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Abstract—Multi-dimensional classification (MDC) assumeset- Formally speaking, let = R? denote the input (feature)
erogeneousclass spaces for each example, where class variable%pace andy = C; x Cy x --- x C, denote the output
from different class spaces characterize semantics of the examplespelce which corresponds to the Cartesian produgthatero-

along different dimensions. The heterogeneity of class spaces | H h het |
leads to incomparability of the modeling outputs from different geneous class spaces. riere, each neterogeneous class space

class spaces which is the major difficulty in designing MDC C; (1 < j < gq) consists of K; possible class labels,
approaches. In this paper, we make a first attempt towards i.e., C; = {c],c),...,c} }. Given the MDC training set
adapting maximum margin tﬁﬁchniqugs for MDC problem and p — {(zi,y) | 1 < i JS N}, for each MDC example
a3nove| app_roach named _ MDC is proposeo_l. Specifically, (i, yi), T; = [xﬂ,xig,...,xid}T € X is a d-dimensional
M~M DC maximizes the margins between each pair of class labels T .

w.rt. individual class variable while models relationship across feature vector andy; = [yi1, yia, ..., ¥ig] € Y is the class

class variables (as well as class labels within individual class vector associated witk; where each component; € C;
variable) via covariance regularization. The resulting formulation  corresponds to the relevant class label for in C;. The

admits convex objective function with nonlinear constraints, |earning task of multi-dimensional classification is to train a

which can be solved via alternating optimization with quadratic predictive modelf : X — ) over D which can predict a
programming (QP) or closed-form solution in either alternating : .
step. Comparative studies on the most comprehensive real-world Proper class vectof (z.) € ) for unseen instance..

MDC data sets to date are conducted and it is shown that MM bc To learn predictive models from MDC training examples,
achieves highly competitive performance against state-of-the-art one intuitive strategy is to train a multi-class classification

MDC approaches. model for each class space independently. However, depen-
Index Terms—machine learning, multi-dimensional classifica- dencies among class spaces are completely ignored by the
tion, maximum margin, class dependencies. independent modeling which would impact the generalization
performance of resulting MDC predictive model. Another
[. INTRODUCTION intuitive strategy is to treat every distinct combination of class

N traditional supervised learning, one popular learning tagRriables appearing in the training set as a new class, and
I is to train classification models supervised by one clafiien induce a single multi-class classification model in the
variable, e.g., multi-class classification. However, in marfj@nsformed class space. However, the resulting multi-class
real-world applications, the simplifying assumption that eacHassification model is difficult to be learned due to the huge
example is associated with only one class variable does notfitmber of possible classes in the transformed class space and
well. For example, news websites usually need to simultari§-incapable of predicting combinations of class variables ab-
ously classify a news document from thepic  dimension Sent in the training set. Generally, modeling class dependencies
(with possible classeSci&Tech politics, social, sports etc.), N appropriate ways is one of the key challenges in designing
from the mood dimension (with possible classgsod news MDC approaches. Therefore, existing MDC approaches aim to
neutral news bad newy and from thezone dimension Model class dependencies in different ways such as specifying
(with possible classedomestic intra-/inter-continental etc.). chaining order over class spaces [51], [36], assuming directed
Actually, the need to characterize the semantics of objects fr@gyclic graph (DAG) structure over class spaces [2], [4], [1],
different dimensions arises in diverse application scenari®gd grouping class spaces into super-classes [35].
such as text classification [41], [40], computer vision [13], Maximum margin is one of the most popular and powerful
[14], [48], bioinformatics [38], [7], [6], [32], [16], software machine learning techniques which has been successfully
testing [39], resource allocation [34] etc., where the resufdapted to tackle various learning tasks [45], [20], [49], [19],
ing learning problem can be naturally formalized under tH8]- As per the intrinsic characteristics of MDC problem,
multi-dimensional classification (MDC) framework [35], [30],modeling outputs from the heterogeneous class spaces are not
[23]. Specifically, each MDC example is represented by directly comparable. On the other hand, dependencies among
single instance while associated with multiple class variablE&ss spaces are expected to be exploited to help improve the
simultaneously. Here, each class variable corresponds to gsaeralization performance of classification model. In light of
heterogeneous class space which characterizes the objdbsabove modeling challenges, a first attempt towards adapt-
semantics from one specific dimension. ing maximum margin techniques for solving MDC problem is

investigated in this paper. Accordingly, a novel MDC approach
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M3MDc via covariance regularization. The derivedMbpc ¢ = [¢1,£2,...,£6™]T € RZiZi*1 the maximum margin
formulation admits convex objective function with nonlineaformulation for MDC can be given as follows:
constraints, which can be solved via alternating optimization

with QP or closed-form solution in either alternating step. ) N ¥

Comparative studies are conducted over a total of fifteen real- w b.¢ Z Z G+ ?tr(WWT) (1)
world MDC data sets, which serve as the most comprehensive ==t _ _

basis to date for MDC performance evaluation [2], [35], [30], sty ((wi, ®5) +bi) > 1= &5,

[23], [44]. Experimental results show that3MDc achieves 5;'- >0,i=1,....m, j=1,...,n4

highly competitive performance against state-of-the-art MDC

approaches. where) is the trade-off parameter for model complexity term,

We organize the remainder of this paper as follows. Seg;-) computes two vectors’ inner product, andg-) returns the
tion Il presents theaechnical detailsof M3MDc. Section 1l trace of a square matrix.
briefly discusseselated workson MDC. Section IV reports  Obviously, the above formulation only deals with each
the experimental result®f comparative studies. Finally, wepair of class labels independently while ignores potential
concludethis paper in Section V. This paper is an extensiogependencies among class spaces. Similar to the covariance
of our preliminary work [22]. The main differences includeregularization strategy for dependency modeling [56], [27],
(1) The introduction and related work parts have been updaf@®], [31], we introduce the column covariance matrix of
to reflect state-of-the-art research progress on MDC; (2) TW& (i.e. C € R™*™) to model the relationships among all
derivation of the proposed approach has been revised «gs in W. Thereafter, the optimization problem in Eq.(1) is
improve readability; (3) A kernelized version of the originatransformed to:
approach has been proposed; (4) The comparative studies
have been extended by adding five newly-collected bench- min ZZ
mark datasets, one recently proposed compared approach [30], w,b,¢,C Pt
analyses on the effects of initialization, and enriching the \
correlation analyses. + gtr(WC”WT)
st. C=0,tr(C) <1,

y((wi @) +0) > 1 - &,

To maximize the margin between a pair of modeling out- 5; >0, i=1,....m, j=1,...,n
puts, the essential prerequisite is that these modeling outputs
are comparable to each other. However, due to intrinsic ch@fhere ), is the trade-off parameter for covariance regu-
acteristics of MDC that class spaces &ieterogeneoysthe |arization term. In addition,C = 0 ensures that the co-
modeling outputs of class labels from different class spaces gggiance matrix is positive semi-definite and(C) < 1
not directly comparable. In this section we present techniqgkther penalizes its complexity. Here, minimizing the covari-
details of MMDc, which considers the margins between eacihce regularization with above constraints can be regarded
pair of class labels on individual class spaces while modeig maximum a posteriori (logarithm) estimation W with
class dependencies via covariance regularization. assuming the matrix-variate normal distribuficover it, i.e.,

To obtain margins between each pair of class labelgy ~ MN g5 (W | 0gscm, Ia ® C), where04y,, is ad x m
M3MbDc tackles the multi-class classification problem w.r.kero matrix and; is ad x d identity matrix which means the
each class space via OvO decomposition. Across all clgggtures are assumed uncorrelated with each other.
spaces, there will be a total ofi = >7_, (}’) pairs of  For the objective function in Eq.(2), it is obvious that the
class labels under the OvO decomposition. Without 10SS ffst two terms are convex w.ri andb. For the third term,
generality, for theith pair of class labeld} and I, let jt can be reformulated as the summation dfitems, i.e.,

