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Abstract —In multi-dimensional classification (MDC), a number of class variables are assumed in the output space with each of them
specifying the class membership w.r.t. one heterogeneous class space. One major challenge in learning from MDC examples lies in
the heterogeneity of class spaces, where the modeling outputs from different class spaces are not directly comparable. To tackle this
problem, we propose a new strategy named decomposed label encoding which enables modeling alignment for MDC in an encoded
label space derived from one-vs-one (OvO) decomposition. Specifically, the original MDC output space is transformed into a ternary
encoded label space by conducting OvO decomposition w.r.t. each class space. Then, the manifold structure in the feature space is
exploited to enrich the labeling information in the encoded label space. Finally, the predictive model is induced by fitting the
metric-aligned modeling outputs with enriched labeling information. Extensive experiments over twenty benchmark data sets clearly
show the superiority of the proposed MDC strategy against state-of-the-art approaches.

Index Terms —machine learning, multi-dimensional classification, label encoding, one-vs-one decomposition
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1 INTRODUCTION

N many real-world applications, the modeling problem ca® = {(x;,y;) | 1 < ¢ < m} with m training examples, for

be formalized under the traditional multi-class classificatioeach exampléx;,y;) € D, ®; = [x;1, %2, - . . ,xid]T cXisa
framework, where each object is represented by one instantdimensional feature vector ang = [yil,yig,...,yiq}T ey
(feature vector) while associated with a single class variabis. the g-dimensional class vector associated with with each
However, there are also other application scenarios where tt@mponenty;; representing one possible class label(ip, i.e.,
objects’ semantics cannot be simply characterized by a singlg € C;. The task of multi-dimensional classification is to learn
class variable. For example.commerce websites usually need t@ mapping functiorf : X — ) from D which can return a proper
simultaneously classify smartphones from tirand dimension class vectorf(x.) € ) for unseen instance...
(with the possible classétuawej SamsungApple etc.), from the Obviously, the MDC problem can be solved by training a
operating system dimension (with the possible class&s- number of independent multi-class classifiers, one per dimension.
droid, iOS, Windows Phoneetc.), from theCPU brand dimen- However, the simple decomposition strategy isn’t consistent with
sion (with the possible class€3ualcomm MediaTek Hisilicon, the intention of MDC task which aims at inducing a unified model
etc.), etc. Actually, similar application scenarios widely exist irf : X — Y for all dimensions. In other words, potential depen-
real-word applications such as bioinformati@$, [45], text clas- dencies among class spaces should be considered when learning
sification [49], [50], resource allocation]], etc. To characterize MDC models. An intuitive strategy in this way is to solve the MDC
the rich semantics of such kind of objects, one natural solutigmoblem by considering all class variables as a single compound
is to associate multiple class variables with the objects, whicime, i.e., each distinct class combinatiorfns regarded as a new
results in the learning frameworkulti-dimensional classification class. However, this powerset-like transformation strategy would
(MDC) [25], [39], [43]. In contrast to multi-class classification,suffer high computational cost due to its combinatorial nature and
in MDC each example is also represented by one instance whéncapable of predicting class combinations absent in the training
associated with multiple class variables simultaneously. Hewset. Therefore, most existing MDC approaches focus on how to
each class variable corresponds to one specific class space whicldel class dependencies in appropriate ways, such as capturing
characterizes the objects’ semantics from one dimension. pairwise class dependencie®,[[26], [27], learning a directed

Formally speaking, letY = R? be the input (feature) acyclic graph (DAG) structure for class spac8s[18], specifying
space, andy = C; x Cy x --- x C, be the output space. chaining order over class spacet?]| [68], and grouping class
Here, ) corresponds to the Cartesian productgoflass spaces spaces into super-classésy| etc.
C; = {d,c, ... ,cﬂj} (1 < j < q) which consists ofK; However, these approaches mainly deal with the MDC prob-
possible class labels respectively. Given the MDC trairsegg lem in the original output spac®’ which is quite challenging
due to the heterogeneity of class spaces. Specifically, in MDC
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relevant and irrelevant labels when inducing multi-class/multapproaches which form a family of MDC models called multi-
label models 22], [71], while such techniques cannot be generimensional Bayesian network classifier (MBG},[[18]. Recent
alized to inducing MDC models. works on MBC mainly focus on designing efficient DAG structure

To tackle the heterogeneity of class spaces, we proposela@arning algorithms, which is still challenging][ [6], [77] due
enable modeling alignment for MDC by employing thebel to large structure space. Another strategy is to train a chain of
encodingstrategy. Although label encoding has been successfuiiylti-class classifiers, one per class space, where predictions of
applied to learning problems with non-unique labeling such @seceding classifiers on the chain are used as extra features by the
multi-label classificationZ1], [36], [37], [53], [73], its effective- subsequent oned?], [68]. Generally, the chaining order largely
ness in solving MDC problem is firstly investigated in this papeaffects the performance of this strategy, but it is actually a NP-hard
Accordingly, a novel approach named.#M, i.e., Decomposed problem to determine an optimal one.

Label Encoding for Multi-dimensional classificatiois proposed
ng -l ! ricaios prop On the other hand, the MDC problem can be tackled by

by adapting the popular one-vs-one decomposition. FirstlgND iz | iti-cl lassifi h h disti |
transforms the MDC output space into a ternary label space witfffizing only one multi-class classitier, where each distinct class

negative, null or positive label assignment via OvO decompositi&‘?mb'nat'on appearing In t.he trgunmg set can be treatgd as a
w.r.t. each class space. Then, the labeling information in the digw class. However, following this strategy, class combinations

coded label space is enriched by exploiting the manifold structd?gt appearing in the tralnlng set cannot pe predicted for unseen
in the feature space. Finally,LBm induces the predictive model Instance and the computational complexity would be high due

by fitting the metric-aligned modeling outputs with enriched label© the huge number of new classes. These deficiencies can be

ing information. Here, we would like to reiterate the differencegmIgatecj to some extent by grouping the class spaces into super-

and advantages of IEM over existing MDC approaches Whereclasses43‘], but cannot be fully addressed due to the combinatorial
' ture. The MDC problem can also be tackled with a two-level

the predictive model is induced in an encoded label space B h imi del | q h pair of
DLEM while in the original heterogeneous label space by existi rategy, where preliminary models are learned for each pair o

MDC approaches. By doing this, we expectdd can achieve class spaces via powerset transformation, and then meta models

better generalization performance, and extensive experiments Oeygr_legrned for all class spaces based on _th_e pred|c_t|_ons_ of the
twenty benchmark data sets clearly show the superiorityL@&hD preliminary modelsd, [2€], [27]. However, training classification

against state-of-the-art MDC approaches models for pairwise class spaces lead&{@?) complexity which

