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Multi-Dimensional Classification via
Decomposed Label Encoding
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Abstract —In multi-dimensional classification (MDC), a number of class variables are assumed in the output space with each of them
specifying the class membership w.r.t. one heterogeneous class space. One major challenge in learning from MDC examples lies in
the heterogeneity of class spaces, where the modeling outputs from different class spaces are not directly comparable. To tackle this
problem, we propose a new strategy named decomposed label encoding which enables modeling alignment for MDC in an encoded
label space derived from one-vs-one (OvO) decomposition. Specifically, the original MDC output space is transformed into a ternary
encoded label space by conducting OvO decomposition w.r.t. each class space. Then, the manifold structure in the feature space is
exploited to enrich the labeling information in the encoded label space. Finally, the predictive model is induced by fitting the
metric-aligned modeling outputs with enriched labeling information. Extensive experiments over twenty benchmark data sets clearly
show the superiority of the proposed MDC strategy against state-of-the-art approaches.

Index Terms —machine learning, multi-dimensional classification, label encoding, one-vs-one decomposition
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1 INTRODUCTION

I N many real-world applications, the modeling problem can
be formalized under the traditional multi-class classification

framework, where each object is represented by one instance
(feature vector) while associated with a single class variable.
However, there are also other application scenarios where the
objects’ semantics cannot be simply characterized by a single
class variable. For example,e-commerce websites usually need to
simultaneously classify smartphones from thebrand dimension
(with the possible classesHuawei, Samsung, Apple, etc.), from the
operating system dimension (with the possible classesAn-
droid, iOS, Windows Phone, etc.), from theCPU brand dimen-
sion (with the possible classesQualcomm, MediaTek, Hisilicon,
etc.), etc. Actually, similar application scenarios widely exist in
real-word applications such as bioinformatics [7], [45], text clas-
sification [49], [50], resource allocation [1], etc. To characterize
the rich semantics of such kind of objects, one natural solution
is to associate multiple class variables with the objects, which
results in the learning frameworkmulti-dimensional classification
(MDC) [25], [39], [43]. In contrast to multi-class classification,
in MDC each example is also represented by one instance while
associated with multiple class variables simultaneously. Here,
each class variable corresponds to one specific class space which
characterizes the objects’ semantics from one dimension.

Formally speaking, letX = Rd be the input (feature)
space, andY = C1 × C2 × ∙ ∙ ∙ × Cq be the output space.
Here,Y corresponds to the Cartesian product ofq class spaces
Cj = {cj

1, c
j
2, . . . , c

j
Kj

} (1 ≤ j ≤ q) which consists ofKj

possible class labels respectively. Given the MDC trainingset
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D = {(xi, yi) | 1 ≤ i ≤ m} with m training examples, for
each example(xi, yi) ∈ D, xi = [xi1, xi2, . . . , xid]> ∈ X is a
d-dimensional feature vector andyi = [yi1, yi2, . . . , yiq]> ∈ Y
is the q-dimensional class vector associated withxi with each
componentyij representing one possible class label inCj , i.e.,
yij ∈ Cj . The task of multi-dimensional classification is to learn
a mapping functionf : X 7→ Y fromD which can return a proper
class vectorf(x∗) ∈ Y for unseen instancex∗.

Obviously, the MDC problem can be solved by training a
number of independent multi-class classifiers, one per dimension.
However, the simple decomposition strategy isn’t consistent with
the intention of MDC task which aims at inducing a unified model
f : X 7→ Y for all dimensions. In other words, potential depen-
dencies among class spaces should be considered when learning
MDC models. An intuitive strategy in this way is to solve the MDC
problem by considering all class variables as a single compound
one, i.e., each distinct class combination inD is regarded as a new
class. However, this powerset-like transformation strategy would
suffer high computational cost due to its combinatorial nature and
is incapable of predicting class combinations absent in the training
set. Therefore, most existing MDC approaches focus on how to
model class dependencies in appropriate ways, such as capturing
pairwise class dependencies [2], [26], [27], learning a directed
acyclic graph (DAG) structure for class spaces [5], [18], specifying
chaining order over class spaces [42], [68], and grouping class
spaces into super-classes [43], etc.

However, these approaches mainly deal with the MDC prob-
lem in the original output spaceY which is quite challenging
due to the heterogeneity of class spaces. Specifically, in MDC
the output space consists of multiple heterogeneous class spaces,
which is the essential difference between MDC and other re-
lated classification problems (e.g., multi-class/multi-label classifi-
cation) [25]. The heterogeneity of class spaces makes the modeling
outputs from different class spaces not directly comparable, which
leads to the infeasibility of applying popular multi-class/multi-
label classification techniques to learn from MDC examples. For
example, ranking-based techniques are often utilized to distinguish
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relevant and irrelevant labels when inducing multi-class/multi-
label models [22], [71], while such techniques cannot be gener-
alized to inducing MDC models.

To tackle the heterogeneity of class spaces, we propose to
enable modeling alignment for MDC by employing thelabel
encodingstrategy. Although label encoding has been successfully
applied to learning problems with non-unique labeling such as
multi-label classification [21], [36], [37], [53], [73], its effective-
ness in solving MDC problem is firstly investigated in this paper.
Accordingly, a novel approach named DLEM, i.e., Decomposed
Label Encoding for Multi-dimensional classification, is proposed
by adapting the popular one-vs-one decomposition. Firstly, DLEM

transforms the MDC output space into a ternary label space with
negative, null or positive label assignment via OvO decomposition
w.r.t. each class space. Then, the labeling information in the en-
coded label space is enriched by exploiting the manifold structure
in the feature space. Finally, DLEM induces the predictive model
by fitting the metric-aligned modeling outputs with enriched label-
ing information. Here, we would like to reiterate the differences
and advantages of DLEM over existing MDC approaches, where
the predictive model is induced in an encoded label space by
DLEM while in the original heterogeneous label space by existing
MDC approaches. By doing this, we expect DLEM can achieve
better generalization performance, and extensive experiments over
twenty benchmark data sets clearly show the superiority of DLEM

against state-of-the-art MDC approaches.
The rest of this paper is organized as follows. Firstly, related

works on MDC are briefly discussed. Secondly, technical details
of the proposed approach are introduced. Thirdly, experimental
results of comparative studies are reported. Finally, we conclude
this paper.

2 RELATED WORK

Multi-dimensional classification has a close relationship with the
widely studied multi-label classification (MLC) framework [17],
[70], [72], while both of them can be regarded as specific instanti-
ations of multi-output learning [65]. As per their mathematical
definitions, each dimension in MDC corresponds to a multi-
class variable while each label in MLC corresponds to a binary
class variable. Furthermore, MDC usually assumesheterogeneous
class spaces where different dimensions correspond to different
semantic spaces, while MLC usually assumeshomogeneousclass
space where different labels correspond to the relevancy of con-
cepts in the same semantic space. Besides, one recent develop-
ment in MDC named multi-dimensional partial label learning
(MDPL) [64] considers a more complicated setting, where the
ground-truth class label in each dimension is concealed in a
candidate label set which makes the problem more challenging
to be tackled.

