±0.033(2) 0.093±0.037(3) 0.093±0.028(3) 0.093±0.037(3) 0.092±0.035(6)
WQanimals 0.059±0.022(5) 0.058±0.022(6) 0.061±0.023(4) 0.065±0.018(1) 0.064±0.024(2) 0.062±0.023(3)
WaterQuality 0.008±0.008(1) 0.007±0.008(2) 0.006±0.008(3) 0.001±0.003(6) 0.006±0.008(3) 0.006±0.008(3)
BeLaE 0.033±0.016(2) 0.031±0.013(4) 0.031±0.016(4) 0.035±0.016(1) 0.032±0.013(3) 0.022±0.009(6)
Yeast 0.157±0.018(4) 0.151±0.017(5) 0.207±0.014(3) 0.252±0.012(1) 0.237±0.017(2) 0.134±0.018(6)
Voice 0.941±0.017(1) 0.929±0.014(2) 0.923±0.016(4) 0.912±0.025(5) 0.924±0.016(3) 0.699±0.017(6)
Thyroid 0.777±0.014(1) 0.773±0.015(2) 0.772±0.014(4) 0.773±0.014(2) 0.771±0.014(5) 0.741±0.015(6)
TIC2000 0.815±0.011(1) 0.812±0.011(4) 0.814±0.012(2) 0.791±0.014(5) 0.814±0.012(2) 0.706±0.018(6)
Adult 0.252±0.011(4) 0.247±0.009(5) 0.260±0.008(3) 0.310±0.009(1) 0.310±0.009(1) 0.230±0.009(6)

(c) Sub-ExactMatch

Data Set M3MDC BR [35], [24] ECC [36] ECP [35], [23] ESC [35] gMML[30]
Edm 0.955±0.053(1) 0.935±0.061(3) 0.935±0.069(3) 0.883±0.074(5) 0.883±0.074(5) 0.941±0.065(2)
Flare1 0.951±0.036(2) 0.947±0.039(5) 0.951±0.036(2) 0.947±0.039(5) 0.951±0.036(2) 0.957±0.039(1)
Cal500 0.082±0.046(2) 0.074±0.037(5) 0.080±0.031(3) 0.078±0.036(4) 0.086±0.038(1) 0.072±0.041(6)
Music 0.687±0.067(1) 0.674±0.067(3) 0.676±0.064(2) 0.640±0.064(6) 0.662±0.075(4) 0.652±0.040(5)
Enb 1.000±0.000(1) 1.000±0.000(1) 1.000±0.000(1) 1.000±0.000(1) 1.000±0.000(1) 1.000±0.000(1)
Song 0.905±0.039(1) 0.903±0.033(2) 0.891±0.036(4) 0.878±0.040(6) 0.892±0.038(3) 0.883±0.041(5)
WQplants 0.289±0.052(1) 0.287±0.055(2) 0.283±0.049(4) 0.281±0.049(6) 0.282±0.049(5) 0.286±0.053(3)
WQanimals 0.236±0.028(1) 0.229±0.034(4) 0.229±0.032(4) 0.230±0.032(3) 0.232±0.032(2) 0.227±0.033(6)
WaterQuality 0.051±0.025(1) 0.051±0.024(1) 0.050±0.023(3) 0.035±0.018(6) 0.046±0.022(5) 0.049±0.024(4)
BeLaE 0.162±0.029(2) 0.158±0.023(4) 0.164±0.025(1) 0.135±0.024(5) 0.159±0.024(3) 0.130±0.020(6)
Yeast 0.273±0.028(4) 0.269±0.029(5) 0.288±0.023(3) 0.304±0.020(2) 0.310±0.030(1) 0.266±0.026(6)
Voice 0.999±0.001(1) 0.999±0.002(1) 0.998±0.002(3) 0.998±0.003(3) 0.998±0.002(3) 0.985±0.011(6)
Thyroid 0.982±0.004(1) 0.982±0.004(1) 0.981±0.004(5) 0.981±0.005(5) 0.982±0.004(1) 0.982±0.005(1)
TIC2000 0.991±0.004(1) 0.989±0.003(4) 0.990±0.003(2) 0.987±0.003(5) 0.990±0.003(2) 0.978±0.003(6)
Adult 0.665±0.009(3) 0.669±0.009(1) 0.662±0.009(4) 0.638±0.007(5) 0.638±0.008(5) 0.669±0.008(1)

the mean metric value and standard deviation are recorded for
comparative studies.