The rest of this paper is organized as follows. Firstly, relatéd computationally demanding.

works on MDC are briefly discussed. Secondly, technical details |n general, one-vs-rest and one-vs-one are two commonly used

of the proposed approach are introduced. Thirdly, experimenigdnsformation strategies for multi-class classification problems.

re_sults of comparative studies are reported. Finally, we concluige MPMbc approach decomposes each class space of MDC via

this paper. one-vs-one strategy and then jointly solves the resulting binary
classification problems by introducing a covariance regularization
term [24]. However, the derived quadratic programming problem

2 RELATED WORK containsm - >2%_, (K; — 1) variables which is usually too large

. . N . L making it difficult to be solved. The gMML approach conducts a
Multi-dimensional classification has a close relationship with the .. |2bel like transformation for the MDC output space which

widely StUd'e.d multi-label classification (MLC) frame"_\’f)ﬂm' can be regarded as one-vs-rest strategy and then learns a multi-
[7.0]’ [72], wh|I§ both of them. can be regarded "’}S specific 'n,StanBUtput regressor for the resulting problem as well as a Mahalanobis
at|o.n.s' of multl-outp'ut Iea.rn|n965]. As per their mathematical distance metric39]. However, the one-vs-rest encoded label space

definitions, each dimension in MDC corresponds to a mUItHirectly aligns class labels from different class spaces which is less

class variable while each label in MLC corresponds to a bina%asonable due to the heterogeneity assumption in MDC
class variable. Furthermore, MDC usually assulmetgrogeneous '

class spaces where different dimensions correspond to differentlt is worth noting that the label encoding strategy has been
semantic spaces, while MLC usually assurhemogeneouslass utilized in solving related learning problems such as multi-label
space where different labels correspond to the relevancy of catassification. The pioneering work of multi-label prediction via
cepts in the same semantic space. Besides, one recent devalompressed sensing(] simply maps the sparse label space into
ment in MDC named multi-dimensional partial label learning real-valued one with random sensing matrices which satisfy the
(MDPL) [64] considers a more complicated setting, where thestricted isometry property. The following works mainly focus
ground-truth class label in each dimension is concealed inoa how to encode the label space into a more informative one via
candidate label set which makes the problem more challengigifferent ways, such as conducting principle label space transfor-
to be tackled. mation 6] or feature-aware label space transformatib?| [[31],

Obviously, the MDC problem can be simply solved dimensiof83], [34], maximizing the margin between correct and incorrect
by dimension, i.e., training a multi-class classifier for each classcoded label vector3§], [37], [73], learning neural networks
space independently. However, possible dependencies among diassccomplish the encoding stepl], [30], [32], etc. There are
spaces are not considered by this intuitive strategy which wowdtso some works which claim better generalization performance
impact its generalization performance. Actually, one of the kdy encoding the binary label space into another binary one instead
challenges for MDC studies is how to learn a unified model for alif a real-valued one5[l], [52], [75]. However, to the best of our
dimensions instead of independent models for each dimensiorknowledge, no existing works solve the MDC problem with label
To induce a unified model for all dimensions, one strategy @ncoding strategy. In the next section, we will present the technical
to learn a directed acyclic graph (DAG) over class spaddf [ details of the proposediEm approach which deal with the MDC
[46], [60], where different DAG structures correspond to differenpproblem via decomposed label encoding.
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3 THE DLEM APPROACH possible label noise in real-world applicatior™]. In this paper,

The learning procedure ofilEM consists of three steps, includingP-EM aims at solving all OvO decomposition problems via a
decomposed label encoding, labeling information enrichment, af@ified model with real-valued labeling confidence.
predictive model induction. Technical details of these steps are

scrutinized as follows. 3.2 Labeling Information Enrichment
To obtain real-valued labeling confidenceLEM enriches the
3.1 Decomposed Label Encoding labeling information residing i, which is initialized via EqZ2)

Following the same notations defined in Sectigrfor the MDC by leveraging the structural information in the feature space.
training setD, let X be the instance matrix with sizev x 4 SPecifically, DEm assumes that similar manifold structures exist
where theith row corresponds to the transpose of feature vel?l the input and output spaces. _

tor z; € X, andY be the label matrix with sizen x g Folllowmg the ideas of locally Ilnear. er.nbeddlng7[,. [62],
where theith row corresponds to the transpose of class vectBfch instance: can be reconstructed via linear combination of
Yi = [Yin, Yz, .- ¥ig| € V. According to OvO decom- ItS k nearest neighbors, and this relationship also holds in the

position rule, Y can be transformed into a ternary encodetfPel space. For each training exampig (1 < i < m), the
label matrixL = [L',L2,...,L9] € {~1,0,+1}™*¢. Here, linear c_omblnanon _coeﬁlClents fc_>r its nt_aar_est_nelghbors can be
L; € {-1,0, +1}mxzj corresponds to the encoded label matridetermined by solving the following optimization problem:
of the jth class space (i.e., the transformationjti column of 2 3
label matrixY’) where; = (Igj),(l <j<g.andl =377 ¢ min  ||x; — Z Sij, &, || 5 s.t. Z Sij, =1 (3)
Without loss of generality, fol/, theath column (@ < a < £;)  sisesii ineN (@) o =
corresponds to the pair of class labgig, n?) in C;: ) ' 2
o L where NV (xz;) = {j- | 1 < r < k} represents the set
(pom2) = (C{J«’ct]z—f—u—gj(u—l))’ (1) of indices for z;’s k nearest neighbors. Furthermore, =
when1+gj(u—1)<a<gj(u) Q1<u<K;—1) [sa,si2,--, sim] Wheres;; is determined by the above opti-
mization problem ifj € Ny (x;) ands;; = 0 otherwise. It is easy
whereg;(0) = 0 andg;(t) = Yu_;(K; —v) whenl < ¢ < 1t know that Eq3) has the following closed-form solution:
K; — 1. ltis easy to verify that; = g,;(K, — 1). Letl], be the

( -1
element inith row andath column ofL7, its value is determined [54; Sis ]T = Q 4)
1J10 0t Otk T—1
as follows: 1, C 1,
_ +1, ?f Yij = P}, where C; = D/D; € R™* D; = [@; — zj,, @ —
bo=1q —L ifyy=ng @ =zj,,...,x —x;] € R¥F, and1, is a column vector of all
0, otherwise ones with lengthk.
_ T ¢ i
Example 1. Given the MDC data seD with m = 4 training LetF = [f1, fo,.... fm] = € R™™ be the enriched label

matrix of L. After all s; (1 < ¢ < m) have been obtained

examples, i.e.D = {(x1,y1), (x2,Y2), (x3,Y3), (x4, . . ) ==k
P @1, y1), (@2, y2). (@3, 93), (@4, 4a)} could be generated by solving the following optimization problem:

Assume that thgth class space includes 4 class labels, i.e

K; =4andC; = {c, ¢}, ¢}, c)}. For D, assume thay;; = ¢ . 2

(1 < < 4),i.e., thejth column of label matriXY' corresponds min _ sii Fll +M|IIF =L 5

to [c],c}, 4, 4] 7. For the encoded label matrik,; of the jth F ; fz i e/\zf,;( ) i-Js I e ®
= r T 2

class space, according to Ed)( the first 3 columngl < a <
3,i.e.,u = 1) correspond to(c],c}), (c],c}) and (c],c}) where is a trade-off parameter. The first term ensures the similar
respectively, the following 2 columritd < a < 5,i.e.,u = 2) manifold structure to the feature space is kept in the enriched
Correspond tO(C%, Cé) and (C’%, CZL) respectiveJy, and the last label space, and the second term ensures the obtained label matrix

column(a = 6,i.e.,u = 3) corresponds tdc}, /). According to  F should also be similar to the original label matfix

Eq.@2), it is easy to know that the value bf; is as follows: o The optimization problem can be equivalently reformulated as
ollows:
+1 +1 41 0 0 O . - T 2
Lo_ |1 0 0 41 41 0 min_ tr (FT(In = S)Lu —S)"F) +AIF - L|3  (®)
J 0O -1 0 -1 0 +1
0O 0 -1 0 -1 -1 wheretr(-) computes the trace of a square matiix, represents
anm x m identity matrix, andS = [s1, Sa, ..., 8;n] € R™>™,

Here, each column d& corresponds to an OvO decomposition  opyiously, the second term in the objective function is convex
problem, where instances with labet1” (or * —1') serve as pos- vt F. For the first term, becaus#,, — S)(L, —S)T is always
itive (or negative) examples, and instances with labelre not ngsitive semi-definite we haveF | (1,,—S)(I,,—S) F.; is con-
considered in the current binary classification problem. Generalgéx w.rt.F.; whereF; is thejth]column ofF. Furthermore, the
we can simply trairf independent binary classifiers over examplegst term can be expressed E‘;:l F;(Im —S)(I, — S)TF:j

with label “+1" and '—1" under the supervision oL, one per ,nq the convexity can be preserved after summation operation

column. However, all these binary classification problems origjghich resuits in the convexity of the first term. Therefore, the
nate from the MDC problem via OvO decomposition and Sho”@ojective function is jointly convex w.r.F.

be solved in a joint manner due to potential relationships among
them 4], [35]. Furthermore, the ternary labeling confidence with 1. For anyz € R™*!, we havezT (I, — S)In — S)Tz =
negative, null or positive might be inaccurate due to existence [(ft,, — S)TmH; >0
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Let A(F) be the objective function of Ed), the gradient of simultaneously. In this paper, we alternatingly calculate one of
A(F) is given as follows: them while the remaining one is fixed until convergence.

OA(F Calculating W when M is fixed. Because there is the non-
@;‘ : = 2L = S)(In = 8) 'F + 2\F — 2)L linear magpinqu(-) by kernel functionk, for the optimiza-
aA(F) 0 0, we can obtain a closed-form solutionf tion _problem in Eq.iQ),_ we canot always obtain an explicit
solution of W. According to the Representer Theoredd][
B under fai(;ly genlgral condiii)pnst,. thef;:;edictiyg mpdfl can Icl)_et
T expressed as a linear combination of the training instances. Le
F= <(I'” ~S)In—8)" + )\Im> (AL) ™ o p: [p(x1),...,d(xm)]T € R™*4 be the nonlingear mapping
Thereatter, labeling information is aligned in the output spadestance matrix ofX, for the multi-output regression problem
via the label encoding and enrichment procedure. Specificaily, Eq.Q), we havew; = > 60,;¢(x;) = ®76; and then

By setting=;
as follows:

each element;; (1 < i < m,1 < j < ¢) in the real-valued W = ®'©, where® = [0,,...,6,] € R™*is the combina-
matrix F' can be regarded as the labeling confidence ofithe tion coefficients to be determined. Pluggifg = &' @ into the
instance on thg encoded label. objective function in Eq9) which is denoted aF(W):

icti i rw) =13 eTa L eTe’
3.3 Predictive Model Induction (W) = ; H d(xs) — fi ut3 H HF
As the enriched label matri¥ is real-valued, it is natural to 1 = 5 5
tackle the resulting problem with multi-output regression tech- =— H<I>‘1>TG) — FH + 7 H<I>T®H
niques B]. Specifically, we can train a multi-output regressor over ”f M2 F
D = {(z:,f;) | 1 <i < m} by simply solving the following — gy ((<I><I>T® _F)M(®®'O — F)T)

m

optimization problem:
+ %tr (eT@®T0) 21(0)

1 & 2
H&HE ; HWTfﬁ(wz) - fi , T

7
S IWIE ® T NN
2 Let K = &' € R be the kernel matrix with(s, j)th

elementk;; = k(x;, x;), then the gradient of (®) w.r.t. © is

Here,~ is a trade-off parameter)(-) is the (implicit) nonlinear given as follows:

mapping by kernel functior : X x X — R and¢(x;) € R4 <1,

W = [wy,wy,...,w] € RY*! corresponds to the regres- e 1 ..+ T -
sion model to be determined. However, the above multi-output 0e m(K K&M +K KeM
regressor actually deals with tifieutput variables independently. _K'FM — KTFMT) ++KO©

Following the metric learning idea3f], [37], [39], [55], the £ _ _
output variables can be tackled in a joint manner by employingBy setting the above gradient to 0, we have:

Mahalanobis distance metri:
analanobis distance met (m7) - (KTK)"'K® + ©(M + M)

12\4 +2IWIE @ = (K'K)'K'F(M+M") (11)

H‘lﬂi,n % i_n: HWT¢(%‘) —fi

which is a Sylvester equation w.r® and can be solved by any
where||a — bHM = (a—b) "M(a—b) returns the square of Ma- off-the-shelf solvers.