Obviously, the MDC problem can be simply solved dimension
by dimension, i.e., training a multi-class classifier for each class
space independently. However, possible dependencies among class
spaces are not considered by this intuitive strategy which would
impact its generalization performance. Actually, one of the key
challenges for MDC studies is how to learn a unified model for all
dimensions instead ofq independent models for each dimension.
To induce a unified model for all dimensions, one strategy is
to learn a directed acyclic graph (DAG) over class spaces [14],
[46], [60], where different DAG structures correspond to different

approaches which form a family of MDC models called multi-
dimensional Bayesian network classifier (MBC) [5], [18]. Recent
works on MBC mainly focus on designing efficient DAG structure
learning algorithms, which is still challenging [3], [6], [77] due
to large structure space. Another strategy is to train a chain of
multi-class classifiers, one per class space, where predictions of
preceding classifiers on the chain are used as extra features by the
subsequent ones [42], [68]. Generally, the chaining order largely
affects the performance of this strategy, but it is actually a NP-hard
problem to determine an optimal one.

On the other hand, the MDC problem can be tackled by
utilizing only one multi-class classifier, where each distinct class
combination appearing in the training set can be treated as a
new class. However, following this strategy, class combinations
not appearing in the training set cannot be predicted for unseen
instance and the computational complexity would be high due
to the huge number of new classes. These deficiencies can be
mitigated to some extent by grouping the class spaces into super-
classes [43], but cannot be fully addressed due to the combinatorial
nature. The MDC problem can also be tackled with a two-level
strategy, where preliminary models are learned for each pair of
class spaces via powerset transformation, and then meta models
are learned for all class spaces based on the predictions of the
preliminary models [2], [26], [27]. However, training classification
models for pairwise class spaces leads toO(q2) complexity which
is computationally demanding.

In general, one-vs-rest and one-vs-one are two commonly used
transformation strategies for multi-class classification problems.
The M3MDC approach decomposes each class space of MDC via
one-vs-one strategy and then jointly solves the resulting binary
classification problems by introducing a covariance regularization
term [24]. However, the derived quadratic programming problem
containsm ∙

∑q
j=1(Kj − 1) variables which is usually too large

making it difficult to be solved. The gMML approach conducts a
multi-label like transformation for the MDC output space which
can be regarded as one-vs-rest strategy and then learns a multi-
output regressor for the resulting problem as well as a Mahalanobis
distance metric [39]. However, the one-vs-rest encoded label space
directly aligns class labels from different class spaces which is less
reasonable due to the heterogeneity assumption in MDC.

It is worth noting that the label encoding strategy has been
utilized in solving related learning problems such as multi-label
classification. The pioneering work of multi-label prediction via
compressed sensing [20] simply maps the sparse label space into
a real-valued one with random sensing matrices which satisfy the
restricted isometry property. The following works mainly focus
on how to encode the label space into a more informative one via
different ways, such as conducting principle label space transfor-
mation [56] or feature-aware label space transformation [12], [31],
[33], [34], maximizing the margin between correct and incorrect
encoded label vectors [36], [37], [73], learning neural networks
to accomplish the encoding step [11], [30], [32], etc. There are
also some works which claim better generalization performance
by encoding the binary label space into another binary one instead
of a real-valued one [51], [52], [75]. However, to the best of our
knowledge, no existing works solve the MDC problem with label
encoding strategy. In the next section, we will present the technical
details of the proposed DLEM approach which deal with the MDC
problem via decomposed label encoding.
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3 THE DLEM APPROACH

The learning procedure of DLEM consists of three steps, including
decomposed label encoding, labeling information enrichment, and
predictive model induction. Technical details of these steps are
scrutinized as follows.

3.1 Decomposed Label Encoding

Following the same notations defined in Section1, for the MDC
training setD, let X be the instance matrix with sizem × d
where theith row corresponds to the transpose of feature vec-
tor xi ∈ X , and Y be the label matrix with sizem × q
where theith row corresponds to the transpose of class vector
yi = [yi1, yi2, . . . , yiq]> ∈ Y . According to OvO decom-
position rule, Y can be transformed into a ternary encoded
label matrixL = [L1,L2, . . . ,Lq] ∈ {−1, 0, +1}m×`. Here,
Lj ∈ {−1, 0, +1}m×`j corresponds to the encoded label matrix
of the jth class space (i.e., the transformation ofjth column of
label matrixY) where`j =

(Kj

2

)
(1 ≤ j ≤ q), and` =

∑q
j=1 `j .

Without loss of generality, forLj , theath column (1 ≤ a ≤ `j)
corresponds to the pair of class labels(pj

a, nj
a) in Cj :

(pj
a, nj

a) = (cj
u, cj

a+u−gj(u−1)), (1)

when 1 + gj(u − 1) ≤ a ≤ gj(u) (1 ≤ u ≤ Kj − 1)

wheregj(0) = 0 andgj(t) =
∑t

v=1(Kj − v) when1 ≤ t ≤
Kj − 1. It is easy to verify that̀ j = gj(Kj − 1). Let ljia be the
element inith row andath column ofLj , its value is determined
as follows:

ljia =






+1, if yij = pj
a

−1, if yij = nj
a

0, otherwise
(2)

Example 1. Given the MDC data setD with m = 4 training
examples, i.e.,D = {(x1, y1), (x2, y2), (x3, y3), (x4, y4)}.
Assume that thejth class space includes 4 class labels, i.e.,
Kj = 4 andCj = {cj

1, c
j
2, c

j
3, c

j
4}. For D, assume thatyij = cj

i

(1 ≤ i ≤ 4), i.e., thejth column of label matrixY corresponds
to [cj

1, c
j
2, c

j
3, c

j
4]

>. For the encoded label matrixLj of the jth
class space, according to Eq.(1), the first 3 columns(1 ≤ a ≤
3, i.e., u = 1) correspond to(cj

1, c
j
2), (cj

1, c
j
3) and (cj

1, c
j
4)

respectively, the following 2 columns(4 ≤ a ≤ 5, i.e., u = 2)
correspond to(cj

2, c
j
3) and (cj

2, c
j
4) respectively, and the last

column(a = 6, i.e., u = 3) corresponds to(cj
3, c

j
4). According to

Eq.(2), it is easy to know that the value ofLj is as follows:

Lj =







+1 +1 +1 0 0 0
−1 0 0 +1 +1 0
0 −1 0 −1 0 +1
0 0 −1 0 −1 −1







Here, each column ofL corresponds to an OvO decomposition
problem, where instances with label ‘+1’ (or ‘−1’) serve as pos-
itive (or negative) examples, and instances with label ‘0’ are not
considered in the current binary classification problem. Generally,
we can simply traiǹ independent binary classifiers over examples
with label ‘+1’ and ‘−1’ under the supervision ofL, one per
column. However, all these binary classification problems origi-
nate from the MDC problem via OvO decomposition and should
be solved in a joint manner due to potential relationships among
them [24], [35]. Furthermore, the ternary labeling confidence with
negative, null or positive might be inaccurate due to existence of

possible label noise in real-world applications [76]. In this paper,
DLEM aims at solving all OvO decomposition problems via a
unified model with real-valued labeling confidence.