B. Experimental Results

Detailed experimental results are reported in Tables IV-
V, where the performance rank on each data set is also
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TABLE V
PREDICTIVE PERFORMANCE(MEAN±STD. DEVIATION ) OF EACH COMPARED APPROACH ON THE BENCHMARK DATA SETS(RBF KERNEL FORM3MDC,

BR, ECC, ECPAND ESC). THE PERFORMANCE RANK ON EACH DATA SET IS SHOWN IN THE PARENTHESES WHERE WE ALSO HIGHLIGHT THE BEST

PERFORMANCE IN BOLDFACE AND UNDERLINE THE SECOND PERFORMANCE.

(a) HammingScore

Data Set M3MDC BR [35], [24] ECC [36] ECP [35], [23] ESC [35] gMML[30]
Edm 0.721±0.056(1) 0.694±0.047(6) 0.698±0.053(5) 0.714±0.077(2) 0.704±0.066(4) 0.714±0.083(2)
Flare1 0.923±0.033(2) 0.923±0.033(2) 0.923±0.033(2) 0.923±0.033(2) 0.923±0.033(2) 0.925±0.034(1)
Cal500 0.618±0.019(2) 0.613±0.019(3) 0.613±0.021(3) 0.613±0.020(3) 0.593±0.029(6) 0.631±0.014(1)
Music 0.801±0.023(1) 0.739±0.014(3) 0.738±0.028(4) 0.687±0.044(6) 0.695±0.033(5) 0.800±0.018(2)
Enb 0.745±0.029(1) 0.716±0.029(3) 0.681±0.035(4) 0.667±0.019(5) 0.665±0.022(6) 0.742±0.027(2)
Song 0.773±0.027(2) 0.771±0.026(3) 0.770±0.025(4) 0.769±0.027(5) 0.766±0.027(6) 0.788±0.027(1)
WQplants 0.652±0.016(2) 0.649±0.016(3) 0.648±0.016(4) 0.647±0.015(5) 0.647±0.015(5) 0.655±0.015(1)
WQanimals 0.630±0.013(1) 0.628±0.013(3) 0.628±0.013(3) 0.628±0.013(3) 0.628±0.013(3) 0.630±0.015(1)
WaterQuality 0.640±0.013(2) 0.639±0.013(3) 0.638±0.012(4) 0.627±0.017(6) 0.638±0.012(4) 0.643±0.013(1)
BeLaE 0.437±0.019(1) 0.423±0.022(2) 0.408±0.022(4) 0.354±0.018(6) 0.374±0.020(5) 0.417±0.020(3)
Yeast 0.791±0.007(2) 0.775±0.006(4) 0.776±0.008(3) 0.739±0.009(6) 0.741±0.012(5) 0.800±0.005(1)
Voice 0.962±0.008(1) 0.940±0.010(2) 0.930±0.008(4) 0.905±0.009(5) 0.931±0.009(3) 0.842±0.009(6)
Thyroid 0.961±0.003(1) 0.961±0.002(1) 0.961±0.002(1) 0.961±0.002(1) 0.961±0.002(1) 0.960±0.002(6)
TIC2000 0.904±0.007(1) 0.892±0.008(3) 0.884±0.007(4) 0.850±0.006(6) 0.884±0.007(4) 0.895±0.007(2)
Adult 0.699±0.004(4) 0.701±0.004(3) 0.702±0.005(2) 0.675±0.006(5) 0.675±0.006(5) 0.705±0.004(1)