D' = {(#,y;) | 1 < j < n,} denote the correspondingy,(wc—'wWT) = 3¢ W,,C~'W], where W;, denotes
OvO decomposition training set. Here, we havg € X, theith row of W. Note thatW,,C~'W| is convex w.r.tW,,

y; = +1 (or —1) whenl’ (or I') is relevant, anch; is the andC whenC is positive semi-definite, and the convexity can
number of examples in MDC training sét for which either pe preserved after summation operation which results in the
I% or ' is relevant. Assuming that the examplesIt can convexity of the third term w.r.tW and C [56]. Therefore,

be separated perfectly by hyperplafe;, b;), we can define the objective function in Eq.(2) is convex w.riv, b and C,

the margin of(w;, b;) as?/|lw.| by appropriately normalizing respectively. In this paper, an alternating procedure is derived
(w;, b;) [10], where||-|| returns the norm of vectors. Then,g accomplish the optimization task [54]. Specifically, the two
the maximum margin hyperplane fd* can be obtained sets of parameteréW, b} and {C} are optimized alternately
by maximizing %/|w,| or equivalently minimizinglw:l*/2.  yngil convergence.

Considering the more general case where no hyperplane is

capable of correctly CI,a,SSIfy!ng aII_tralnlng_ examplesm, et MN gxm (X | M, U ® V) be a matrix-variate normal distribution
we can model the empirical risk by introducing slack variablggih meanM e R4<™, row covariance matristU € R%<4 and column co-

m n;

&+ %tr(WWT) 2)

II. THE MAXIMUM MARGIN MDC APPROACH

¢ = [&,...,& ). Considering all pairs of class labels, letariance matrixv € R™*™. The corresplondinglprobabiIity density function
_ ‘ d _ T . ) exp(—+tr(U™H(X-M)V~H(X-M) "))
W = [wy,...,wy,] € R*™ b = (by,...,b,)' and isdefined ap(X | M, U V)= TG IR .



Optimizing w.r.t. W and b when C is fixed. When we fix Plugging Eq.(5) into the second term (denotedXy of Eq.(8)
C, the optimization problem in Eq.(2) can be reformulated asd note thatv;, = We;, we have:

follows: m i ni
. % i T Z Z Z Z ajl Jzy]lymM“Z?( Jl’m;§>
VrvrubnE ZZE —t (WW ') 3) i1=1j1=149=1 jo=1
T == Plugging £, and £, into Eq.(8), we can obtain the dual
n Qtr(WCqWT) function, i.e.,I'(a) = minw , L£(W,b), as follows:
2
(ws @) + b)) > 1— & R i
s.t. yéz(tvlo :zc7> +1bz) >1 57 1 -3 Z 3 Z S altalytye M, (al 2i2)
sz e=L1L....m, g=1,...,1 i1=1j1=112=1ja2=1
For the above optimization problem, it is easy to obtain its ZZ ©)

Lagrange function as follows: =
Then, the dual problenmax, I'(«) can be equivalently

LW.b.€ a3 Z 253 7,“ (WWT) @) formulated asnin, —I'(«a):
i=1j=1 Ny Mig 4 ‘
2 wewT) min o Z > Z D GGy M, (2, 27)
2 ’Ll ljl 122 1]2 1
m N mo m;
O by ((wi @) + by) — 1+ €] -> > a; (10)
i=1j=1 i=1 j=1
- B s.t. alyt =0 (1<i<m), 0<ai<1
737 797 J
i=1 j=1 j=1
wherea = (a! al Lam ) € REJLamix1 Obviously, the above problem is a QP problem wittequality
- 1o Bnqo--- 19O

constraints which can be solved by any off-the-shelf QP solver.
However, the number of variablesi is usually too large
making this QP problem difficult to be solved efficiently.
%peuﬁcally, the number of variables equals the total number

13 (ﬁlv"'aﬁwu"'v 17"'7ﬁm )T ERZ] 1n]><1; and
j,ﬁl > 0. Then, by setting the gradients @f w.r.t. W, b,
andgz to 0, the following conditions can be obtained respe

tlvely [55] of training examples inm OvO binary training sets, i.e.,
oL Z —in;=N- Zq_l( —1). Here, we further decompose
oW 0= the dgal QP pro_blem mtm sub-QP problems each with one

m equality constraint as follows:
W=> ") alyizie/C(MC+ NI, (5) s
an, =t mln 9 Z Z OéJl Jzlesz ( <x]1,:13§2>
oL ~ ) 31 1j2=1
aTM:():>Zozjyjzo, (1<i<m) (6) -
i=1 =Y (1-S)at (11)
oL 0= a4 = e —
g R ni

Za;yézo, 0§a§-§1
where e; is the ith column of identity matrixI,,. Plugging ;
Eq.(6) and Eq.(7) into Eq.(4), the terms relatedbfcand ¢

; T __ 7 i \T n; X1
will be eliminated respectively, then Eq.(4) can be simplifieherel <i<m, a' = (1,5 05,) " € R™, and
as follows: iy
St =yt Z (M, + M; Z oty :13 iy (12)
1 j J 111 i11
LW, @) =5 tr(W(M T, +2CHW) 8) = = 7
m i - oD ; To solve the optimization problem in Eq.(10), we can initialize
- ZZO‘ 1y (wi, ) +ZZ%‘ a = 0 and then repeatedly solve the sub-QP problems
i=1j=1 i=1j=1 in Eq. (11) until all o}s meet Karush-Kuhn-Tucker (KKT)

conditions.

To validate KKT conditions, the decision value of eaz:j’u
i.e., (w;, z})+b;, needs to be obtained. Faw;, %), its value
can be obtalned by plugging into Eq.(5), i.e.,

Let M = (\MC + XoL,)"TCT and M;,;, = eZM%.
Plugging Eq.(5) into the first term (denoted By) of Eq.(8),
we have:

Niy  m Mg
[ 1o m iy
Z Z Z Zajl Jzyﬂly M’1’2< J1’$j2> i1 l1 i 13
w;, T Q. Y, ul 7:1:
21 =1j1=11i2=1jo=1 ‘ ‘ Jj19J1 Jl
i1=1j1=



For b;, however, the situation is somewhat complicated. When TABLE | )
there area’s in (0,1), we havey!((w;, ) + b;) = 1 such THE PSEUDGCODE OFM?MDC.
thatb; =y — (w;, ). When there aren't}s in (0, 1), i.e.,

eithera’ = 0 or o’ = 1, the value oft; can be obtained by MPUts: . ‘
resorting to a number of inequalities. Specifically, in the casé- MDC training set{(x;,y;) | 1 <i < N}
thata = 0, i ((w;, @) + b;) > 1 should hold, while in the 1,2t trade-off parameters

case that} = 1, y((w;, ;) + b;) < 1 should hold. Each ~@.: unseen instance

of the inequalities can give rise to one upper or lower bou”‘butputs:
of b;. Let b” andbl°™ denote the set of all these upper and
lower bounds respectively, the value ipfcan be determined

by b; = 3(max(bl°") + min(b;?)), where max(b°*) and  Process:
min(b;¥) return the maximum ob;>” and minimum ofb”

Y predicted class vector fat,

. : Transform the MDC training seP into a total ofm =

respectively. ?_, ('Y binary training sets via OvO decomposition
w.r.t. each class space;

. Initialize C = 11, anda = 0;