3.2 Labeling Information Enrichment

To obtain real-valued labeling confidence, DLEM enriches the
labeling information residing inL which is initialized via Eq.(2)
by leveraging the structural information in the feature space.
Specifically, DLEM assumes that similar manifold structures exist
in the input and output spaces.

Following the ideas of locally linear embedding [47], [62],
each instancex can be reconstructed via linear combination of
its k nearest neighbors, and this relationship also holds in the
label space. For each training examplexi (1 ≤ i ≤ m), the
linear combination coefficients for itsk nearest neighbors can be
determined by solving the following optimization problem:

min
sij1 ,...,sijk

∥
∥
∥
∥
∥
∥
xi −

∑

jr∈Nk(xi)

sijrxjr

∥
∥
∥
∥
∥
∥

2

2

, s.t.
k∑

a=1

sija = 1 (3)

where Nk(xi) = {jr | 1 ≤ r ≤ k} represents the set
of indices for xi’s k nearest neighbors. Furthermore,si =
[si1, si2, . . . , sim]> wheresij is determined by the above opti-
mization problem ifj ∈ Nk(xi) andsij = 0 otherwise. It is easy
to know that Eq.(3) has the following closed-form solution:

[sij1 , . . . , sijk
]> =

C−1
i 1k

1>
k C−1

i 1k

(4)

where Ci = D>
i Di ∈ Rk×k, Di = [xi − xj1 , xi −

xj2 , . . . , xi − xjk
] ∈ Rd×k, and1k is a column vector of all

ones with lengthk.
Let F = [f1, f2, . . . , fm]> ∈ Rm×` be the enriched label

matrix of L. After all si (1 ≤ i ≤ m) have been obtained,F
could be generated by solving the following optimization problem:

min
F

m∑

i=1

∥
∥
∥
∥
∥
∥
fi −

∑

jr∈Nk(xi)

sijrfj

∥
∥
∥
∥
∥
∥

2

2

+ λ ‖F − L‖2
F (5)

whereλ is a trade-off parameter. The first term ensures the similar
manifold structure to the feature space is kept in the enriched
label space, and the second term ensures the obtained label matrix
F should also be similar to the original label matrixL.

The optimization problem can be equivalently reformulated as
follows:

min
F

tr
(
F>(Im − S)(Im − S)>F

)
+ λ ‖F − L‖2

F (6)

wheretr(∙) computes the trace of a square matrix,Im represents
anm × m identity matrix, andS = [s1, s2, . . . , sm] ∈ Rm×m.

Obviously, the second term in the objective function is convex
w.r.t. F. For the first term, because(Im −S)(Im −S)> is always
positive semi-definite1, we haveF>

:j (Im−S)(Im−S)>F:j is con-
vex w.r.t.F:j whereF:j is thejth column ofF. Furthermore, the
first term can be expressed as

∑`
j=1 F>

:j (Im − S)(Im − S)>F:j

and the convexity can be preserved after summation operation
which results in the convexity of the first term. Therefore, the
objective function is jointly convex w.r.t.F.

1. For any x ∈ Rm×1, we have x>(Im − S)(Im − S)>x =∥
∥(Im − S)>x

∥
∥2
2
≥ 0
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Let Λ(F) be the objective function of Eq.(6), the gradient of
Λ(F) is given as follows:

∂Λ(F)
∂F

= 2(Im − S)(Im − S)>F + 2λF − 2λL

By setting ∂Λ(F)
∂F to 0, we can obtain a closed-form solution ofF

as follows:

F =
(
(Im − S)(Im − S)> + λIm

)−1
(λL) (7)

Thereafter, labeling information is aligned in the output space
via the label encoding and enrichment procedure. Specifically,
each elementfij (1 ≤ i ≤ m, 1 ≤ j ≤ `) in the real-valued
matrix F can be regarded as the labeling confidence of theith
instance on thej encoded label.

3.3 Predictive Model Induction

As the enriched label matrixF is real-valued, it is natural to
tackle the resulting problem with multi-output regression tech-
niques [8]. Specifically, we can train a multi-output regressor over
D̃ = {(xi, fi) | 1 ≤ i ≤ m} by simply solving the following
optimization problem:

min
W

1
m

m∑

i=1

∥
∥
∥W>φ(xi) − fi

∥
∥
∥
2

2
+

γ

2
‖W‖2

F (8)

Here,γ is a trade-off parameter,φ(∙) is the (implicit) nonlinear
mapping by kernel functionκ : X ×X 7→ R andφ(xi) ∈ Rd′×1,
W = [w1, w2, . . . , w`] ∈ Rd′×` corresponds to the regres-
sion model to be determined. However, the above multi-output
regressor actually deals with the` output variables independently.
Following the metric learning idea [36], [37], [39], [55], the `
output variables can be tackled in a joint manner by employing a
Mahalanobis distance metricM:

min
W

1
m

m∑

i=1

∥
∥
∥W>φ(xi) − fi

∥
∥
∥
2

M
+

γ

2
‖W‖2

F (9)

where‖a − b‖2
M = (a−b)>M(a−b) returns the square of Ma-

halanobis distance between vectorsa andb. The metricM aims at
shortening the distance betweenW>φ(xi) andfi and enlarging
the distance betweenW>φ(xi) and non-fis. Therefore,M can
be determined by the following optimization problem [39], [67]:

min
M�0

1
m

m∑

i=1

∥
∥
∥W>φ(xi) − fi

∥
∥
∥
2

M

+
1

m ∙ k

m∑

i=1

∑

ir∈Nk(fi)

∥
∥
∥W>φ(xi) − fir

∥
∥
∥
2

M−1

+ μ ∙ D(M, I`) (10)

whereNk(fi) = {ir | 1 ≤ r ≤ k} is the set of indices forfi’s k
nearest neighbors inF, D(M, I`) = tr(M) + tr(M−1) − 2` is
the symmetrized LogDet divergence, andμ is a trade-off parame-
ter. Here, the first term makes the distance betweenW>φ(xi) and
fi closer, the second term makes the distance betweenW>φ(xi)
and non-fis farther, and the third term penalizes the complexity
of M to avoid overfitting.

Obviously,M should be known when solving the optimization
problem w.r.t.W in Eq.(9), while W should be known when
solving the optimization problem w.r.t.M in Eq.(10). The inter-
action betweenW andM prevents them from being calculated

simultaneously. In this paper, we alternatingly calculate one of
them while the remaining one is fixed until convergence.