(b) ExactMatch

Data Set M3MDC BR [35], [24] ECC [36] ECP [35], [23] ESC [35] gMML[30]
Edm 0.460±0.118(3) 0.389±0.093(6) 0.395±0.106(5) 0.486±0.129(2) 0.454±0.110(4) 0.487±0.145(1)
Flare1 0.821±0.073(1) 0.821±0.073(1) 0.821±0.073(1) 0.821±0.073(1) 0.821±0.073(1) 0.821±0.075(1)
Cal500 0.018±0.020(3) 0.006±0.010(6) 0.024±0.025(1) 0.022±0.025(2) 0.010±0.017(5) 0.014±0.013(4)
Music 0.257±0.065(1) 0.078±0.041(6) 0.135±0.071(5) 0.194±0.063(4) 0.200±0.068(3) 0.252±0.056(2)
Enb 0.490±0.057(1) 0.431±0.058(3) 0.362±0.069(4) 0.335±0.037(5) 0.330±0.045(6) 0.483±0.053(2)
Song 0.453±0.056(2) 0.449±0.060(3) 0.446±0.055(4) 0.442±0.059(5) 0.438±0.059(6) 0.484±0.059(1)
WQplants 0.092±0.031(4) 0.092±0.030(4) 0.094±0.029(1) 0.094±0.029(1) 0.094±0.029(1) 0.092±0.035(4)
WQanimals 0.058±0.022(2) 0.056±0.024(3) 0.056±0.024(3) 0.056±0.025(3) 0.056±0.024(3) 0.062±0.023(1)
WaterQuality 0.007±0.008(1) 0.006±0.008(2) 0.006±0.008(2) 0.001±0.003(6) 0.006±0.008(2) 0.006±0.008(2)
BeLaE 0.031±0.010(2) 0.028±0.010(3) 0.035±0.012(1) 0.025±0.009(4) 0.025±0.008(4) 0.022±0.009(6)
Yeast 0.058±0.018(5) 0.014±0.007(6) 0.067±0.016(4) 0.139±0.007(1) 0.138±0.021(2) 0.134±0.018(3)
Voice 0.926±0.016(1) 0.884±0.017(2) 0.866±0.015(4) 0.825±0.016(5) 0.867±0.016(3) 0.699±0.017(6)
Thyroid 0.748±0.015(1) 0.743±0.014(2) 0.743±0.014(2) 0.742±0.014(4) 0.742±0.014(4) 0.741±0.015(6)
TIC2000 0.732±0.018(1) 0.698±0.019(3) 0.675±0.016(4) 0.587±0.016(6) 0.675±0.016(4) 0.706±0.018(2)
Adult 0.216±0.010(6) 0.228±0.006(5) 0.251±0.009(3) 0.269±0.011(1) 0.269±0.011(1) 0.230±0.009(4)