halanobis distance between vectarandb. The metricM aims at ) . o .
shortening the distance betwe¥ ' ¢(z;) and f; and enlarging Calculating M whgn W is fixed. The optimization problem in
the distance betweeW T ¢(z;) and nong;s. ThereforeM can Eq.(L0) can be equivalently reformulated as follows:

be determined by the following optimization probleB88], [67]: min tr(MU) + tr(Mflv) +u- D(M, 1) (12)
M0 ’
g;% - Z HWTQﬁ x;) — fi Here,
1 m
T U=— W' o(x; w' — fi
Ly oy HW (e~ i, = 2 (Wt = £) (WTo@) - £)
i=14, ENK(.ﬂ m
1
+ - D(M, Ty) 10 ==% (e7®i() - f;) (T ®s(x:) - £.)
whereNy(f;) = {ir | 1 <r < k} is the set of indices fof;'s & 1 =1
nearest neighbors i, D(M, I;) = tr(M) + tr(M~!) — 2/ is = — (KO -F)"(K® - F) (13)
the symmetrized LogDet divergence, gnds a trade-off parame- ml m

ter. Here, the first term makes the distance betvW&he(x;) and V — W od(z:)— £ )V (W o(xz:) — F i
f; closer, the second term makes the distance betWéen(x;) Z Z ( o) fw)( #=1) fl"')

and nonf;s farther, and the third term penalizes the complexity

of M to avoid overfitting. 1 Z Z (@T‘I’ﬁb(ﬂ?i) _ f1r> <@T‘I)¢($z‘) _ fir)T
Obviously,M should be known when solving the optimization m-k i=14, €Nk (Fi)
problem w.rt. W in Eq.©), while W should be known when &

solving the optimization problem w.rM in Eq.(L0). The inter- = Z (K® —F,)" (KO —F,) (14)
action betweerW and M prevents them from being calculated -k —



Algorithm 1 The proposed Dem approach. TABLE 1: Characteristics of the benchmark data sets.

Input:  D: MDC training set{(z;, ;) [ 1 < i < m} Data Set #Exam. #Dim. #Labels/Dim. #Featlrres
k: number of nearest neighbors considered Edm 154 2 3 16
A, 7, w: trade-off parameters Oes97 334 16 3 268
.. unseen instance Jura 359 2 4,5 )
Output: y,: predicted class vector fa, Oes10 403 16 3 298
1. Obtain the transformed label matdixaccording to EqX) and Enb 768 2 2,4 6
Eq.Q): Song 785 3 3 98
: . . BelLaE 1930 5 5 h,44x
2: Obtain the enriched label matrik according to EqX); \Voice 3136 2 472 18
3: Initialize M = I, Scm20d 8966 16 4 61
4: repeat Rf1 8987 8 4,4,3,4,4,3,4,3 04
5:  Obtain® by solving the Sylvester equation in Eflj; Thyroid 9172 7 5,5,3,2,4,4,3 n{ 22¢
6:  ObtainM according to Eq45); Pain 9734 10 2,54,2,252,5,.2,2 136
7: until convergence scmild 9803 16 4 280
. . . ) ColL2000 9822 5 6,10,10,4,2 81
8. Obtain enriched label vectgf, for ., according to Eq6); TIC2000 9822 3 6,42 a3
9: Return y, by applying OvO decoding rule ovet, = Flickr 12198 5 3,4,3,4,4 1526
sign(fs). Disfa 13095 12 55,6,3,44,54,4,4,64 136
Fera 14052 5 6 136
Adult 18419 4 7,7,5,2 B,5x
whereF,. = [fi,, f2.,---, fm,] - Following [67], the optimiza- Defauit 28779 4 2742 e

tion problem in Eq12) is strictly convex, and then its global ' n, z denote numeric and nominal features respectively.
minimum can be obtain when the gradient of the objective function
vanishes. Specifically, by calculating the gradient wik{. and

setting it to 0, we can obtain: case that the labeling information provided by the first two steps

is inaccurate or the predictive model induced in the third step is
(U+ply) —M Y (V4 pul,)M =0 under-performed, the generalization performance ¥ would

be impacted. Therefore, we can further explore more advanced
techniques to obtain more accurate labeling information and more
powerful predictive model in future. For example, for the labeling
information enrichment step, following the idea 28], [74], we

can also attempt to obtain the coefficients and enriched labels in

Here, the above equation is equivalenM(U + uI,)M = (V +
uly) which is actually aRiccati equatior{4]. Its unique solution
corresponds to the midpoint of the geodesic joinfhg+ 1I,) !
to (V + puly), e,

M= (U+ uj[é)*l#l/g(v + ply) (15) aunified formulation rather than separately optimizing 8aafid
1/2 Eq.6). Moreover, following the idea of ALP-TMRE9], we can
whereA#;,,B = Al/2 (A*I/QBA*V?) Al/2, further consider the noise and outliers in instances, enriched labels

and coefficients to improve model’s robustness. Nonetheless, the
As the above two alternating optimizing steps converge, vechnical choice of DEM has made it achieve very competitive
can obtain the predictive model, i.e., the optimal value3oflor performance against state-of-the-art MDC baselines according to
© in Eq.(11). Then, for unseen instance,, its enriched label the experimental results which will be reported in the next section.
vector can be predicted as follows:

fo = W'¢(z,) = OTK* (16) 4 EXPERIMENTS

. 4.1 Experimental Setu
whereK* = ®¢(z,) € R™*! with elementsK} = x(x;, x.) P P
(1 < < m). Finally, we can determine.’s binary label vector +-1-1 Benchmark Data Sets
by 1. = sign(f.), wheresign(-) represents the (element-wise)in this paper, we have collected a total of 20 real-world MDC
signed function. It is easy to know that ttigth ~ IJth elements data sets for comparative studies. Tabummarizes the detailed
in 1., belong to thejth class space, based on which we can predigparacteristics of all benchmark data sets, includwgnber of

the corresponding class label via OvO decoding rule of majorir@mples(#Exam.),number of dimensiong#Dim.), number of
voting. Here,I7 = 7! (Iga) +landlj=357_, (1;) class labels per dimensiogi#Labels/Dim. and number of fea-

In summary, Algorithml presents the complete procedure ofures (#Features). More details can be found in Appen#lixTo
the proposed DEm approach. Firstly, we obtain the transformedhe best of our knowledge, this serves as the most comprehensive
label matrixL (Step 1), and then obtain the enriched label matr#@stbed for MDC studies with the largest number of real-world
F (Step 2). After that, an alternating optimizing process is used @&§nchmark data setS][ [24], [25], [39], [43], [63].
solve the multi-output regressor in E®).(Steps 3-7). Finally, the
class vector for unseen instance is predicted by applying the 066'2 Compared Approaches
decoding rule over the binarized label vectpr(Steps 8-9). In this paper, the performance of.Bwm is compared with seven

It is worth noting that, for the proposedLBm approach, the state-of-the-art MDC approaches, including Binary Relevance
first two steps provide the labeling information where the first stdBR) [9], [43], [70], Class Powerset (CP)2f], [58], Ensem-
gives the basic labeling information which is further enriched bies of Classifier Chains (ECC%2], [44], Ensembles of Super
the second step, while the last step induces the predictive mOd%'. If all dimensions contain the same number of class labels, then only this

supervised by th? obtained labeling informatipn where a multiymber is recorded; Otherwise, the number of class labels per dimension is
output regressor is learned to solve the resulting problem. In tleeorded in turn.
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TABLE 2: Experimental results (mearstd. deviation) of each MDC approach in termsH#Fmming Scoreln addition,e/o indicates whether
DLEM is significantly superior/inferior to other compared MDC approaches on each data set (paitggsat 0.05 significance lel).