: repeat

Optimizing w.rt. C when W and b are fixed. When we )
3
4:  while not all @« meet KKT conditionsdo
5
6
7

fix W and b, the optimization problem in Eq.(2) can be
reformulated as follows:

for i =1 tom do
Solve the sub-QP problem in Eq.(11);
As per the propertyr(XYZ) = tr(YZX) and the constraint 7: end for
tr(C) < 1, we can lower-bound the objective in Eq.(14) ass: end while
follows: 9:  CalculateC according to Eq.(16);
T 1T 10: until convergence
r(WCT W) = (CTW W) (15) 11: Obtain binary votinggy® for ., according to Eq.(18);
(CT'WTW)tr(C) 12: Returny, according toEq.(19).

min tr(WC™'WT), st. C>0,tr(C) <1 (14)

>

tr
tr

“3A3C2))2 = 3))2 . L e ,
= (tr(C72AZC2)) (tr(A2)) 1 Cz hold. Therefore, it is not difficult to have the following
whereA = W TW. The last inequality in Eq.(15) holds base¢losed-form solution folC:

on the fact that bottA and C are symmetric matrices as well c A% 6
as the following Lemma: w(Ad) (16)
Lemma 1. Given two matricesU, V ¢ R‘%%, then the Here based on Eq.(5), the matéx can be expressed in terms
following inequality holds: of the inner product of instances:
2(UTU)(VTV) > ((UTV)) A=WTW 17)
The left-hand side of the inequality can reach its minimum in U R e
the right-hand side whe®J = 1.- V wherey is one constant. = Zl Zl 21 Zl ag oy v M, My, (@5, 232
11=171=1122=1 2=
Proof. According to the property of matrix, whereM,;, (M,;,) denotes the;th (ioth) column of M.
by {1
tr(UTU) = Z Z U2 = (vecU, vecU) = |lvecU|? As the above two alternating optimizing steps converge, we
1) ’ . .. . .
=1 j=1 can obtain the predictive model, i.e., the optimal valueS\of
b 0 (or Lagrange multiplier vectat) andb. Then, the class vector
tr(VIV) => "> V2 = (vecV,vecV) = [[vecV | for unseen instance,. can be predicted. Specifically, a binary
i=1j=1 voting vectory? with m elements is returned as follows:
4 b T
tr(UTV) = Z Z Ui;Vij = (vecU, vecV) Y = mgn(\Z ::* +b) (18)
=1i=1 = sign(z Z a§y§Mei<m§, )+ b)
Here, vecU,vecV denote the vectorized form oiJ, V. i=1j=1

£s per CaUChy_Sg Tw,a z inequs |itgve%U|| ' f”ﬁ?c‘_/” ZI' wheresign(-) represents the (element-wise) signed function.
|{vecU, vec V)|, and let's square both sides of this Inequ"’”tyConceptuaIIy, for theth pair of class Iabel$i and!l’, one

2 2 2 .
e e e et (' ey e s
y P ' qua’ty Value of +1 (—1). Here, they>7—! (%) +1 ~ 327 (Ke)

= - i = - . . a=1\ 2
holds only wherwecU = pi - vecV, i.e., U=y-V. binary votes iny? correspond to theth class space. Corre-

According to Eq.(15){r(WC™'WT) can reach its mini- spondingly, among th¢’7) binary votes w.r.t. thejth class
mum value(tr(Az))? when bothtr(C) =1 andAzC~2 = spaceC; = {c},c}, ... ,cﬁ(j}, let s/ denote the number of



recorded votes for) (1 < r < K;). Then, the multi- The dual problem of Eq.(21) is as follows:

dimensional predictiony, [y*1,...',y*q}T e Y for x, e e
is determined by the OvO decoding rule (ties are broken at 1 - e . _
andomy P fin 5> >0 D0 D aauiul Man (6(3)), ¢(@))
iy i1=1j1=1142=1jo=1
p—— . j < i< mn
ysj =i, where i =arg max s (1<j<q) (19) 3%t
In summary, the complete procedure of the proposed i=1 j=1

M3MDc approach is presented in Table I. Specifically, we A ‘ ;

firstly decompose the original MDC problem via OvO rule St > ajys =0 (1 <i<m), 0<af <1

w.r.t. each class space (Step 1), based on which the covariance i=1

regularization is introduced for dependency modeling amoRge computation of inner product if’-dimensional space

class spaces. Then, an alternating procedure is invoked t0 SQtld be intractable ifd’ is large (or even approaching
the resulting optimization problem (Steps 2-10). Finally, ginity). To avoid such operation, kernel trick can be utilized
multi-dimensional prediction on unseen instance is obtaingghere a kernel function can be defined as follows:

by querying the modeling outputs with OvO decoding rule

(Steps 11-12). R, @) = (o(x3)), d(x32))

Computational complexity. The QP problem in Eq.(11) with Then, the dual problem of Eq.(21) can be rewritten as follows:
r variables can be solved witt?(r?) time complexity [33], m iy m Ty

and the square root for one matrix in Eq.(16) withx s 1 i s i P
q q.(16) min ZZZZZa-lagyﬁy?M Kzl z?)

. . - . i11% 11
elements can be obtained with(s®) time complexity [3]. S e

Then, the proposed #MDc approach has computational m n

complexity of O(T} - Ty-m-N3+Ty-m?), whereT; corresponds _ Z Z a;ﬂ (22)
to the number of alternating rounds (i.e., Steps 3-10) Bnd i=1 j—=1

corresponds to the number of iterations in solvingsub-QP nio ‘

problems (i.e., Steps 4-8). Note th@{N?) is the worse-case s.t. Za}y;- =0(1<i<m), 0<a; <1
complexity of solving each Eq.(11) because the number of j=1

examples belonging to eaclh _OVO decomposjtion problem i ich can be solved similarly to the problem in Eqg.(10). When
less than the number of training examplesZini.e., . we fix W andb, the optimization problem in Eq.(20) can also
be reformulated as Eq.(14). For its closed-form solution, the

Kernel extension.The above derivations for MMDc aim to trix A in Ed.(16 be obtained with the helo of k |
learn linear model in thé-dimensional original feature space.manx in Eq.(16) can he obtained wi € help ot kerne

When the data distribution is complicated, it might be better fynction x(-, -) as follows:

learn nonlinear model in & -dimensional transformed feature m

space with the help of mapping functign: R — R?. Then, A =>">">" > allal2yly2 M, M}, s(z}, i)
we can reformulate the linear maximum margin MDC model i1=1j1=1142=1 ja=1

in Eq.(2) as the following nonlinear version:

Niy  m Mg

When the optimal values oW (actually the Lagrange mul-

) ¥ T tiplier vector &) andb are obtained, the binary voting vector
wrﬁl,f?,c ZZ@- + 7tr(WW ) (20) y? with m elements can be obtained similarly to Eq.(18) as
1:1)\]:1 follows:
+52tr(WC_1WT) m  mng

yl =sign(y D ajyiMein(zj, ) +b)  (23)

st. C=0,tr(C) <1, £ £
=1 j=1

i . ) Based ony?, we can obtain the final prediction for unseen
§ =20, i=1,....m, j=1,....n;

instance via OvO decoding according to Eq.(19).