(c) Sub-ExactMatch

Data Set M3MDC BR [35], [24] ECC [36] ECP [35], [23] ESC [35] gMML[30]
Edm 0.981±0.031(3) 1.000±0.000(1) 1.000±0.000(1) 0.941±0.049(5) 0.954±0.055(4) 0.941±0.065(5)
Flare1 0.951±0.036(2) 0.951±0.036(2) 0.951±0.036(2) 0.951±0.036(2) 0.951±0.036(2) 0.957±0.039(1)
Cal500 0.068±0.037(6) 0.070±0.036(5) 0.072±0.029(2) 0.090±0.037(1) 0.072±0.028(2) 0.072±0.041(2)
Music 0.635±0.060(2) 0.454±0.063(4) 0.476±0.084(3) 0.436±0.077(6) 0.446±0.073(5) 0.652±0.040(1)
Enb 1.000±0.000(1) 1.000±0.000(1) 1.000±0.000(1) 1.000±0.000(1) 1.000±0.000(1) 1.000±0.000(1)
Song 0.869±0.040(2) 0.868±0.032(4) 0.869±0.033(2) 0.868±0.038(4) 0.862±0.034(6) 0.883±0.041(1)
WQplants 0.287±0.048(1) 0.284±0.051(3) 0.282±0.050(4) 0.282±0.048(4) 0.282±0.048(4) 0.286±0.053(2)
WQanimals 0.231±0.030(1) 0.226±0.031(3) 0.226±0.031(3) 0.225±0.031(6) 0.226±0.031(3) 0.227±0.033(2)
WaterQuality 0.045±0.023(2) 0.044±0.024(4) 0.045±0.023(2) 0.033±0.018(6) 0.043±0.020(5) 0.049±0.024(1)
BeLaE 0.151±0.023(1) 0.132±0.024(3) 0.134±0.016(2) 0.093±0.010(6) 0.110±0.012(5) 0.130±0.020(4)
Yeast 0.236±0.023(2) 0.110±0.014(6) 0.186±0.016(3) 0.175±0.015(5) 0.178±0.026(4) 0.266±0.026(1)
Voice 0.998±0.002(1) 0.996±0.005(2) 0.995±0.005(3) 0.984±0.006(6) 0.995±0.005(3) 0.985±0.011(5)
Thyroid 0.982±0.004(3) 0.983±0.004(1) 0.983±0.004(1) 0.982±0.004(3) 0.982±0.004(3) 0.982±0.005(3)
TIC2000 0.981±0.004(1) 0.979±0.004(2) 0.977±0.005(4) 0.964±0.006(6) 0.976±0.005(5) 0.978±0.003(3)
Adult 0.658±0.008(2) 0.657±0.010(3) 0.651±0.010(4) 0.587±0.011(5) 0.586±0.011(6) 0.669±0.008(1)

shown in the parentheses. Moreover, to show whether M3MDC

achieves statistically superior performance against compared
approaches, we employWilcoxon signed-ranks test[12] (at
0.05 significance level) whose statistical test results are sum-
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TABLE VI
WILCOXON SIGNED-RANKS TEST FOR THE PROPOSEDM3MDC APPROACH AGAINST EACH COMPARED APPROACH IN TERMS OFHamming Score, Exact

MatchAND Sub-Exact MatchRESPECTIVELY WHERE THEp-VALUES AT 0.05SIGNIFICANCE LEVEL ARE ALSO SHOWN IN THE BRACKETS.

(a) Linear kernel for M3MDC, BR, ECC, ECP andESC

Evaluation Metric M3MDC vs BR M3MDC vs ECC M3MDC vs ECP M3MDC vs ESC M3MDC vs gMML
Hamming Score win[6.10e-05] win[1.53e-03] win[6.10e-05] win[1.22e-03] win[6.10e-04]
Exact Match win[2.44e-04] tie[4.21e-01] tie[8.47e-01] tie[1.00e+00] win[6.71e-04]
Sub-Exact Match win[6.10e-03] tie[5.74e-02] win[8.54e-03] tie[8.03e-02] win[5.25e-03]

(b) RBF kernel for M3MDC, BR, ECC, ECP andESC

Evaluation Metric M3MDC vs BR M3MDC vs ECC M3MDC vs ECP M3MDC vs ESC M3MDC vs gMML
Hamming Score win[6.10e-04] win[8.54e-04] win[1.22e-04] win[1.22e-04] tie[9.78e-01]
Exact Match win[3.30e-03] tie[1.58e-01] tie[2.22e-01] tie[8.13e-02] tie[8.58e-01]
Sub-Exact Match win[3.98e-02] tie[7.42e-02] win[8.06e-03] win[2.44e-03] tie[6.37e-01]

marized in Table VI.6

Based on the reported experimental results, the following
observations can be made:

• Among M3MDC and five compared approaches, M3MDC

ranks first in 51 cases (56.7%), ranks second in 21
cases (23.3%) across all the 90 cases (15 data sets×
3 evaluation metrics× 2 kernel types).

• As shown in Table VI, M3MDC achieves statistically
superior performance against BR, ECC, ECP, ESC in
terms ofHamming Scoreon both kernel types.

• ECP works by conducting class powerset transformation
in output space and then training a multi-class classifier,
which actually can be viewed as optimizingExact Match.
It is impressive to notice that M3MDC still achieves
comparable performance against ECP and ranks first in
15 out of 30 cases in term of this metric.