Calculating W when M is fixed. Because there is the non-
linear mappingφ(∙) by kernel functionκ, for the optimiza-
tion problem in Eq.(9), we canot always obtain an explicit
solution of W. According to the Representer Theorem [48],
under fairly general conditions, the predictive model can be
expressed as a linear combination of the training instances. Let
Φ = [φ(x1), . . . , φ(xm)]> ∈ Rm×d′

be the nonlinear mapping
instance matrix ofX, for the multi-output regression problem
in Eq.(9), we havewj =

∑m
i=1 θjiφ(xi) = Φ>θj and then

W = Φ>Θ, whereΘ = [θ1, . . . , θ`] ∈ Rm×` is the combina-
tion coefficients to be determined. PluggingW = Φ>Θ into the
objective function in Eq.(9) which is denoted asΓ(W):

Γ(W) =
1
m

m∑

i=1

∥
∥
∥Θ>Φφ(xi) − fi

∥
∥
∥
2

M
+

γ

2

∥
∥
∥Φ>Θ

∥
∥
∥
2

F

=
1
m

∥
∥
∥ΦΦ>Θ − F

∥
∥
∥
2

M
+

γ

2

∥
∥
∥Φ>Θ

∥
∥
∥
2

F

=
1
m

tr
(
(ΦΦ>Θ − F)M(ΦΦ>Θ − F)>

)

+
γ

2
tr
(
Θ>ΦΦ>Θ

)
, Γ(Θ)

Let K = ΦΦ> ∈ Rm×m be the kernel matrix with(i, j)th
elementKij = κ(xi, xj), then the gradient ofΓ(Θ) w.r.t. Θ is
given as follows:

∂Γ(Θ)
∂Θ

=
1
m

(
K>KΘM + K>KΘM>

− K>FM − K>FM>)+ γKΘ

By setting the above gradient to 0, we have:

(mγ) ∙ (K>K)−1KΘ + Θ(M + M>)

= (K>K)−1K>F(M + M>) (11)

which is a Sylvester equation w.r.t.Θ and can be solved by any
off-the-shelf solvers.

Calculating M when W is fixed. The optimization problem in
Eq.(10) can be equivalently reformulated as follows:

min
M�0

tr(MU) + tr(M−1V) + μ ∙ D(M, I`) (12)

Here,

U =
1
m

m∑

i=1

(
W>φ(xi) − fi

)(
W>φ(xi) − fi

)>

=
1
m

m∑

i=1

(
Θ>Φφ(xi) − fi

)(
Θ>Φφ(xi) − fi

)>

=
1
m

(KΘ − F)>(KΘ − F) (13)

V =
1

m ∙ k

m∑

i=1

∑

ir∈Nk(fi)

(
W>φ(xi) − fir

)(
W>φ(xi) − fir

)>

=
1

m ∙ k

m∑

i=1

∑

ir∈Nk(fi)

(
Θ>Φφ(xi) − fir

)(
Θ>Φφ(xi) − fir

)>

=
1

m ∙ k

k∑

r=1

(KΘ − Fr)
>(KΘ − Fr) (14)
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Algorithm 1 The proposed DLEM approach.

Input: D: MDC training set{(xi, yi) | 1 ≤ i ≤ m}
k: number of nearest neighbors considered
λ, γ, μ: trade-off parameters
x∗: unseen instance

Output: y∗: predicted class vector forx∗

1: Obtain the transformed label matrixL according to Eq.(1) and
Eq.(2);

2: Obtain the enriched label matrixF according to Eq.(7);
3: Initialize M = I`;
4: repeat
5: ObtainΘ by solving the Sylvester equation in Eq.(11);
6: ObtainM according to Eq.(15);
7: until convergence
8: Obtain enriched label vectorf∗ for x∗ according to Eq.(16);
9: Return y∗ by applying OvO decoding rule overl∗ =

sign(f∗).

whereFr = [f1r , f2r , . . . , fmr ]
>. Following [67], the optimiza-

tion problem in Eq.(12) is strictly convex, and then its global
minimum can be obtain when the gradient of the objective function
vanishes. Specifically, by calculating the gradient w.r.t.M and
setting it to 0, we can obtain:

(U + μI`) − M−1(V + μI`)M
−1 = 0

Here, the above equation is equivalent toM(U+μI`)M = (V+
μI`) which is actually aRiccati equation[4]. Its unique solution
corresponds to the midpoint of the geodesic joining(U + μI`)−1

to (V + μI`), i.e.,

M = (U + μI`)
−1#1/2(V + μI`) (15)

whereA#1/2B = A1/2
(
A−1/2BA−1/2

)1/2
A1/2.

As the above two alternating optimizing steps converge, we
can obtain the predictive model, i.e., the optimal values ofW (or
Θ in Eq.(11)). Then, for unseen instancex∗, its enriched label
vector can be predicted as follows:

f∗ = W>φ(x∗) = Θ>K∗ (16)

whereK∗ = Φφ(x∗) ∈ Rm×1 with elementsK∗
i = κ(xi, x∗)

(1 ≤ i ≤ m). Finally, we can determinex∗’s binary label vector
by l∗ = sign(f∗), wheresign(∙) represents the (element-wise)
signed function. It is easy to know that theIj

1 th ∼ Ij
2 th elements

in l∗ belong to thejth class space, based on which we can predict
the corresponding class label via OvO decoding rule of majority
voting. Here,Ij

1 =
∑j−1

a=1

(Ka

2

)
+ 1 andIj

2 =
∑j

a=1

(Ka

2

)
.

In summary, Algorithm1 presents the complete procedure of
the proposed DLEM approach. Firstly, we obtain the transformed
label matrixL (Step 1), and then obtain the enriched label matrix
F (Step 2). After that, an alternating optimizing process is used to
solve the multi-output regressor in Eq.(9) (Steps 3-7). Finally, the
class vector for unseen instance is predicted by applying the OvO
decoding rule over the binarized label vectorl∗ (Steps 8-9).

It is worth noting that, for the proposed DLEM approach, the
first two steps provide the labeling information where the first step
gives the basic labeling information which is further enriched by
the second step, while the last step induces the predictive model
supervised by the obtained labeling information where a multi-
output regressor is learned to solve the resulting problem. In the

TABLE 1: Characteristics of the benchmark data sets.

Data Set #Exam. #Dim. #Labels/Dim. #Features†

Edm 154 2 3 16n
Oes97 334 16 3 263n
Jura 359 2 4,5 9n
Oes10 403 16 3 298n
Enb 768 2 2,4 6n
Song 785 3 3 98n
BeLaE 1930 5 5 1n,44x
Voice 3136 2 4,2 19n
Scm20d 8966 16 4 61n
Rf1 8987 8 4,4,3,4,4,3,4,3 64n
Thyroid 9172 7 5,5,3,2,4,4,3 7n, 22x
Pain 9734 10 2,5,4,2,2,5,2,5,2,2 136n
Scm1d 9803 16 4 280n
CoIL2000 9822 5 6,10,10,4,2 81x
TIC2000 9822 3 6,4,2 83x
Flickr 12198 5 3,4,3,4,4 1536n
Disfa 13095 12 5,5,6,3,4,4,5,4,4,4,6,4 136n
Fera 14052 5 6 136n
Adult 18419 4 7,7,5,2 5n,5x
Default 28779 4 2,7,4,2 14n,6x
† n, x denote numeric and nominal features respectively.

case that the labeling information provided by the first two steps
is inaccurate or the predictive model induced in the third step is
under-performed, the generalization performance of DLEM would
be impacted. Therefore, we can further explore more advanced
techniques to obtain more accurate labeling information and more
powerful predictive model in future. For example, for the labeling
information enrichment step, following the idea in [28], [74], we
can also attempt to obtain the coefficients and enriched labels in
a unified formulation rather than separately optimizing Eq.(3) and
Eq.(5). Moreover, following the idea of ALP-TMR [69], we can
further consider the noise and outliers in instances, enriched labels
and coefficients to improve model’s robustness. Nonetheless, the
technical choice of DLEM has made it achieve very competitive
performance against state-of-the-art MDC baselines according to
the experimental results which will be reported in the next section.