Data Set DEM BR CP ECC ESC SEEM MDKNN gMML
Edm .784+ .059 .694+ .047e¢ .688+ .060e .698+ .053e .704+ .066e .688+ .103e .7404+ .122  .714+ .083e
Oes97 738t .026 .607+ .033e .188+ .065e¢ .590+ .034e .573+ .035e .711+4 .023e .730+£.023  .724+ .023e
Jura 717+ .062 586+ .069e 570+ .061e .559+ .065e .558+4 .055e .578+ .063e .652+ .062e¢ .606+ .072e
Oesl10 806Gt .016 .664+ .019e¢ .179+ .041le .659+ .024e .633+ .020e .781+4+ .013e .791+ .022e .775+ .017e
Enb 935+ .024 7164+ .029e¢ .689+ .020e .681+ .035e¢ .665+ .022e¢ .770+ .028e .8354 .028e .742+ .027e
Song 785+ .030 .771+ .026e .769+ .025e¢ .770+ .025e¢ .766+ .027e .777+ .030e 777+ .027 788+ .027
BelLaE 4124+ .025 423+ .022 .354+ .018e .408+ .022 .374+ .020e .398+ .023 395+ .012e¢ .4174 .020
\oice 958+ .009 .940+ .010e .916+ .010e .930+ .008e .931+ .009e¢ .936+ .012e¢ .943+ .008e .842+ .009e
Scm20d .882t .003 .632+ .006e N/A .608 £ .007 e N/A 770+ .005e¢ .866+ .004e .600+ .007e
Rf1 977+ .002 .852+ .005e¢ .813+ .010e .845+ .004e .794+ .007e¢ .950+ .002e .981+ .001c .730+ .007e
Thyroid .968+ .002 .961+ .002e .961+ .002e¢ .961+ .002e¢ .961+ .002e¢ .966+4 .003e .967+ .003  .960+ .002e
Pain 978+ .002 .948+ .004e .948+ .004e .948+ .004e .948+4 .004e .960+ .003e .971+ .003e .948-+ .004e
Scmid .893+ .003 .725+ .007e N/A .694 £ .007 e N/A .8244 .004¢ .879+ .002e¢ .697+ .007e

ColL2000 .904+ .005 .874+ .005e .738+ .006e .858+ .005e¢ .851+ .008e .921+ .0040 .8774 .005e¢ .894+ .004e
TIC2000 .885+ .004 .892+ .0080 .872+ .008e .884+ .007 .884+ .007 .916+ .0060 .864+ .005e .895+ .0070

Flickr .735+ .005 .715+ .006e .658+ .008e .693+ .005e .651+ .007e .7344+.006  .735f.006  .779+ .0040
Disfa .949+ .002 .885+f .003e N/A .884+ .003e .878+ .003e .913+ .003e .937+£ .002e¢ .884+ .003e
Fera 812+ .010 .599+ .008e N/A .588 £ .007e N/A .675+ .007e .763+ .006e .589+ .007e
Adult .679+ .004 .701+ .0040 .682+ .005 .702+ .0050 .675+ .006e .706+4+ .0050 .699+ .0050 .705+ .0040

Default .663+ .002 .665+ .004  .660+ .004  .666+ .0040 .666+ .0040 .668+ .0040 .654+4 .003e .666-+ .0040

TABLE 3: Experimental results (mearstd. deviation) of each MDC approach in termsE{act Match In addition, e/o indicates whether
DLEM is significantly superior/inferior to other compared MDC approaches on each data set (paitggsat 0.05 significance lel).

Data Set DEMmM BR CP ECC ESC SEEM MDKNN gMML
Edm .625+ .082 3894 .093e .467+ .088e .395+ .106e .454+ .110e .455+ .153e .585+4+ .196  .487+ .145e
Oes97 .063t .050 .030+ .028e .054+ .046  .039+ .040e .036+ .042 .036+ .031e .063+.048  .042+ .038
Jura 535+ .077 .329+ .110e .326+ .099e .298+ .103e .298+ .098e .340+ .095e¢ .473+.085  .368+ .119e
Oesl0 .094+ .045 .064+ .035e¢ .077+ .041e .074+ .044e .067+ .037e¢ .0774+ .041 .089+ .053  .079+£ .040
Enb .870+ .048 .4314- .058e .379+ .041e .362+ .069e¢ .330+ .045e¢ .539+ .057e .669+4 .055e .483+ .053e
Song A78+ .062 449+ .060  .442+ .055e 446+ .055e .438+ .059e .457+ .062e .455+ .065  .484+ .059
BelLaE .027+ .014 .028+ .010  .025+ .009 .035+ .012 .025+ .008 .023+ .012 .023+.009  .022+ .009
\oice 918+ .017 .884+ .017e .841+ .016e .866+ .015e¢ .867+ .016e .877+ .021e .889+ .015e .699+ .017e
Scm20d 259t .013 .054+ .006e N/A .073+ .009¢ N/A .104+ .008e .231+ .011e .052+ .007e
Rf1 .833+£.010 .3224+ .011e .319+ .025e .322+ .012e¢ .275+ .012e .690+ .010e .858+4 .0090 .138+ .01le
Thyroid .803+ .014 .743+ .014e .743+ .014e .743+ .014e .7424+ .014e .784+ .017e¢ .791+ .016e .741+ .015e
Pain .866+ .012 .751+ .017e¢ .751+ .017e .751+ .017e .751+ .017e .778+ .015e .834+ .018e .750+ .018e
Scmid 291 .016 .115+ .010e N/A 123+ .013e N/A 1794+ .014e 257+ .014e .102+ .009e

ColL2000 .640+ .014 515+ .012e .273+ .012e .466+ .013e .468+ .019e .701+ .0140 .552+4 .014e .576+£ .015e
TIC2000 .688+ .009 .698+ .019  .645+ .019e .675+ .016e .675+ .016e .764+ .0160 .632+ .018e .706+ .0180

Flickr .226+ .006 .187+ .011e .125+ .016e .168+ .011e .114+ .014e .211+4+ .01le .228+ .013  .287+ .0090
Disfa .622+ .013 .378+f .011e N/A 377+ .011e 374+ .011e .449+4 .016e .579+ .010e .379+ .01le
Fera 481+ .020 .199+ .013e N/A 196+ .013e N/A .244+ .005e¢ .405+ .012e¢ .196+ .013e
Adult .239+ .008 .228+ .006e .282+ .0120 .251+4 .0090 .269+ .01lo .2564 .0100 .260+ .0100 .230+ .009e