• It is worth noting that M3MDC achieves statistically
superior performance against BR in terms of all three
metrics on both kernel types. This result clearly validates
the necessity of considering class dependencies in learn-
ing from MDC examples and also the effectiveness of
M3MDC’s dependency modeling strategy.

C. Further Analysis

1) Correlation Analysis:In this paper, M3MDC makes use
of covariance matrixC in Eq.(2) to model the dependencies
among class spaces. Here, we normalize each element inC
with its corresponding two diagonal elements as follows and
then obtain the correlation matrixR:

Rij =
Cij√

Cii × Cjj

(24)

whereRij (Cij) denotes the element in theith row andjth
column of R (C). Specifically, the value ofRij represents

6In this paper, both the mean metric value and standard deviation are
represented by three decimal digits which will make some experimental results
with tiny difference looking to be exactly the same. For example, the mean
metric values ofHamming Scorefor M3MDC, BR, ECC, ECP and ESC
over Thyroid in Table IV are 0.965470, 0.964956, 0.964753, 0.964862 and
0.964675 by keeping six decimal digits. The performance rank is based on
the rounded mean metric values with three decimal digits, while theWilcoxon
signed-ranks testis based on the accurate mean metric values.

the degree of correlation between theith and jth pair of
class labels, whereRij = +1 (−1) indicates fully positive
(negative) correlation whileRij = 0 indicates null correlation.

To show whether the proposed M3MDC approach can
recover the ground-truth dependencies among class spaces,
we generate a synthetic MDC data set with known class
dependencies. Specifically, a total of 1000 examples in two-
dimensional feature space within the unit square are generated.
Three class variables (denoted asy1, y2 andy3) are considered
whose values are set as:

y1 =

{
1, when x1 + x2 < 1
2, otherwise

y2 =






1, when x1 + x2 < 0.5
2, when 0.5 < x1 + x2 < 1
3, when 1 < x1 + x2 < 1.5
4, otherwise

y3 =

{
1, when x1 > x2

2, otherwise

In this case, it is not difficult to show thaty1 and y2 are
positively related while bothy1 andy2 are independent ofy3.
For the proposed M3MDC approach, a total of 8 binary clas-
sification models will be generated accordingly based on the
one-vs-one decomposition. We depict the correlation matrixR
learned by M3MDC (with linear kernel) in Figure 1(a). Note
that for the correlation value, red color corresponds to+1 and
blue color corresponds to−1, while green color corresponds
to 0. It is shown that, excluding diagonal elements, elements
in the 8-th row and the 8-th column almost equal to zero (at
most 0.0168) while the remaining elements almost equal to
one (at least 0.9998). There results indicate that the M3MDC

is capable of recovering the ground-truth dependencies among
class spaces.

Moreover, we also depict the correlation matrixR learned
by M3MDC (with linear kernel) on two real-world MDC
data setsSong and WaterQuality in Figure 1(b)-(c). It is
shown that, excluding diagonal elements, some red or blue
blocks do exist which indicate dependencies between classes,
while more blocks are green which indicate independencies
between classes. Generally, we should consider class depen-
dencies when designing MDC approaches but also need to be
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Fig. 1. Correlation matrix on synthetic data set and two real-world MDC data setsSong, WaterQuality.
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Fig. 2. Performance of M3MDC changes asλ1, λ2 range in{10, 1, 0.1, 0.01, 0.001, 0.0001} (on Music).
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Fig. 3. Performance of M3MDC changes asλ1, λ2 range in{10, 1, 0.1, 0.01, 0.001, 0.0001} (on Song).

careful whether the dependencies captured by the model are
ground-truth ones. As per the favorable experimental results
reported in Subsection IV-B, we hypothesize that the class
dependencies captured by M3MDC are beneficial in helping
generate MDC classification models with strong generalization
performance.