4 EXPERIMENTS

4.1 Experimental Setup

4.1.1 Benchmark Data Sets
In this paper, we have collected a total of 20 real-world MDC
data sets for comparative studies. Table1 summarizes the detailed
characteristics of all benchmark data sets, includingnumber of
examples(#Exam.),number of dimensions(#Dim.), number of
class labels per dimension(#Labels/Dim.),2 and number of fea-
tures (#Features). More details can be found in AppendixA. To
the best of our knowledge, this serves as the most comprehensive
testbed for MDC studies with the largest number of real-world
benchmark data sets [5], [24], [25], [39], [43], [63].

4.1.2 Compared Approaches
In this paper, the performance of DLEM is compared with seven
state-of-the-art MDC approaches, including Binary Relevance
(BR) [9], [43], [70], Class Powerset (CP) [26], [58], Ensem-
bles of Classifier Chains (ECC) [42], [44], Ensembles of Super

2. If all dimensions contain the same number of class labels, then only this
number is recorded; Otherwise, the number of class labels per dimension is
recorded in turn.
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TABLE 2: Experimental results (mean±std. deviation) of each MDC approach in terms ofHamming Score. In addition,•/◦ indicates whether
DLEM is significantly superior/inferior to other compared MDC approaches on each data set (pairwiset-test at 0.05 significance level).

Data Set DLEM BR CP ECC ESC SEEM MDKNN gMML
Edm .784± .059 .694± .047• .688± .060• .698± .053• .704± .066• .688± .103• .740± .122 .714± .083•
Oes97 .738± .026 .607± .033• .188± .065• .590± .034• .573± .035• .711± .023• .730± .023 .724± .023•
Jura .717± .062 .586± .069• .570± .061• .559± .065• .558± .055• .578± .063• .652± .062• .606± .072•
Oes10 .806± .016 .664± .019• .179± .041• .659± .024• .633± .020• .781± .013• .791± .022• .775± .017•
Enb .935± .024 .716± .029• .689± .020• .681± .035• .665± .022• .770± .028• .835± .028• .742± .027•
Song .785± .030 .771± .026• .769± .025• .770± .025• .766± .027• .777± .030• .777± .027 .788± .027
BeLaE .412± .025 .423± .022 .354± .018• .408± .022 .374± .020• .398± .023 .395± .012• .417± .020
Voice .958± .009 .940± .010• .916± .010• .930± .008• .931± .009• .936± .012• .943± .008• .842± .009•
Scm20d .882± .003 .632± .006• N/A .608± .007• N/A .770± .005• .866± .004• .600± .007•
Rf1 .977± .002 .852± .005• .813± .010• .845± .004• .794± .007• .950± .002• .981± .001◦ .730± .007•
Thyroid .968± .002 .961± .002• .961± .002• .961± .002• .961± .002• .966± .003• .967± .003 .960± .002•
Pain .978± .002 .948± .004• .948± .004• .948± .004• .948± .004• .960± .003• .971± .003• .948± .004•
Scm1d .893± .003 .725± .007• N/A .694± .007• N/A .824± .004• .879± .002• .697± .007•
CoIL2000 .904± .005 .874± .005• .738± .006• .858± .005• .851± .008• .921± .004◦ .877± .005• .894± .004•
TIC2000 .885± .004 .892± .008◦ .872± .008• .884± .007 .884± .007 .916± .006◦ .864± .005• .895± .007◦
Flickr .735± .005 .715± .006• .658± .008• .693± .005• .651± .007• .734± .006 .735± .006 .779± .004◦
Disfa .949± .002 .885± .003• N/A .884± .003• .878± .003• .913± .003• .937± .002• .884± .003•
Fera .812± .010 .599± .008• N/A .588± .007• N/A .675± .007• .763± .006• .589± .007•
Adult .679± .004 .701± .004◦ .682± .005 .702± .005◦ .675± .006• .706± .005◦ .699± .005◦ .705± .004◦
Default .663± .002 .665± .004 .660± .004 .666± .004◦ .666± .004◦ .668± .004◦ .654± .003• .666± .004◦

TABLE 3: Experimental results (mean±std. deviation) of each MDC approach in terms ofExact Match. In addition,•/◦ indicates whether
DLEM is significantly superior/inferior to other compared MDC approaches on each data set (pairwiset-test at 0.05 significance level).

Data Set DLEM BR CP ECC ESC SEEM MDKNN gMML
Edm .625± .082 .389± .093• .467± .088• .395± .106• .454± .110• .455± .153• .585± .196 .487± .145•
Oes97 .063± .050 .030± .028• .054± .046 .039± .040• .036± .042 .036± .031• .063± .048 .042± .038
Jura .535± .077 .329± .110• .326± .099• .298± .103• .298± .098• .340± .095• .473± .085 .368± .119•
Oes10 .094± .045 .064± .035• .077± .041• .074± .044• .067± .037• .077± .041 .089± .053 .079± .040
Enb .870± .048 .431± .058• .379± .041• .362± .069• .330± .045• .539± .057• .669± .055• .483± .053•
Song .478± .062 .449± .060 .442± .055• .446± .055• .438± .059• .457± .062• .455± .065 .484± .059
BeLaE .027± .014 .028± .010 .025± .009 .035± .012 .025± .008 .023± .012 .023± .009 .022± .009
Voice .918± .017 .884± .017• .841± .016• .866± .015• .867± .016• .877± .021• .889± .015• .699± .017•
Scm20d .259± .013 .054± .006• N/A .073± .009• N/A .104± .008• .231± .011• .052± .007•
Rf1 .833± .010 .322± .011• .319± .025• .322± .012• .275± .012• .690± .010• .858± .009◦ .138± .011•
Thyroid .803± .014 .743± .014• .743± .014• .743± .014• .742± .014• .784± .017• .791± .016• .741± .015•
Pain .866± .012 .751± .017• .751± .017• .751± .017• .751± .017• .778± .015• .834± .018• .750± .018•
Scm1d .291± .016 .115± .010• N/A .123± .013• N/A .179± .014• .257± .014• .102± .009•
CoIL2000 .640± .014 .515± .012• .273± .012• .466± .013• .468± .019• .701± .014◦ .552± .014• .576± .015•
TIC2000 .688± .009 .698± .019 .645± .019• .675± .016• .675± .016• .764± .016◦ .632± .018• .706± .018◦
Flickr .226± .006 .187± .011• .125± .016• .168± .011• .114± .014• .211± .011• .228± .013 .287± .009◦
Disfa .622± .013 .378± .011• N/A .377± .011• .374± .011• .449± .016• .579± .010• .379± .011•
Fera .481± .020 .199± .013• N/A .196± .013• N/A .244± .005• .405± .012• .196± .013•
Adult .239± .008 .228± .006• .282± .012◦ .251± .009◦ .269± .011◦ .256± .010◦ .260± .010◦ .230± .009•
Default .181± .007 .177± .007 .182± .008 .179± .007 .179± .007 .185± .007◦ .177± .004 .177± .007•