Here, note thaW = [wy,...,w,,] € R *m This problem
can also be solved by alternately optimizing the two sets of lIl. RELATED WORK
parametergW, b} and{C}. When we fixC, the optimization _ ) ) ) ) )
problem in Eq.(20) can be reformulated as follows: In this section, we briefly discuss learning settings related
m o to MDC as well as existing approaches in learning from MDC
min Z Z ¢+ ﬁtr(WWT) (21) examples. o _
whe i 2 On one hand, MDC can be regarded as a specific instantia-
) I tion of multi-output learning [46], where each output in MDC
+ ?tr(WC W) corresponds to a discrete class variable taking values among
sty ((ws, ¢(@h)) +bi) > 1 &, a number of possible class labels. On the other hand, the

traditional multi-class classification (MCC) can be regarded

§20,i=1....m j=1....n as a degenerated version of MDC by assuming only one class



spacé If ordinal relationship exists among the class labels TABLE |I

of each class space, the MDC problem can be generalized to CHARACTERISTICS OF THE BENCHMARK DATA SETS
the problem of multiple ordinal output classification [31]. The
MDC problem is also closely-related to multi-label classifi-

Data Set #Exam. #Dim. #Labels/Dim. #Featlires

. . Ed 154 2 3 16
cation (MLC) [53], [17], [52], which can be regarded as a m
. . . Flarel 323 3 3,4,2 10
degenera.ted version of MDC by only assuming binary-valued -4 500 502 10 > 68
class \_/arla.ble for each class space. More mpqrtantly, the pMusic 501 6 2 7t
essential difference between MDC and MLC lies in whether gpp 768 2 2.4 6
the class space iseterogeneousr homogeneousGenerally, Song 785 3 3 98
MDC assumeseterogeneouslass spaces which characterize ~ WQplants 1060 7 4 )
object’s semantics along different dimensions, while MLC WQanimaI_s 1060 7 4 16
assumeshomogeneouglass space which characterizes the WaterQuality 1060 14 4 16
relevancy of specific concepts along one dimension. Therefore, BeLaE 1930 5 5 M, Lv
one should avoid directly aligning the modeling outputs of ngg 3?143167 ;4 422 1123
class labels residing in different class spaces when designing Thyroid 9172 - 5532443 1722
MDC models.
. hcl ind dentlv. th b TIC2000 9822 3 6,4,2 a3
By treating each class space independently, the MDC prob- Adult 18418 4 7752 5.5z

lem can be tackled by solving a number of multi-class classifi-
cation problems. However, this intuitive strategy ignores pos-
sible dependencies among class spaces and would lead to sub-
optimal solutions. A straightforward strategy to consider class

dependencies is to train a single multi-class classifier Whegg cjassifiers in a joint manner. Nonetheless, different from
every distinct class combination appearing in the training sgisting works on covariance regularization [56], [27], [31],
is regarded as a new class. However, this strategy is incapa@l®pc aims at solving MDC problem by coupling covari-

of predicting class combinations absent in the training set agfce regularization with empirical loss of OvO decomposition
is difficult to be learned due to the huge number of possiblg; ; each class space.

classes in the transformed class space. Therefore, it might
be helpful to group all class spaces into several super-classes
before subsequent MDC model induction [35]. Moreover, the
¢ MDC class spaces can be jointly solved by training a chainTo validate the effectiveness of #pc in learning from

of ¢ multi-class classifiers (one per class space) where thilti-dimensional examples, extensive comparative studies
predictive outputs of preceding classifiers in the chain agge conducted in this section. Firstly, Subsection IV-A intro-
treated as extra features by subsequent classifiers [51], [3B]ces experimental setup including the employed data sets,
Besides, a number of existing MDC approaches assume a Da@npared approaches and evaluation metrics. Then, Sub-
structure over class spaces to explicitly model potential cladgction IV-B reports the detailed experimental results with
space dependencies, where different DAG structures leadstatistical comparisons. Lastly, Subsection IV-C further inves-
a family of MDC models called multi-dimensional Bayesiatigates properties of #Mbc based on correlation, sensitivity,
network classifier [43], [11], [37], [18]. Recent works furtheiconvergence and parameter initialization analyses.

explore efficient structure learning strategies [50], [5], [57],

[1] to tackle the demanding training complexity of DAG-baseg. Experimental Setup

MDC approaches. _

to solve learning problems related to MDC such as mctetal of fifteen real-world MDC data sets for thorough compar-
and MLC. For MCC problem, one can work with margin_ative studies. To the best of our knowledge, this serves as the
based classification models by transforming the original MCBOSt comprehensive basis for MDC performance evaluation
problem into a number of binary classification problemd t€rms of the number of benchmark data sets [2], [35],
via different decompositions (e.g., one-vs-one, one—vs-reE’tQ]’ [23], [44]. The characteristics of all benchmark data sets
and many-vs-many), or by maximizing multi-class margind'€ summarized in Table II, includingumber of examples
directly [21], [49]. For MLC, one can also work with margin-(#Exam.),number of class space(#Dlm.), number of class
based classification models via binary decomposition, such!@gels w.r.t each class spag¢Labels/Dim.); and number of
maximizing margins between a pair of class labels [15], [47fatures(#Features).

or by maximizing output coding margins [28], [29], [42], etc. 2) Compared Approaches:in this paper, five well-

It is worth noting that, to model dependencies among clag§tablished MDC approaches have been employed as com-
spaces, the regularization covariance teriWC~'WT) pared approaches, including BR ([35], [24], ECC ([36],
in Eq.(2) has been utilized by Mpc to help learn a set ECP [35], [23], ESC [35] and gMML [30]:

n and x denote numeric and nominal features respec-
tively.

IV. EXPERIMENTS

2Furthermore, the recently proposed dual set multi-label learning prob-3If the number of class labels w.r.t. each class space is identical, then only
lem [26] can also be regarded as a degenerated version of MDC by assuntiig number is recorded; Otherwise, the number of class labels w.r.t. each
two class spaces. class space is recorded in turn.



o BR works by training a number of independent multi- "TABLE III
class classifiers, one per class space. Therefore, BR doE# TIME COMPLEXITY OF M®MDC AND ALL COMPARED APPROACHES

not consider dependencies among class spaces in mode} . _
Algo. Time compleity

induction. N _ _ 3 M3MDC | O(Ty - T -m - N3 + 11 - m?)
« ECC works by training a chain of multi-class classifiers, gg O(m - N%)
one per class space, where the predictions of precedin

3
classifiers in the chain are used as extra features in O(E'm‘qN) s s
training the subsequent ones. Therefore, ECC exploits O(E - (ITj= K5)" - N°)
dependency modeling via the specified chaining order ESC O m N*+E-([[j1 K§)* - N¥)
over class spaces. gMML | O(d® + (37, K;)® + Nd® + Nd(329_, K;) + Nk)

« ECP works by training a single multi-class classifier
via powerset transformation in output space, where all
distinct class combinations in output space are treatadmber of nearest neighbors considered.
as new classes. Therefore, ECP exploits dependencys) Evaluation Metrics:In this paper, the widely-used three
modeling via powerset transformation. metrics, i.e.,Hamming ScoreExact Matchand Sub-Exact

« ESC works by grouping the original class variables int®atch [2], [35], [30], [23], [24], are employed to measure
super-classes, where each super-class is treated as a thewgyeneralization performance of MDC approach&necif-
class variable and all distinct class combinations in thisally, let S = {(z;,y;) | 1 < i < p} be the test set
super-class are treated as its new classes. where the ground-truth class vector associated withis

« gMML works by alternately learning regression modely,; = [y;1,vi2, - - -, yiq] |- For the MDC predictive functiorf
for each class label and a Mahalanobis metric charactena-be evaluated, the class vectomgfpredicted byf is denoted
ing the closeness between regression outputs and grouasly;, = f(x;) = [fi1,8i2,- - ., 0ig) |- Then, the number of
truth labeling information. class spaces whicli predicts correctly can be calculated as

) =3 [yi; = 0i;]. Here, the predicatgr] returns 1 if
For ensemble approaches ECC, ECP and ESC, the basg, 45 and 0 otherwise. Accordingly, formal definitions of
MDC model is trained over a random cut of 67% examplgfe employed evaluation metrics correspond to:

from the original MDC training set and a total of ten base
classifiers are used [35], [23]. Furthermore, we aggregate
predictions of base MDC models via majority voting. For
all the compared approaches (except gMML which doesn't
necessitate base multi-class classifier), support vector machine
(SVM) is used as the base multi-class classifier. Specifically,* Exact Match
LIBSVM [9] with either linear kernel or RBF kernel is 1< @)
used to implement the base multi-class classifier. Here, it is EMatchs(f) = » Z[[T =]
worth noting that we employ LIBSVM to implement the base =1
classifier which solves the multi-class classification problems e Sub-Exact Match
via OvO decomposition for fair comparison betweeANVDC 1N
and the compared approaches. For ESC, the classifier chains SEMatchs(f) = = > [r) > q—1]