Default .181+ .007 .177+ .007 182+ .008  .179+ .007 179+ .007 185+ .0070 .1774+.004  .1774+ .007e

Class classifier (ESC)4B], Stacked dEpendency Exploitationlevel. MDKNN makes maximum a posteriori (MAP) inference for
for Mbc (SEEM) [26], Multi-Dimensional k Nearest Neighbors each pair of class spaces based on tkidM counting statistics and
(MDKNN) [27], and gMML [39]. Specifically, BR independently then determine the class label of unseen instance w.r.t. each class
deals with each MDC dimension by training a multi-class classifispace via consulting empiricBNN accuracy. gMML transforms

per dimension, while CP jointly deals with all MDC dimensions byhe MDC output space into a new one via one-vs-rest strategy, and
training a single multi-class classifier where all distinct class corthen alternatingly learns regression models for each transformed
binations in training set are regarded as new classes. ECC joir#lpel as well as a Mahalanobis metric which can make the distance
deals with all MDC dimensions by training a chain of multi-clasbetween the regression outputs and ground-truth label vector
classifiers, one per dimension, where the subsequent classifi@oser.

on the chain treat the predictions of preceding classifiers as extrag,. Br cp. ECC. ESC. SEEM and MDKNN support vector

features. ESC preprocesses all MDC dimensions by grouping th&{ chine (SvM) is used to instantiate their multi-class base learner.
into supgr-classes, where each super-class is fggarded as a &&Wtifically, the popular LIBSVM softwarel(] with default

class variable. SEEM learns a multi-class classifier for each pgityameter setting is used in this paper. For ensemble approaches
of class spaces via powerset transformation in the first level apgh~ 5nq ESC, 67% examples randomly selected from training
then determine the class label of unseen instance w.r.t. each clags, e used to generate a total of 10 base mod&]s 4nd the
space via adaptively stacking the predictive results from the ﬁrﬁrtedictive results are combined via majority voting. For SEEM
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TABLE 4: Experimental results (mearstd. deviation) of each MDC approach in termsSalbh-Exact Matchin addition,e/o indicates whether
DLEM is significantly superior/inferior to other compared MDC approaches on each data set (paitggsat 0.05 significance lel).

Data Set DEM BR CP ECC ESC SEEM MDKNN gMML
Edm 942+ .048 1.004+ .0000 .909+ .054  1.00+ .0000 .954+ .055  .922+ .082  .895+ .100  .941+ .065
Oes97 108t .070 .072+.051  .072+ .057e .078+.053  .060+ .043  .087+.042  .120+ .078  .099+ .055
Jura 900+ .085 .844+ .059  .813+ .040e .819+ .052e¢ .819+ .045e¢ .816+ .066e .830+ .084  .844+ .049
Oesl10 193t .072 .119+ .059e .107+ .044e 129+ .047e .117+ .048e .191+4+ .053  .196+ .059  .176+ .038
Enb 1.00+£ .000 1.004+.000 1.00£.000  1.00+.000 1.00+.000  1.00+£.000 1.004&.000  1.00+£ .000
Song 878+ .040 .868+ .032  .868+ .036  .869+ .033  .862+ .034e .878+ .051  .878+.042  .883+ .041
BelLaE 135+ .032 .132+ .024  .093+ .010e .134+.016  .110+.012  .116+.020  .111+ .020e .1304 .020
\oice 1999+ .002 .996+ .005  .991+ .005e .995+ .005e .995+ .005e .995+4 .004e .997+ .004  .985+ .0lle
Scm20d 511 .015 .105+ .007e N/A 128+ .011e N/A .225+ .008e .472+ .021e¢ .100+ .009e
Rf1 .988+ .004 .655+ .017e¢ .580+ .022e .637+ .012e¢ .542+ .014e .932+ .006e .992+4+ .0030 .375+ .014e
Thyroid 977+ .004 .983+ .0040 .982+ .0040 .983+ .0040 .982+ .0040 .9784+.004  .979+ .004  .982+ .0050
Pain 946+ .008 .847+ .010e .847+ .010e .847+ .010e .847+ .010e .885+ .006e .921+ .008e .846+ .010e
Scmid 545+ .014 223+ .016e N/A 212+ .014e N/A .365+ .014e¢ .502+ .013e .198+ .015e

ColL2000 .908+ .010 .873+ .016e .576+ .016e .851+ .013e .820+ .017e .923+ .0050 .872+ .01le .903+ .010
TIC2000 .966+ .005 .979+ .0040 .972+ .0050 .977+ .0050 .9764 .0050 .985+ .0040 .962+ .003e .978+ .0030

Flickr .600+ .015 .543+ .015e .426+ .018e .494+ .014e .414+ .017e .5954+.019  .597+ .016  .689+ .0160
Disfa .845+ .005 .596+ .011e N/A 592+ .010e .575+ .010e .703+ .016e .800+ .011le .590+ .009e
Fera 734+ .017 .387+ .012e N/A 375+ .012¢ N/A 496+ .012e .648+ .011e .378+ .013e
Adult .610+ .006 .657+ .0100 .599+ .008e .651+ .0100 .586+ .01le .660+ .0080 .638+ .0100 .669+ .0080

Default .586+ .005 .5904+ .008  .579+ .007e .593+ .0080 .592+ .009  .596+ .0080 .568+4 .008e .593+ .0080

TABLE 5: Win/tie/loss counts of pairwisetest (at 0.05 significance level) betweendm and each MDGapproach.

Evaluation D.EM against

metric BR CP ECC ESC SEEM MDKNN gMML

HS 16/2/2 14/2/0 16/2/2 15/1/1 14/2/4 13/5/2 14/2/4
EM 16/4/0 12/3/1 17/2/1 13/3/1 14/2/4 10/8/2 14/4/2
SEM 9/7/4 11/3/2 11/4/5 10/5/2 8/8/4 9/9/2 7/8/5

In Total 41/13/6 37/8/3 44/8/8 38/9/4 36/12/12 32/22/6 35/14/11

and MDKNN, the number of nearest neighbors is set to 10 data sets, we conduct ten-fold cross-validation and record both the
recommended in their respective literatur2g|[[27]. For gMML, mean metric value and standard deviation for comparative studies.
the parameters are tuned according 88][ For the proposed

DLEM approach, we use the popular RBF kernel and set the, Experimental Results

three trade-off parameters and the number of nearest neighhloé

considered ad = 1, v = 10, i = 1 andk = 6. Eles 2-4 report the detailed experimental results in terms of

Hamming ScoreExact Matchand Sub-Exact Matchiespectively.
4.1.3 Evaluation Metrics Moreover, pairwisé-test at).05 significance level is conducted to