Class classifier (ESC) [43], Stacked dEpendency Exploitation
for MDC (SEEM) [26], Multi-Dimensionalk Nearest Neighbors
(MDKNN) [ 27], and gMML [39]. Specifically, BR independently
deals with each MDC dimension by training a multi-class classifier
per dimension, while CP jointly deals with all MDC dimensions by
training a single multi-class classifier where all distinct class com-
binations in training set are regarded as new classes. ECC jointly
deals with all MDC dimensions by training a chain of multi-class
classifiers, one per dimension, where the subsequent classifiers
on the chain treat the predictions of preceding classifiers as extra
features. ESC preprocesses all MDC dimensions by grouping them
into super-classes, where each super-class is regarded as a new
class variable. SEEM learns a multi-class classifier for each pair
of class spaces via powerset transformation in the first level and
then determine the class label of unseen instance w.r.t. each class
space via adaptively stacking the predictive results from the first

level. MDKNN makes maximum a posteriori (MAP) inference for
each pair of class spaces based on theirkNN counting statistics and
then determine the class label of unseen instance w.r.t. each class
space via consulting empiricalkNN accuracy. gMML transforms
the MDC output space into a new one via one-vs-rest strategy, and
then alternatingly learns regression models for each transformed
label as well as a Mahalanobis metric which can make the distance
between the regression outputs and ground-truth label vector
closer.

For BR, CP, ECC, ESC, SEEM and MDKNN, support vector
machine (SVM) is used to instantiate their multi-class base learner.
Specifically, the popular LIBSVM software [10] with default
parameter setting is used in this paper. For ensemble approaches
ECC and ESC, 67% examples randomly selected from training
set are used to generate a total of 10 base models [43], and the
predictive results are combined via majority voting. For SEEM
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TABLE 4: Experimental results (mean±std. deviation) of each MDC approach in terms ofSub-Exact Match. In addition,•/◦ indicates whether
DLEM is significantly superior/inferior to other compared MDC approaches on each data set (pairwiset-test at 0.05 significance level).

Data Set DLEM BR CP ECC ESC SEEM MDKNN gMML
Edm .942± .048 1.00± .000◦ .909± .054 1.00± .000◦ .954± .055 .922± .082 .895± .100 .941± .065
Oes97 .108± .070 .072± .051 .072± .057• .078± .053 .060± .043 .087± .042 .120± .078 .099± .055
Jura .900± .085 .844± .059 .813± .040• .819± .052• .819± .045• .816± .066• .830± .084 .844± .049
Oes10 .193± .072 .119± .059• .107± .044• .129± .047• .117± .048• .191± .053 .196± .059 .176± .038
Enb 1.00± .000 1.00± .000 1.00± .000 1.00± .000 1.00± .000 1.00± .000 1.00± .000 1.00± .000
Song .878± .040 .868± .032 .868± .036 .869± .033 .862± .034• .878± .051 .878± .042 .883± .041
BeLaE .135± .032 .132± .024 .093± .010• .134± .016 .110± .012 .116± .020 .111± .020• .130± .020
Voice .999± .002 .996± .005 .991± .005• .995± .005• .995± .005• .995± .004• .997± .004 .985± .011•
Scm20d .511± .015 .105± .007• N/A .128± .011• N/A .225± .008• .472± .021• .100± .009•
Rf1 .988± .004 .655± .017• .580± .022• .637± .012• .542± .014• .932± .006• .992± .003◦ .375± .014•
Thyroid .977± .004 .983± .004◦ .982± .004◦ .983± .004◦ .982± .004◦ .978± .004 .979± .004 .982± .005◦
Pain .946± .008 .847± .010• .847± .010• .847± .010• .847± .010• .885± .006• .921± .008• .846± .010•
Scm1d .545± .014 .223± .016• N/A .212± .014• N/A .365± .014• .502± .013• .198± .015•
CoIL2000 .908± .010 .873± .016• .576± .016• .851± .013• .820± .017• .923± .005◦ .872± .011• .903± .010
TIC2000 .966± .005 .979± .004◦ .972± .005◦ .977± .005◦ .976± .005◦ .985± .004◦ .962± .003• .978± .003◦
Flickr .600± .015 .543± .015• .426± .018• .494± .014• .414± .017• .595± .019 .597± .016 .689± .016◦
Disfa .845± .005 .596± .011• N/A .592± .010• .575± .010• .703± .016• .800± .011• .590± .009•
Fera .734± .017 .387± .012• N/A .375± .012• N/A .496± .012• .648± .011• .378± .013•
Adult .610± .006 .657± .010◦ .599± .008• .651± .010◦ .586± .011• .660± .008◦ .638± .010◦ .669± .008◦
Default .586± .005 .590± .008 .579± .007• .593± .008◦ .592± .009 .596± .008◦ .568± .008• .593± .008◦

TABLE 5: Win/tie/loss counts of pairwiset-test (at 0.05 significance level) between DLEM and each MDCapproach.

Evaluation DLEM against
metric BR CP ECC ESC SEEM MDKNN gMML
HS 16/2/2 14/2/0 16/2/2 15/1/1 14/2/4 13/5/2 14/2/4
EM 16/4/0 12/3/1 17/2/1 13/3/1 14/2/4 10/8/2 14/4/2
SEM 9/7/4 11/3/2 11/4/5 10/5/2 8/8/4 9/9/2 7/8/5
In Total 41/13/6 37/8/3 44/8/8 38/9/4 36/12/12 32/22/6 35/14/11

and MDKNN, the number of nearest neighbors is set to 10 as
recommended in their respective literatures [26], [27]. For gMML,
the parameters are tuned according to [39]. For the proposed
DLEM approach, we use the popular RBF kernel and set the
three trade-off parameters and the number of nearest neighbors
considered asλ = 1, γ = 10, μ = 1 andk = 6.