. . . p =
model is used to solve the resulting problem obtained by i=1
super-class partition, and the fine-tune mechanism is notn a nutshell, Hamming Scoreeturns the average fraction
used because it does not bring significant performance i@f- correctly predicted class spacdsxact Matchreturns the
provements [35]. For gMML, parameteps t, v and k are proportion of test examples whose class spaces are predicted
tuned from the rangél, 10, 100}, {0.3,0.5,0.7}, {0,0.1,0.2}  correctly in full. Sub-Exact Matctreturns the proportion of
and {5,10,15,20,25} respectively, and; is fixed as 3 as test examples for which at leagt — 1 class spaces are
recommended in the corresponding literature [30]. As shovatiedicted correctly. ObviouslBub-Exact Matcteorresponds
in Table I, the two trade-off parameteis, A\, for M3Mpc to a relaxed version dixact Match where the value oExact
are set as 0.001 and 0.1 respectively. Match might be rather low when the MDC task has a large

Table Ill summarizes the computational complexity of alrlwulmberhof glass srﬁ)aces]; For all threehmetrlcs,lange;tlrzje
compared approaches. For®Mpc and gMML, its time values the better the performance. In this paper, ten-fold cross

complexity has been analyzed in Section Il and in [301alidatior? is conducted on all benchmark data sets, and both

(Subsection 4.4). For BR, ECC, ECP, ESC, the multi-classtn some literaturesHamming Scor@nd Exact Matchare also termed as
classification problem is solved by the binary classifier SVMlass Accuracyand Example Accuracy35], or Mean Accuracyand Global

with the help of OvO decomposition. The main complexity ofccuracyl2l _ o ,
In this paper, each data set is randomly split into ten equal-sized folds.

SVM [10] corresponds to solving the dual QP problem [3.3]3enerally, the random splitting would result in stratified sampling approxi-
In Table Ill, £ denotes the number of base learners (i.emately and ensure that the training examples in each fold cover all classes.

ensemble size) in ECC. ECP. ESC. For ESC [%hnd K¢ Exceptions might occur when the number of examples belonging to one class
d h b f ' ’ | d th b Jf Iis limited. In ten-fold cross validation, f#Mbpc (as well as the compared
enote the number of super-classes and the number o Clﬂgt%ods) is trained on nine folds where the training examples do cover all

labels in thejth super-class. For gMML [30]k denotes the classes in our experimental studies.

« Hamming Score

HScores(f) = (@)

P
=1

A
Q| =



TABLE IV

PREDICTIVE PERFORMANCE(MEAN=+STD. DEVIATION) OF EACH COMPARED APPROACH ON THE BENCHMARK DATA SET$LINEAR KERNEL FOR

M3Mbc, BR, ECC, ECPaND ESC). THE PERFORMANCE RANK ON EACH DATA SET IS SHOWN IN THE PARENTHESES WHERE WE ALSO HIGHLIGHT THE

BEST PERFORMANCE IN BOLDFACE AND UNDERLINE THE SECOND PERFORMANCE

(@) HammingScore

Data Set MMbc BR [35], [24] ECC [36] ECP [35], [23] ESC [35] gMMIL[30]

Edm 0.7270.089(1) | 0.689t0.070(6) 0.693:0.065(5) 0.72%0.082(2) 0.698:0.089(4) 0.7140.083(3)
Flarel 0.923:0.033(2) | 0.922:0.034(4) 0.922:0.034(4) 0.92%0.036(6) 0.923:0.033(2) 0.925:0.034(1)
Cal500 0.638:0.010(2) | 0.6280.011(3) 0.625:0.015(4) 0.616:0.015(5) 0.616:0.019(5) 0.631£0.014(1)
Music 0.8110.022(3) | 0.808:0.023(4) 0.814+0.025(1) 0.799:0.032(6) 0.813:0.028(2) 0.808-0.018(5)
Enb 0.793:0.026(1) | 0.734:0.029(5) 0.7540.033(3) 0.728:0.043(6) 0.7520.043(2)  0.742:0.027(4)
Song 0.796+0.028(1) | 0.793+0.023(2) 0.798-0.024(3) 0.788:0.029(6) 0.798-0.029(3)  0.788:0.027(5)
WQplants 0.660+0.013(1) | 0.657:0.016(2) 0.6540.016(4) 0.64%0.015(6) 0.65%0.017(5) 0.653:0.015(3)
WQanimals | 0.632£0.014(1) | 0.63Gt0.014(3) 0.638:0.014(3) 0.623:0.013(6) 0.63%0.014(2)  0.638:0.015(3)
WaterQuality | 0.646+0.012(1) | 0.644+0.013(2) 0.6430.013(3) 0.6280.015(6) 0.6410.013(5) 0.6430.013(3)
BeLaE 0.454+0.021(1) | 0.4470.015(4) 0.45%0.018(2) 0.4130.017(6) 0.458:0.015(3)  0.41%0.020(5)
Yeast 0.802+0.006(1) | 0.801-0.006(3) 0.79%0.007(5) 0.793:0.007(6) 0.802:0.006(1) 0.80G+0.005(4)
Voice 0.970+0.008(1) | 0.964+0.007(2) 0.96%0.008(3) 0.953:0.013(5) 0.96%0.009(3)  0.842-0.009(6)
Thyroid 0.965+0.002(1) | 0.965:0.002(1) 0.9650.002(1) 0.965:0.002(1) 0.965-0.002(1) 0.96G+0.002(6)
TIC2000 0.935:0.004(1) | 0.934:0.004(4) 0.935-0.004(1) 0.926+0.005(5) 0.935-0.004(1) 0.895+0.007(6)
Adult 0.711-0.004(1) | 0.710+0.004(2) 0.718-0.004(2) 0.708:0.004(4) 0.708:0.004(4) 0.703:0.004(6)

(b) ExactMatch

Data Set MMbc BR [35], [24] ECC [36] ECP [35], [23] ESC [35] gMMIL[30]

Edm 0.500.151(3) | 0.4420.125(6) 0.4540.123(5) 0.559-0.136(1) 0.512£0.142(2) 0.48%0.145(4)
Flarel 0.8210.073(1) | 0.82%0.073(1) 0.817:0.078(5) 0.81%0.078(5) 0.8210.073(1)  0.8210.075(1)
Cal500 0.016-0.016(3) | 0.016:0.016(3) 0.028:0.016(2) 0.026+0.028(1) 0.014+0.013(5) 0.014-0.013(5)
Music 0.2810.074(4) | 0.2720.075(5) 0.346:0.079(2) 0.343:0.076(3) 0.350:0.078(1) 0.252+0.056(6)
Enb 0.586+0.051(1) | 0.469+0.059(5) 0.508:0.066(3) 0.456:0.086(6) 0.5180.085(2) 0.483-0.053(4)
Song 0.486+0.069(1) | 0.479+0.059(6) 0.4810.057(4) 0.4840.054(2) 0.48%0.062(4) 0.4840.059(2)
WQplants 0.100+0.034(1) | 0.097+0.033(2) 0.093:0.037(3)  0.093:0.028(3)  0.0930.037(3)  0.092-0.035(6)
WQanimals 0.0520.022(5) | 0.0580.022(6) 0.0620.023(4) 0.065:0.018(1) 0.064:0.024(2) 0.062:0.023(3)
WaterQuality | 0.008:0.008(1) | 0.007:0.008(2) 0.006:0.008(3) 0.0010.003(6) 0.006:0.008(3)  0.006:0.008(3)
BelLaE 0.0330.016(2) | 0.03%0.013(4) 0.03%0.016(4) 0.035:0.016(1) 0.032:0.013(3)  0.022-0.009(6)
Yeast 0.15#0.018(4) | 0.15%0.017(5) 0.20%0.014(3) 0.252-0.012(1) 0.23A-0.017(2) 0.1340.018(6)
Voice 0.941+0.017(1) | 0.929+0.014(2) 0.923-0.016(4) 0.9120.025(5) 0.9240.016(3) 0.699-0.017(6)
Thyroid 0.777:£0.014(1) | 0.773:0.015(2) 0.772:0.014(4) 0.7730.014(2) 0.77%0.014(5) 0.74%0.015(6)
TIC2000 0.815+0.011(1) | 0.812:0.011(4) 0.8140.012(2) 0.79%0.014(5) 0.8140.012(2)  0.706:0.018(6)
Adult 0.252+0.011(4) | 0.24#0.009(5) 0.268-0.008(3) 0.310:£0.009(1) 0.318:0.009(1) 0.23G+0.009(6)