In this paper, the generalization abilities of MDC approaches ahow whether_ Dewm achieves significantly superior/inferior per-
measured via a total of three evaluation metrics, Hamming formance against other compared MDC approaches on each data

Score (HS), Exact Match(EM) and Sub-Exact Match(SEM). set. Accordingly, Tablés summarizes the resulting win/tie/loss

Specifically, letS = {(z;,;) | 1 < i < p} be the test set, COUN'S: . ' '
wherey; = [yi1, yiz, - .- 7yiq]‘|' is the ground-truth class vector Based on the experimental results, the following observations

associated withz,;. For the MDC modelf : X +— ) to be C&nbe made:
evaluated, le§; = f(a;) = [§i1, G2, -- -, Uig] | be the predicted  ,  Across all the 399 configuratiohs(20 data setsx 7

class vector forx;, then the numbel' of dimensions which are Compared approaches3 metrics)’ DEM achieves supe-
predicted correctly corresponds ) = 3°7_, 1, _; . Here, rior or at least comparable performance against the seven
1, returns 1 if7 is true and O otherwise. The detailed definitions compared approaches in 349 cases.
of the three metrics are given as follows: « BR works by dealing with each dimension independently,
1201 ‘ which actually can be viewed as optimizitgamming
HSs(f) = — Z =@ Score while CP works by dealing with all dimension
L jointly via powerset transformation, which actually can
1L be viewed as optimizingexact Match It is impressive
EMs(f) = - Z 1,«@):,1 to notice that EM still achieves superior performance
Pz against BR in 16 out of 20 cases in termsHd&mming
1& Score and against CP in 12 out of 16 cases in terms of
SEMs(f) = » D> 154 Exact Match
=1

. Lo . . 3. Due to the high computational complexity which leads to “out of mem-
For all metrics, it is obvious that their values rangelinl] and oy error for LIBSVM software, there are a total 21 configurations whose
thelarger the values the better the performance. For all benchmassults are unavailable for some compared approaches.
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Fig. 1: Performance comparison betweerem and its two variants.

Both ECC and ESC work by explicitly considering class
dependencies and utilizing ensemble strategy to account
for the randomness in dependency modeling. As shown
in Table5, DLEM achieves superior performance against
ECC in 44 out of 60 cases, and against ESC in 38 out of
51 cases. These results clearly validate the effectiveness of e
DLEM'’s label encoding strategy for dependency modeling.
Both SEEM and MDKNN consider class dependencies
in a two-level strategy, where pairwise (i.e., second-
order) and high-order class dependencies are considered
in the first and second level respectively. Compared with
ECC and ESC, it is shown that more comparable and

mance against gMML oveFlickr in terms of each metric.
There are a total of 1536 featuresHiickr, which might
lead to less reliable manifold structure identified in such
high dimensional feature space as dense sampling is no
longer satisfied.

To summarize, if one MDC data set is assumed to own
good manifold structure in feature space, it is encouraged
to try the proposed Dem approach to induce the predic-
tive model. Moreover, it is also worth further exploring
some effective techniques (e.g., distance metric learning)
to improve the quality of manifold structure in the future.

inferior cases occur thoughLBwm still achieves superior Tag|E 6: Wilcoxon signed-ranks test betweerLim and its two
performance against SEEM in 36 out of 50 cases amfégenerated versions in terms of each metric (at 0.05 significance
against MDKNN in 32 out of 50 cases. Thus, it wouldevel; p-values shown in the braeks).

be interesting to explore possible approaches which can

integrate the two-level dependency modeling strategy into DLEM EvaluationMetrics
label encoding process to induce better learning models. ag?a'(‘/it win[lgge e I'Esl\lﬂe o] win[fggﬁe o]
gMML works by learning regression models in one-vs- DeV2 | win[3.046-02] win[2.98e-02] win[1.136-02]

rest decomposed label space. Note that@ achieves

superior or at least comparable performance in 49 out of
60 cases. These results indicate the effectiveness of the

one-vs-one decomposed label encoding strategy again® Further Analysis
the one-vs-rest decomposition strategy without modelinzgg'l Effectiveness of Algorithmic Design

alignment.
It is worth noting that against the compared approaches,
most of the inferior cases (42 out of 50) for Bv occur on
data sets with nominal features includiBgLaE Thyroid

'ghe performance of DeEm is also compared with its two de-
generated versions to investigate the effectiveness iafM®
algorithmic design. The two variants are denoted as DeV1 and

ColL200Q TIC200Q Adult andDefault One potential rea- P€V2 respectively:

son lies in that the manifold structure identified in nominal
feature space is less reliable, which impacts the quality of
DLEM'’s enriched labeling information in the encoded label
space derived via manifold structure preservation.

It is also worth noting that DEm achieves inferior perfor-

DeV1: This variant trains the multi-output regressor in
Eq.©) supervised by the ternary label matidx instead

of the enriched label matri¥. In other words, DeV1
corresponds to the degenerated case without considering
the enriched labeling information for model training.
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Fig. 2: Performance of DEm varies as one ok, A\, v and u changes while others are fixed. For subfigures (a)(e)(i)(mKqanges in
{4,5,6,7,8} when fixingA = 1, v = 10 andp = 1; For subfigures (b)(f)(j)(n)(r)A ranges in{0.01,0.1, 1, 10,100} when fixingk = 6,
~ = 10 andu = 1; For subfigures (c)(g)(k)(0)(s)y ranges in{0.1, 1, 10, 100, 1000} when fixingk = 6, A = 1 andu = 1; For subfigures
(@)(h)(H(p)(t), u ranges iK{0.01, 0.1, 1,10, 100} when fixingk = 6, A = 1 andy = 10.

« DeV2: This variant employs the regressor in Byjifistead test the relationship betweenLBm and the two degenerated
of the regressor in Ef to accomplish the resulting versions. Tablé summarizes the statistical test results where the
multi-output regression task. In other words, DeV2 correp-values for the corresponding tests are also shown in the brackets.
sponds to the degenerated case without utilizing distaniteis shown that the performance ofLBm is better than the
metric for model training. two variants over most data sets and achieves statistical superior
performance against them in terms of each metric. These results

Detailed experimental results are shown in Figlirkloreover, clearly validate the effectiveness oftBm’s algorithmic design

Wilcoxon signed-ranks te$fl5] serves as the statistical tool to



in utilizing enriched labeling information and distance metric for
model training.

4.3.2 Parameter Sensitivity

As shown in Algorithm1, there are a total of four parameters

for DLEM to be tuned, i.e., the number of nearest neighbors

consideredt in Eq.3) and Eq.L0), the trade-off parameters

in Eq.©), v in Eq.(9), andy in Eqg.(10). Figure2 illustrates how

the performance of Dem varies as one of these four parameters

changes while others are fixed. .
It is shown that the performance ofLBMm is insensitive tok

whose value is set to 6 in this paper. Pgrboth small and large

A would lead to performance degradation ofEM whose value

is set to 1 in this paper. Foy and u, the performance of Dem

is less sensitive to these two parameters, where the settings with

moderate valuey = 10 andu = 1 serve as better choices for  *®

these trade-off parameters.