2) Sensitivity Analysis:As shown in Eq.(2), M3MDC

makes a balance among empirical risk, structural risk and
relationship regularization by the two trade-off parameters
λ1, λ2. In this subsection, we study the sensitivity of M3MDC

on how its classification performance changes under different
parameter settings. Accordingly, Figures 2 and 3 illustrate the
experimental results of M3MDC on benchmark data setsMusic
andSongrespectively. Similar results can be observed on other
data sets as well. As shown in Figure 2, M3MDC achieves
relatively better performance whenλ1 ≤ 1 and λ2 = 0.1 in

terms of each evaluation metric. Therefore, the two parameters
are fixed asλ1 = 0.001, λ2 = 0.1 in this paper, which can
serve as the default parameter setting of M3MDC for ease of
use.

3) Convergence Analysis:As shown in Table I, M3MDC

solves the main optimization problem in Eq.(2) in an alter-
nating manner. LetΩ(W,C) be the objective function of
Eq.(2), andWt andCt be the obtained values ofW andC in
the t-th iteration respectively, it is obvious that the following
inequalities hold:

Ω(Wt,Ct) ≥ Ω(Wt+1,Ct) ≥ Ω(Wt+1,Ct+1) ≥ . . .

which ensures the convergence of M3MDC. In this subsection,
we further analyze the convergence rate of M3MDC via
experiments. Specifically, we recordW after each iteration of
alternating optimization (with linear kernel) and then compute
the Frobenius norm of the difference between two adjacent
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Fig. 4. Convergence curves on benchmark data setsSong, WaterQuality, BeLaE, YeastandVoice.

W. Figure 4 illustrates the convergence curve of M3MDC

on benchmark data setsSong, WaterQuality, BeLaE, Yeast
and Voice, where the vertical axis represents the resulting
Frobenius norm and the horizontal axis represents the number
of iterations. We can observe that the value of the Frobenius
norm decreases quickly in the first few iterations, which
demonstrates the fast convergence property of M3MDC. To
be more specific, forSong, WaterQuality, BeLaE, Yeastand
Voice, the Frobenius norm

∥
∥Wt − Wt−1

∥
∥

F
will be less than

0.1 in 16, 11, 11, 4, 7 iteration rounds, and less than 0.05 in
23, 15, 16, 5, 10 iteration rounds, respectively.

4) Effects of Initialization:As shown in Table I, the proce-
dure of M3MDC relies on the initialization of the covariance
matrix C and the Lagrangian variablesα. In this subsection,
we perform some studies specifically to show how the pro-
posed approach would be affected by the initialization step.
Table VII reports the detailed experimental results of four
different initialization strategies, including the initialization
strategy of M3MDC (denoted as Random-None), randomly
initializing C (denoted as Random-C), randomly initializing
α (denoted as Random-α) and randomly initializing bothC
and α (denoted as Random-Both). It is shown that different
initialization strategies affect the proposed approach slightly.
To be more specific, the initialization of Lagrangian variables
α has little effect on the experimental results, while the
initialization of covariance matrixC has relatively more effect
on the experimental results. When there is no prior knowledge,
it is more reasonable to assume independent relationship
among class spaces, i.e., initializingC = 1

mIm.

V. CONCLUSION

This paper extends our preliminary work [22] which focuses
on designing margin-based MDC approach. Specifically, we
propose a novel approach named M3MDC which not only
maximizes the margins between each pair of class labels via
OvO decomposition, but also considers the class dependencies
via covariance regularization. The resulting convex formula-
tion of M3MDC is solved with alternating optimization admit-
ting QP or closed-form solution in either step. To validate the
effectiveness of M3MDC, extensive comparative studies over
fifteen benchmark data sets have been conducted. Experimen-
tal results show that M3MDC achieves favorable generalization
performance against state-of-the-art MDC approaches.

The M3MDC approach serves as the first attempt towards
adapting margin-based techniques for learning from MDC
examples. In the future, it is interesting to investigate other
ways of instantiating margin-based MDC approaches, such as
exploring margins based on one-vs-rest (OvR) decomposition,
powerset transformation, etc.
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