(c) Sub-ExactMatch

Data Set MMbc BR [35], [24] ECC [36] ECP [35], [23] ESC [35] gMML30]

Edm 0.955:0.053(1) | 0.935:0.061(3) 0.9330.069(3) 0.8830.074(5) 0.8830.074(5) 0.9410.065(2)
Flarel 0.95%0.036(2) | 0.94#0.039(5) 0.95%0.036(2) 0.94#0.039(5) 0.95%0.036(2) 0.957:0.039(1)
Cal500 0.082-0.046(2) | 0.074-0.037(5) 0.088:0.031(3) 0.0780.036(4) 0.086+0.038(1) 0.072:0.041(6)
Music 0.687:0.067(1) | 0.674:0.067(3) 0.676:0.064(2) 0.648:0.064(6) 0.6620.075(4)  0.652-0.040(5)
Enb 1.000£0.000(1) | 1.008-:0.000(1) 1.008-:0.000(1) 1.008-:0.000(1) 1.008:0.000(1) 1.008-:0.000(1)
Song 0.905+0.039(1) | 0.903t0.033(2) 0.8910.036(4) 0.8780.040(6) 0.892:0.038(3)  0.883:0.041(5)
WQplants 0.289+0.052(1) | 0.287:0.055(2) 0.283:0.049(4) 0.28%0.049(6)  0.282:0.049(5)  0.286:0.053(3)
WQanimals | 0.236+0.028(1) | 0.229+0.034(4) 0.229:0.032(4) 0.238:0.032(3)  0.2320.032(2) 0.22#0.033(6)
WaterQuality | 0.0514+0.025(1) | 0.05%0.024(1) 0.050+0.023(3) 0.035:0.018(6) 0.046:0.022(5)  0.049:-0.024(4)
BeLaE 0.162:0.029(2) | 0.1580.023(4) 0.164:0.025(1) 0.135:0.024(5) 0.1520.024(3)  0.138:0.020(6)
Yeast 0.273:0.028(4) | 0.262:0.029(5) 0.2880.023(3)  0.3040.020(2) 0.310£0.030(1) 0.266+0.026(6)
Voice 0.999+0.001(1) | 0.999:0.002(1) 0.998+0.002(3) 0.9980.003(3) 0.9980.002(3) 0.985:0.011(6)
Thyroid 0.982+0.004(1) | 0.982:0.004(1) 0.981-0.004(5) 0.98%0.005(5) 0.982:0.004(1)  0.982-0.005(1)
TIC2000 0.991-0.004(1) | 0.989+0.003(4) 0.998-0.003(2) 0.98#0.003(5) 0.998-0.003(2)  0.978:0.003(6)
Adult 0.665+0.009(3) | 0.669+0.009(1) 0.662+0.009(4) 0.6380.007(5) 0.6380.008(5) 0.669+0.008(1)

the mean metric value and standard deviation are recorded Bor Experimental Results
comparative studies.

Detailed experimental results are reported in Tables IV-
V, where the performance rank on each data set is also



TABLE V
PREDICTIVE PERFORMANCE(MEAN=STD. DEVIATION) OF EACH COMPARED APPROACH ON THE BENCHMARK DATA SET$RBF KERNEL FORM3MDC,
BR, ECC, ECPaND ESC). THE PERFORMANCE RANK ON EACH DATA SET IS SHOWN IN THE PARENTHESES WHERE WE ALSO HIGHLIGHT THE BEST
PERFORMANCE IN BOLDFACE AND UNDERLINE THE SECOND PERFORMANCE

(@) HammingScore

Data Set MMbc BR [35], [24] ECC [36] ECP [35], [23] ESC [35] gMMIL[30]

Edm 0.721+0.056(1) | 0.694t0.047(6) 0.6980.053(5) 0.7140.077(2) 0.7040.066(4) 0.7140.083(2)
Flarel 0.923:0.033(2) | 0.923:0.033(2) 0.923:0.033(2) 0.923:0.033(2) 0.923:0.033(2) 0.925:0.034(1)
Cal500 0.6180.019(2) | 0.6130.019(3) 0.6130.021(3) 0.6130.020(3) 0.593:0.029(6) 0.631t0.014(1)
Music 0.801£0.023(1) | 0.739£0.014(3) 0.7380.028(4) 0.68%0.044(6) 0.695-0.033(5) 0.808-0.018(2)
Enb 0.745:0.029(1) | 0.716£0.029(3) 0.68%0.035(4) 0.66%0.019(5) 0.6630.022(6)  0.742:0.027(2)
Song 0.7730.027(2) | 0.77%0.026(3) 0.7780.025(4) 0.7620.027(5) 0.766:0.027(6) 0.788:0.027(1)
WQplants 0.6520.016(2) | 0.649:0.016(3) 0.6480.016(4) 0.64%0.015(5) 0.64#0.015(5) 0.655-0.015(1)
WQanimals | 0.630:0.013(1) | 0.628:0.013(3) 0.628:0.013(3) 0.628:0.013(3)  0.628:0.013(3) 0.630G£0.015(1)
WaterQuality | 0.648:0.013(2) | 0.632:0.013(3) 0.6380.012(4) 0.62#0.017(6) 0.638:0.012(4) 0.643+0.013(1)
BelLaE 0.4370.019(1) | 0.423t0.022(2) 0.408:0.022(4) 0.3540.018(6) 0.3740.020(5) 0.41%0.020(3)
Yeast 0.7930.007(2) | 0.77%0.006(4) 0.776:0.008(3) 0.7320.009(6) 0.74%0.012(5) 0.80G+0.005(1)
Voice 0.962+0.008(1) | 0.940+0.010(2) 0.938-0.008(4) 0.903:0.009(5) 0.93%10.009(3)  0.842-0.009(6)
Thyroid 0.961+0.003(1) | 0.96%0.002(1) 0.9610.002(1) 0.96%0.002(1) 0.9640.002(1) 0.96G+0.002(6)
TIC2000 0.904:0.007(1) | 0.892+0.008(3)  0.8840.007(4) 0.858:0.006(6)  0.884:0.007(4)  0.893:0.007(2)
Adult 0.699+0.004(4) | 0.70%0.004(3) 0.7020.005(2) 0.6753:0.006(5) 0.673:0.006(5) 0.705+0.004(1)

(b) ExactMatch

Data Set MMbc BR [35], [24] ECC [36] ECP [35], [23] ESC [35] gMMIL[30]