5 CONCLUSION

Most existing approaches solve the MDC problem in the original
output space, while a novel approach name@ is proposed in *
this paper which solves the MDC problem in a transformed label
space. Specifically, the original output variables are firstly encoded
via one-vs-one decomposition. Then, the labeling information in
the decomposed label space are enriched via manifold structure
preservation identified in the feature space. Finally, a multi-output
regression model with metric-aligned technique is learned for *
the resulting problem. The superiority of.Bm against state-of-
the-art approaches is clearly validated via extensive comparative
studies over the most up-to-date benchmark data sets.

It is shown that the effectiveness of subsequent steps is highly
dependent on that of preceding steps fare®, whose coupling
properties are worth further investigation in the future. Besides, it
is also interesting to explore other alternatives for each step, e.g.,*
other ways to instantiate the label encoding strategy and other
strategies for labeling information enrichments.

APPENDIX A .
BENCHMARK DATA SETS
In this paper, a total of 20 benchmark data sets have been collected

for comparative studies. Basic characteristics of all benchmark
data sets have been summarized in Tdb¥ehile further descrip-

tions are given as follows.

Edm aims at reconstructing the human operator’s skill
from historical examples to implement an automatic op-
erator for an electrical discharge machining (EDM) ma-
chine R9]. The 2 class spaces correspond to two parame-
ters (gap and flow) to be controlled during the process, o
and each class space includes three class labels w.r.t.
possible actions: increasing the parameter, no action, and
decreasing the parameter.

Oes97 andOesl10 aim at estimating the relative number

of full-time employees across different employment types
for some specific metropolitan areas according to the
occupational employment survey (OES) in years 1997 and
2010, respectivelyd4]. The 16 class spaces correspondto e
sixteen different employment types, and each class space
includes three class labels w.r.t. relative representation of

10

number of employees: small quantity, medium quantity,
and large quantity.

Jura aims at predicting land uses and rock types for some
locations in Swiss Jura according to the measurements of
concentrations of seven heavy metdl8|[ The first class
space corresponds to land uses with four possible types:
forest, pasture, meadow, tillage, and the second class space
corresponds to rock with five possible types: Argovian,
Kimmeridgian, Sequanian, Portlandian, Quaternary.

Enb aims at predicting some building parameters of en-
ergy buildings according to some other building param-
eters p7]. The first class space corresponds to overall
height with two relative representations and the second
class space corresponds to glazing area with four relative
representations.

Song aims at categorizing Chinese songs from three
dimensions, including emotion, genre and scena2i). [
Each of the 3 class spaces includes three possible cat-
egories: happy, sad, cathartic for emotion, folk, Internet
pop, pop for genre, and walk, wedding, nightclub for
scenario.

BelLaE aims at predicting students’ answers to five ques-
tions in a questionnaire based on their age, sex and answers
to other 43 questionslp], [40]. Each question is on the
importance of certain properties of their future jobs, and
the answer has a grade from ‘1’ (completely unimportant)
to ‘5’ (very important).

Voice aims at predicting the relative mean frequency
and speaker’s gender of a piece of human voi&. [The

first class space corresponds to mean frequency with four
possible class labels: less than 120Hz, between 120Hz and
160Hz, between 160Hz and 200Hz, greater than 200Hz,
and the second class space corresponds to gender with
two possible class labels: male and female.

Scm20d and Scmld aim at predicting the relative mean
price of products for 20 days in the future and for the
next day, respectively5f]. Each class space corresponds
to the relative mean price of one product with four possible
grades from ‘1’ (low) to ‘4’ (high).

Rfl aims at predicting the river flows for 48h in the
future at eight specific locations in the Mississippi river
network p4]. Each class space corresponds to the relative
representation of river flows for one observation site with
three or four grades.

Thyroid aims at estimating the conditions of thyroid di-
agnoses according to physical test results of patieitis [
The 7 class spaces correspond to diagnosed conditions
from seven aspects, including hyperthyroid, hypothyroid,
binding protein, general health, replacement therapy, an-
tithyroid treatment, and miscellaneous.

Pain aims at estimating the facial action unit intensity
of patients who are suffering from chronic shoulder pain
while performing a range of arm motion exercis&§][

The 10 class spaces correspond to ten different facial
action units with six intensity levels ranging from 0 (no
pain) to 5 (strong pain). Some intensity levels for some
action units are merged to alleviate the imbalanced class
distribution in the original data set.

ColL2000 aims at categorizing customers of an in-
surance company from different dimensions according
to their product usage data and socio-demographic data



o Flickr

e Adult

o Default

derived from zip area codes]]. The 5 class spaces]8]
correspond to average age, customer main type, Roman
Catholic, contribution private third party insurance, anf{a]
number of mobile home policies, respectivelyC2000

is a variant of ColL2000 where the two target variables
customer main type and Roman Catholic are used as infptfl
attributes.

aims at categorizing pictures in mirflickr2583

from different dimensions. We re-annotated all the picturdsl]
according to the MDC definition and just pick out part of
them R5]. The 5 class spaces correspond to sky, people,
night, plant, and indoor, respectively. [12]

o Disfa aims at estimating the facial action unit intensity of

young adults who are viewing 4-minute video clips]l 13]
The 12 class spaces correspond to twelve different fac[a?
action units with six intensity levels ranging from 0 (not
present) to 5 (maximum intensity). Some intensity leveld4]
for some action units are merged to alleviate the imbal-
anced class distribution in the original data set.

o Fera aims at dealing with a similar task as Disfa. The datti5]

set is provided in FG 2015 Facial Expression Recognitio[rl16]
and Analysis challenge (FERA 20159 and only five
different facial action units are used in output space.  [17]
aims at categorizing people from different dimen-
sions based on their personal informatid6][ This data (18]
set is also known as Census Income Data Set in UCI ma-
chine learning repository. The 4 class spaces correspang
to work class, marital status, race, and sex, respectively.
aims at categorizing credit card clients from2°!
different dimensions based on their personal informa-
tion [66]. This data set is known as default of credit carg1]
clients Data Set in UCI machine learning repositatg][

The 4 class spaces correspond to gender, education, mari-

tal status, and default payment next month, respectively;oy

All these data sets are publicly available Hdtp://palm.seu.edu.
cn/zhangml/Resources.htm#MDC dabore details about each [23]

data set's descriptions, original sources, references, data format in
Matlab and preprocessing notes can also be found in the shared
data repository.
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