4.1.3 Evaluation Metrics
In this paper, the generalization abilities of MDC approaches are
measured via a total of three evaluation metrics, i.e.,Hamming
Score (HS), Exact Match (EM) and Sub-Exact Match(SEM).
Specifically, letS = {(xi, yi) | 1 ≤ i ≤ p} be the test set,
whereyi = [yi1, yi2, . . . , yiq]> is the ground-truth class vector
associated withxi. For the MDC modelf : X 7→ Y to be
evaluated, let̂yi = f(xi) = [ŷi1, ŷi2, . . . , ŷiq]> be the predicted
class vector forxi, then the number of dimensions which are
predicted correctly corresponds tor(i) =

∑q
j=1 1yij=ŷij . Here,

1π returns 1 ifπ is true and 0 otherwise. The detailed definitions
of the three metrics are given as follows:

HSS(f) =
1
p

p∑

i=1

1
q
∙ r(i)

EMS(f) =
1
p

p∑

i=1

1r(i)=q

SEMS(f) =
1
p

p∑

i=1

1r(i)≥q−1

For all metrics, it is obvious that their values range in[0, 1] and
thelarger the values the better the performance. For all benchmark

data sets, we conduct ten-fold cross-validation and record both the
mean metric value and standard deviation for comparative studies.

4.2 Experimental Results

Tables2-4 report the detailed experimental results in terms of
Hamming Score, Exact MatchandSub-Exact Matchrespectively.
Moreover, pairwiset-test at0.05 significance level is conducted to
show whether DLEM achieves significantly superior/inferior per-
formance against other compared MDC approaches on each data
set. Accordingly, Table5 summarizes the resulting win/tie/loss
counts.

Based on the experimental results, the following observations
can be made:

• Across all the 399 configurations3 (20 data sets× 7
compared approaches× 3 metrics), DLEM achieves supe-
rior or at least comparable performance against the seven
compared approaches in 349 cases.

• BR works by dealing with each dimension independently,
which actually can be viewed as optimizingHamming
Score, while CP works by dealing with all dimension
jointly via powerset transformation, which actually can
be viewed as optimizingExact Match. It is impressive
to notice that DLEM still achieves superior performance
against BR in 16 out of 20 cases in terms ofHamming
Score, and against CP in 12 out of 16 cases in terms of
Exact Match.

3. Due to the high computational complexity which leads to “out of mem-
ory” error for LIBSVM software, there are a total 21 configurations whose
results are unavailable for some compared approaches.
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Fig. 1: Performance comparison between DLEM and its two variants.

• Both ECC and ESC work by explicitly considering class
dependencies and utilizing ensemble strategy to account
for the randomness in dependency modeling. As shown
in Table 5, DLEM achieves superior performance against
ECC in 44 out of 60 cases, and against ESC in 38 out of
51 cases. These results clearly validate the effectiveness of
DLEM’s label encoding strategy for dependency modeling.

• Both SEEM and MDKNN consider class dependencies
in a two-level strategy, where pairwise (i.e., second-
order) and high-order class dependencies are considered
in the first and second level respectively. Compared with
ECC and ESC, it is shown that more comparable and
inferior cases occur though DLEM still achieves superior
performance against SEEM in 36 out of 50 cases and
against MDKNN in 32 out of 50 cases. Thus, it would
be interesting to explore possible approaches which can
integrate the two-level dependency modeling strategy into
label encoding process to induce better learning models.

• gMML works by learning regression models in one-vs-
rest decomposed label space. Note that DLEM achieves
superior or at least comparable performance in 49 out of
60 cases. These results indicate the effectiveness of the
one-vs-one decomposed label encoding strategy against
the one-vs-rest decomposition strategy without modeling
alignment.

• It is worth noting that against the compared approaches,
most of the inferior cases (42 out of 50) for DLEM occur on
data sets with nominal features includingBeLaE, Thyroid,
CoIL2000, TIC2000, Adult andDefault. One potential rea-
son lies in that the manifold structure identified in nominal
feature space is less reliable, which impacts the quality of
DLEM’s enriched labeling information in the encoded label
space derived via manifold structure preservation.

• It is also worth noting that DLEM achieves inferior perfor-

mance against gMML overFlickr in terms of each metric.
There are a total of 1536 features inFlickr, which might
lead to less reliable manifold structure identified in such
high dimensional feature space as dense sampling is no
longer satisfied.

• To summarize, if one MDC data set is assumed to own
good manifold structure in feature space, it is encouraged
to try the proposed DLEM approach to induce the predic-
tive model. Moreover, it is also worth further exploring
some effective techniques (e.g., distance metric learning)
to improve the quality of manifold structure in the future.

TABLE 6: Wilcoxon signed-ranks test between DLEM and its two
degenerated versions in terms of each metric (at 0.05 significance
level; p-values shown in the brackets).

DLEM EvaluationMetrics
against HS EM SEM
DeV1 win[1.32e-03] win[2.51e-02] win[1.32e-03]
DeV2 win[3.04e-02] win[2.98e-02] win[1.13e-02]

4.3 Further Analysis

4.3.1 Effectiveness of Algorithmic Design

The performance of DLEM is also compared with its two de-
generated versions to investigate the effectiveness of DLEM’s
algorithmic design. The two variants are denoted as DeV1 and
DeV2 respectively:

• DeV1: This variant trains the multi-output regressor in
Eq.(9) supervised by the ternary label matrixL instead
of the enriched label matrixF. In other words, DeV1
corresponds to the degenerated case without considering
the enriched labeling information for model training.
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Fig. 2: Performance of DLEM varies as one ofk, λ, γ and μ changes while others are fixed. For subfigures (a)(e)(i)(m)(q),k ranges in
{4, 5, 6, 7, 8} when fixingλ = 1, γ = 10 andμ = 1; For subfigures (b)(f)(j)(n)(r),λ ranges in{0.01, 0.1, 1, 10, 100} when fixingk = 6,
γ = 10 andμ = 1; For subfigures (c)(g)(k)(o)(s),γ ranges in{0.1, 1, 10, 100, 1000} when fixingk = 6, λ = 1 andμ = 1; For subfigures
(d)(h)(l)(p)(t),μ ranges in{0.01, 0.1, 1, 10, 100} when fixingk = 6, λ = 1 andγ = 10.

• DeV2: This variant employs the regressor in Eq.(8) instead
of the regressor in Eq.(9) to accomplish the resulting
multi-output regression task. In other words, DeV2 corre-
sponds to the degenerated case without utilizing distance
metric for model training.

Detailed experimental results are shown in Figure1. Moreover,
Wilcoxon signed-ranks test[15] serves as the statistical tool to

test the relationship between DLEM and the two degenerated
versions. Table6 summarizes the statistical test results where the
p-values for the corresponding tests are also shown in the brackets.
It is shown that the performance of DLEM is better than the
two variants over most data sets and achieves statistical superior
performance against them in terms of each metric. These results
clearly validate the effectiveness of DLEM’s algorithmic design
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in utilizing enriched labeling information and distance metric for
model training.

4.3.2 Parameter Sensitivity

As shown in Algorithm1, there are a total of four parameters
for DLEM to be tuned, i.e., the number of nearest neighbors
consideredk in Eq.(3) and Eq.(10), the trade-off parametersλ
in Eq.(6), γ in Eq.(9), andμ in Eq.(10). Figure2 illustrates how
the performance of DLEM varies as one of these four parameters
changes while others are fixed.