Edm 0.46@:-0.118(3) | 0.389:0.093(6) 0.3950.106(5) 0.486:0.129(2) 0.4540.110(4) 0.487+0.145(1)
Flarel 0.8210.073(1) | 0.82:0.073(1) 0.82:+0.073(1) 0.82:0.073(1) 0.8210.073(1)  0.8210.075(1)
Cal500 0.018:0.020(3) | 0.006-:0.010(6) 0.024+0.025(1) 0.022+:0.025(2) 0.018:0.017(5) 0.014-0.013(4)
Music 0.257+0.065(1) | 0.078+0.041(6) 0.1353:0.071(5) 0.1940.063(4) 0.208-0.068(3)  0.252-0.056(2)
Enb 0.49G+0.057(1) | 0.431-0.058(3) 0.362:0.069(4) 0.335:0.037(5) 0.338:0.045(6) 0.483-0.053(2)
Song 0.4530.056(2) | 0.449-:0.060(3) 0.446:0.055(4) 0.4420.059(5) 0.4380.059(6) 0.484+0.059(1)
WQplants 0.092.0.031(4) | 0.092.0.030(4) 0.094:0.029(1) 0.0940.029(1) 0.0940.029(1) 0.092+0.035(4)
WQanimals 0.0580.022(2) | 0.056:0.024(3) 0.056:0.024(3) 0.056:0.025(3) 0.056:0.024(3) 0.062+0.023(1)
WaterQuality | 0.0074-0.008(1) | 0.006:0.008(2) 0.006:0.008(2) 0.0010.003(6) 0.006:0.008(2)  0.006:0.008(2)
BelLaE 0.03#0.010(2) | 0.0280.010(3) 0.035:0.012(1) 0.025+0.009(4) 0.0230.008(4)  0.022-0.009(6)
Yeast 0.0580.018(5) | 0.0140.007(6) 0.06%0.016(4) 0.139+-0.007(1) 0.138+0.021(2) 0.1340.018(3)
Voice 0.926+0.016(1) | 0.884+0.017(2) 0.866:0.015(4) 0.825:0.016(5) 0.86#£0.016(3) 0.699-0.017(6)
Thyroid 0.748+0.015(1) | 0.743:0.014(2) 0.7430.014(2) 0.7420.014(4) 0.7420.014(4)  0.74%0.015(6)
TIC2000 0.732+:0.018(1) | 0.698+0.019(3) 0.6750.016(4) 0.58#0.016(6) 0.6750.016(4) 0.706:0.018(2)
Adult 0.216+0.010(6) | 0.2280.006(5) 0.25%0.009(3) 0.269:0.011(1) 0.262:0.011(1) 0.23G+0.009(4)

(c) Sub-ExactMatch

Data Set MMbc BR [35], [24] ECC [36] ECP [35], [23] ESC [35] gMML30]

Edm 0.9810.031(3) | 1.00G:£0.000(1) 1.008:0.000(1) 0.941:0.049(5) 0.9540.055(4) 0.94%0.065(5)
Flarel 0.95%0.036(2) | 0.95%0.036(2) 0.95%0.036(2) 0.95%0.036(2) 0.95%0.036(2) 0.957:0.039(1)
Cal500 0.068:0.037(6) | 0.078:0.036(5) 0.072:0.029(2) 0.09G+0.037(1) 0.072:0.028(2)  0.072:0.041(2)
Music 0.635:0.060(2) | 0.4540.063(4) 0.476:0.084(3) 0.436:0.077(6) 0.446:0.073(5) 0.652:0.040(1)
Enb 1.000+0.000(1) | 1.008-:0.000(1) 1.008-:0.000(1) 1.008-:0.000(1) 1.008:0.000(1) 1.008-:0.000(1)
Song 0.869-0.040(2) | 0.868:0.032(4) 0.862-0.033(2) 0.868:0.038(4) 0.862-0.034(6) 0.883:0.041(1)
WQplants 0.287:0.048(1) | 0.284:0.051(3) 0.2820.050(4) 0.282:0.048(4) 0.282:0.048(4)  0.286:0.053(2)
WQanimals | 0.2310.030(1) | 0.226+0.031(3) 0.226:0.031(3) 0.223:0.031(6) 0.226:0.031(3)  0.22#0.033(2)
WaterQuality | 0.045:0.023(2) | 0.044-0.024(4) 0.0450.023(2) 0.033:0.018(6) 0.043:0.020(5) 0.049+0.024(1)
BeLaE 0.1510.023(1) | 0.132:0.024(3) 0.1340.016(2) 0.0930.010(6) 0.118:0.012(5)  0.138:0.020(4)
Yeast 0.236:0.023(2) | 0.118-0.014(6) 0.186:0.016(3) 0.173:0.015(5) 0.1780.026(4) 0.266+0.026(1)
Voice 0.998+0.002(1) | 0.996+0.005(2) 0.995:0.005(3) 0.984-0.006(6) 0.995-0.005(3) 0.983:0.011(5)
Thyroid 0.982:0.004(3) | 0.983:0.004(1) 0.9830.004(1) 0.982:0.004(3) 0.982:0.004(3)  0.982-0.005(3)
TIC2000 0.981-0.004(1) | 0.979+0.004(2) 0.97#0.005(4) 0.9640.006(6) 0.976:0.005(5) 0.978:0.003(3)
Adult 0.658+0.008(2) | 0.65#0.010(3) 0.65%0.010(4) 0.58%0.011(5) 0.586:0.011(6) 0.669+0.008(1)

shown in the parentheses. Moreover, to show whethBvibic  approaches, we emplowilcoxon signed-ranks tegil2] (at
achieves statistically superior performance against compafe@5 significance level) whose statistical test results are sum-
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TABLE VI
WILCOXON SIGNED-RANKS TEST FOR THE PROPOSEIMM3MDC APPROACH AGAINST EACH COMPARED APPROACH IN TERMS OHamming ScorgExact
MatchAND Sub-Exact MatclRESPECTIVELY WHERE THEp-VALUES AT 0.05SIGNIFICANCE LEVEL ARE ALSO SHOWN IN THE BRACKETS

(a) Linear kernel for MMbc, BR, ECC, ECP an@&ESC

Evaluation Metric MMbDc vs BR  M3Mbpc vs ECC  M3MbpcvsECP  MPMbDC vs ESC  MPMDC vs gMML
Hamming Score win[6.10e-05]  win[1.53e-03] win[6.10e-05] win[1.22e-03] win[6.10e-04]
Exact Match win[2.44e-04] tie[4.21e-01] tie[8.47e-01] tie[1.00e+00] win[6.71e-04]

Sub-Exact Match win[6.10e-03] tie[5.74e-02] win[8.54e-03] tie[8.03e-02] win[5.25e-03]

(b) RBF kernel for MMDc, BR, ECC, ECP an&ESC

Evaluation Metric MMbpcvsBR  M3MbpcvsECC  M3MbpcvsECP  MPMpcvsESC  MPMDC vs gMML
Hamming Score win[6.10e-04]  win[8.54e-04] win[1.22e-04]  win[1.22e-04] tie[9.78e-01]
Exact Match win[3.30e-03] tie[1.58e-01] tie[2.22e-01] tie[8.13e-02] tie[8.58e-01]
Sub-Exact Match win[3.98e-02] tie[7.42e-02] win[8.06e-03]  win[2.44e-03] tie[6.37e-01]
marized in Table VP the degree of correlation between thth and jth pair of
Based on the reported experimental results, the followirdpss labels, wherd;; = +1 (—1) indicates fully positive
observations can be made: (negative) correlation whil&;; = 0 indicates null correlation.

« Among M*Mbc and five compared approachesiMipc ~ T0 show whether the proposed °MpcC approach can
ranks first in 51 cases (56.7%), ranks second in Z&cover the ground-truth dependencies among class spaces,

cases (23.3%) across all the 90 cases (15 datasetdve generate a synthetic MDC data set with known class
3 evaluation metrics< 2 kernel types). dependencies. Specifically, a total of 1000 examples in two-

« As shown in Table VI, MMbc achieves statistically dimensional feature space within the unit square are generated.
superior performance against BR, ECC, ECP, ESC iree class variables (denotediasy. andys) are considered

terms ofHamming Scoren both kernel types. whose values are set as:
« ECP works by conducting class powerset transformation ] 1, whenx; +22 <1
in output space and then training a multi-class classifier, v 2, otherwise

which actually can be viewed as optimiziEgact Match

It is impressive to notice that #Mpc still achieves 1, when 1 +22 <0.5

comparable performance against ECP and ranks first in 2, when05<z;+29<1

15 out of 30 cases in term of this metric. Y2 = 3, whenl<uz;+x9<1.5
o It is worth noting that MMDcC achieves statistically 4, otherwise

superior performance against BR in terms of all three 1, when z; > 25

metrics on both kernel types. This result clearly validates Y3 = { 2: otherwise

the necessity of considering class dependencies in learn- o o

ing from MDC examples and also the effectiveness of" this case, it is not difficult to show thap, and y, are

M3Mbc’s dependency modeling strategy. positively related while botly; andy, are independent ajs.
For the proposed RMbDc approach, a total of 8 binary clas-

sification models will be generated accordingly based on the
C. Further Analysis one-vs-one decomposition. We depict the correlation marix
1) Correlation Analysis:In this paper, MMbc makes use learned by MMbc (with linear kernel) in Figure 1(a). Note
of covariance matrixC in Eq.(2) to model the dependencieghat for the correlation value, red color corresponds-toand
among class spaces. Here, we normalize each elemet irblue color corresponds te 1, while green color corresponds
with its corresponding two diagonal elements as follows arid 0. It is shown that, excluding diagonal elements, elements

then obtain the correlation matrik: in the 8-th row and the 8-th column almost equal to zero (at
Cyi most 0.0168) while the remaining elements almost equal to
Rij = G xC, (24)  one (at least 0.9998). There results indicate that tHé/kic
i JJ

is capable of recovering the ground-truth dependencies among
where R;; (C;;) denotes the element in théh row andjth class spaces.
column of R (C). Specifically, the value of?;; represents  Moreover, we also depict the correlation matRxlearned

by M3Mbpc (with linear kernel) on two real-world MDC

8In this paper, both the mean meFric v_alue and standard_deviation Hata setsSong and WaterQuaIity in Figure 1(b)-(C). It is
represented by three decimal digits which will make some experimental resu

ith tiny di i gl,j;suown that, excluding diagonal elements, some red or blue
with tiny difference looking to be exactly the same. For example, the me v . g. ‘ g K
metric values ofHamming Scorefor M3Mbc, BR, ECC, ECP and ESC blocks do exist which indicate dependencies between classes,

overThyroid in Table IV are 0.965470, 0.964956, 0.964753, 0.964862 anghile more blocks are green which indicate independencies
0.964675 by keeping six decimal digits. The performance rank is based Bn | G I hould id | d
the rounded mean metric values with three decimal digits, whilé\fheoxon etween classes. Generally, we should consider class depen-

signed-ranks tesis based on the accurate mean metric values. dencies when designing MDC approaches but also need to be
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Fig. 1. Correlation matrix on synthetic data set and two real-world MDC dataSsetg WaterQuality
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Fig. 2. Performance of RMDc changes as\1, A2 range in{10,1,0.1,0.01,0.001,0.0001} (on Music).
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Fig. 3. Performance of BMbc changes as\1, Ay range in{10,1,0.1,0.01,0.001,0.0001} (on Song.

careful whether the dependencies captured by the model &ens of each evaluation metric. Therefore, the two parameters
ground-truth ones. As per the favorable experimental resudte fixed as\; = 0.001, Ao = 0.1 in this paper, which can
reported in Subsection IV-B, we hypothesize that the claserve as the default parameter setting of\Wbc for ease of
dependencies captured by>MDc are beneficial in helping use.
generate MDC classification models with strong generalization3) Convergence AnalysisAs shown in Table I, MMbc
performance. solves the main optimization problem in Eq.(2) in an alter-
nating manner. Let2(W,C) be the objective function of

2) Sensitivity Analysis:As shown in Eq.(2), MMDC Eq.(2), andW* andC? be the obtained values & andC in
makes a balance among empirical risk, structural risk aige ¢-th iteration respectively, it is obvious that the following
relationship regularization by the two trade-off parameteisequalities hold:
A1; Ag. Ir? this sub_sec;ion, we study the sensitivity oFMD_C QW!,Cl) > QW' Ct) > QWL ) >
on how its classification performance changes under different ’ ’ ’
parameter settings. Accordingly, Figures 2 and 3 illustrate thich ensures the convergence of MIDc. In this subsection,
experimental results of BMDc on benchmark data setdusic we further analyze the convergence rate ofMbc via
andSongrespectively. Similar results can be observed on othexperiments. Specifically, we recoW after each iteration of
data sets as well. As shown in Figure 23MbDc achieves alternating optimization (with linear kernel) and then compute
relatively better performance whexy < 1 and A, = 0.1 in the Frobenius norm of the difference between two adjacent
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Fig. 4. Convergence curves on benchmark data Setgy WaterQuality BeLaE Yeastand \oice

W. Figure 4 illustrates the convergence curve of NYbc V. CONCLUSION

on benchmark data seSong WaterQuality BeLakE Yeast  Tpjs paper extends our preliminary work [22] which focuses
and Voice where the vertical axis represents the resulting, designing margin-based MDC approach. Specifically, we
Frobenius norm and the horizontal axis represents the ”UmB%pose a novel approach namedMbDc which not only
of iterations. We can observe that the value of the Frobenigsximizes the margins between each pair of class labels via
norm decreases quickly in the first few iterations, whichyo decomposition, but also considers the class dependencies
demonstrates the fast convergence property 6MMC. To g covariance regularization. The resulting convex formula-
be more specific, foSong WaterQuality BeLaE Yeastand tjon of M3Mbc is solved with alternating optimization admit-
Voice, the Frobenius norffW* — W*~!{| . will be less than ting QP or closed-form solution in either step. To validate the
0.11in 16, 11, 11, 4, 7 iteration rounds, and less than 0.05 dffectiveness of MMDc, extensive comparative studies over
23, 15, 16, 5, 10 iteration rounds, respectively. fifteen benchmark data sets have been conducted. Experimen-
tal results show that M bc achieves favorable generalization
performance against state-of-the-art MDC approaches.

4) Effects of Initialization:As shown in Table I, the proce- The M’MDC approach serves as the first attempt towards
dure of MMMDCc relies on the initialization of the covarianceadapting margin-based techniques for learning from MDC
matrix C and the Lagrangian variables. In this subsection, examples. In the future, it is interesting to investigate other
we perform some studies specifically to show how the pr¥ys of instantiating margin-based MDC approaches, such as
posed approach would be affected by the initialization stepxploring margins based on one-vs-rest (OvR) decomposition,
Table VIl reports the detailed experimental results of foupowerset transformation, etc.
different initialization strategies, including the initialization

strategy of MMDC (denoted as Random-None), randomly
initializing C (denoted as Randoi@), randomly initializing

«a (denoted as Random) and randomly initializing bothC
and o (denoted as Random-Both). It is shown that different
initialization strategies affect the proposed approach slightly2]
To be more specific, the initialization of Lagrangian variables
a has little effect on the experimental results, while theg
initialization of covariance matrixC has relatively more effect

on the experimental results. When there is no prior knowledglﬁ4
it is more reasonable to assume independent relations d
among class spaces, i.e., initializig)= %Im.
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