It is shown that the performance of DLEM is insensitive tok
whose value is set to 6 in this paper. Forλ, both small and large
λ would lead to performance degradation of DLEM whose value
is set to 1 in this paper. Forγ andμ, the performance of DLEM

is less sensitive to these two parameters, where the settings with
moderate valuesγ = 10 andμ = 1 serve as better choices for
these trade-off parameters.

5 CONCLUSION

Most existing approaches solve the MDC problem in the original
output space, while a novel approach named DLEM is proposed in
this paper which solves the MDC problem in a transformed label
space. Specifically, the original output variables are firstly encoded
via one-vs-one decomposition. Then, the labeling information in
the decomposed label space are enriched via manifold structure
preservation identified in the feature space. Finally, a multi-output
regression model with metric-aligned technique is learned for
the resulting problem. The superiority of DLEM against state-of-
the-art approaches is clearly validated via extensive comparative
studies over the most up-to-date benchmark data sets.

It is shown that the effectiveness of subsequent steps is highly
dependent on that of preceding steps for DLEM, whose coupling
properties are worth further investigation in the future. Besides, it
is also interesting to explore other alternatives for each step, e.g.,
other ways to instantiate the label encoding strategy and other
strategies for labeling information enrichments.

APPENDIX A
BENCHMARK DATA SETS

In this paper, a total of 20 benchmark data sets have been collected
for comparative studies. Basic characteristics of all benchmark
data sets have been summarized in Table1 while further descrip-
tions are given as follows.

• Edm aims at reconstructing the human operator’s skill
from historical examples to implement an automatic op-
erator for an electrical discharge machining (EDM) ma-
chine [29]. The 2 class spaces correspond to two parame-
ters (gap and flow) to be controlled during the process,
and each class space includes three class labels w.r.t.
possible actions: increasing the parameter, no action, and
decreasing the parameter.

• Oes97 andOes10 aim at estimating the relative number
of full-time employees across different employment types
for some specific metropolitan areas according to the
occupational employment survey (OES) in years 1997 and
2010, respectively [54]. The 16 class spaces correspond to
sixteen different employment types, and each class space
includes three class labels w.r.t. relative representation of

number of employees: small quantity, medium quantity,
and large quantity.

• Jura aims at predicting land uses and rock types for some
locations in Swiss Jura according to the measurements of
concentrations of seven heavy metals [19]. The first class
space corresponds to land uses with four possible types:
forest, pasture, meadow, tillage, and the second class space
corresponds to rock with five possible types: Argovian,
Kimmeridgian, Sequanian, Portlandian, Quaternary.

• Enb aims at predicting some building parameters of en-
ergy buildings according to some other building param-
eters [57]. The first class space corresponds to overall
height with two relative representations and the second
class space corresponds to glazing area with four relative
representations.

• Song aims at categorizing Chinese songs from three
dimensions, including emotion, genre and scenario [25].
Each of the 3 class spaces includes three possible cat-
egories: happy, sad, cathartic for emotion, folk, Internet
pop, pop for genre, and walk, wedding, nightclub for
scenario.

• BeLaE aims at predicting students’ answers to five ques-
tions in a questionnaire based on their age, sex and answers
to other 43 questions [13], [40]. Each question is on the
importance of certain properties of their future jobs, and
the answer has a grade from ‘1’ (completely unimportant)
to ‘5’ (very important).

• Voice aims at predicting the relative mean frequency
and speaker’s gender of a piece of human voice [25]. The
first class space corresponds to mean frequency with four
possible class labels: less than 120Hz, between 120Hz and
160Hz, between 160Hz and 200Hz, greater than 200Hz,
and the second class space corresponds to gender with
two possible class labels: male and female.

• Scm20d andScm1d aim at predicting the relative mean
price of products for 20 days in the future and for the
next day, respectively [54]. Each class space corresponds
to the relative mean price of one product with four possible
grades from ‘1’ (low) to ‘4’ (high).

• Rf1 aims at predicting the river flows for 48h in the
future at eight specific locations in the Mississippi river
network [54]. Each class space corresponds to the relative
representation of river flows for one observation site with
three or four grades.

• Thyroid aims at estimating the conditions of thyroid di-
agnoses according to physical test results of patients [16].
The 7 class spaces correspond to diagnosed conditions
from seven aspects, including hyperthyroid, hypothyroid,
binding protein, general health, replacement therapy, an-
tithyroid treatment, and miscellaneous.

• Pain aims at estimating the facial action unit intensity
of patients who are suffering from chronic shoulder pain
while performing a range of arm motion exercises [38].
The 10 class spaces correspond to ten different facial
action units with six intensity levels ranging from 0 (no
pain) to 5 (strong pain). Some intensity levels for some
action units are merged to alleviate the imbalanced class
distribution in the original data set.

• CoIL2000 aims at categorizing customers of an in-
surance company from different dimensions according
to their product usage data and socio-demographic data
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derived from zip area codes [61]. The 5 class spaces
correspond to average age, customer main type, Roman
Catholic, contribution private third party insurance, and
number of mobile home policies, respectively.TIC2000
is a variant of CoIL2000 where the two target variables
customer main type and Roman Catholic are used as input
attributes.

• Flickr aims at categorizing pictures in mirflickr25k [23]
from different dimensions. We re-annotated all the pictures
according to the MDC definition and just pick out part of
them [25]. The 5 class spaces correspond to sky, people,
night, plant, and indoor, respectively.

• Disfa aims at estimating the facial action unit intensity of
young adults who are viewing 4-minute video clips [41].
The 12 class spaces correspond to twelve different facial
action units with six intensity levels ranging from 0 (not
present) to 5 (maximum intensity). Some intensity levels
for some action units are merged to alleviate the imbal-
anced class distribution in the original data set.

• Fera aims at dealing with a similar task as Disfa. The data
set is provided in FG 2015 Facial Expression Recognition
and Analysis challenge (FERA 2015) [59] and only five
different facial action units are used in output space.

• Adult aims at categorizing people from different dimen-
sions based on their personal information [16]. This data
set is also known as Census Income Data Set in UCI ma-
chine learning repository. The 4 class spaces correspond
to work class, marital status, race, and sex, respectively.

• Default aims at categorizing credit card clients from
different dimensions based on their personal informa-
tion [66]. This data set is known as default of credit card
clients Data Set in UCI machine learning repository [16].
The 4 class spaces correspond to gender, education, mari-
tal status, and default payment next month, respectively.

All these data sets are publicly available athttp://palm.seu.edu.
cn/zhangml/Resources.htm#MDC data. More details about each
data set’s descriptions, original sources, references, data format in
Matlab and preprocessing notes can also be found in the shared
data repository.
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[5] C. Bielza, G. Li, and P. Larrãnaga, “Multi-dimensional classification with
Bayesian networks,”International Journal of Approximate Reasoning,
vol. 52, no. 6, pp. 705–727, 2011.

[6] J. H. Bolt and L. C. van der Gaag, “Balanced sensitivity functions for
tuning multi-dimensional Bayesian network classifiers,”International
Journal of Approximate Reasoning, vol. 80, pp. 361–376, 2017.

[7] H. Borchani, C. Bielza, C. Toro, and P. Larrañaga, “Predicting human
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