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Abstract

In traditional classification framework, the semantics of each object is usually

characterized by annotating a single class label from one homogeneous label

space. Nonetheless, objects with rich semantics naturally arise in real-world

applications whose properties need to be characterized in a more sophisticated

manner. In this paper, a new classification framework named Multi-Dimensional

Multi-Label (MDML) classification is investigated which models objects with

rich semantics by encompassing heterogeneous label spaces and multi-label anno-

tations. Specifically, MDML generalizes the traditional classification framework

by assuming a number of heterogeneous label spaces to characterize semantics

from different dimensions, where each object is further annotated with multiple

class labels from each heterogeneous label space. To learn from MDML training

examples, a first attempt named CLIM is proposed based on an augmented

stacking strategy. Firstly, CLIM induces a base multi-label predictive model

w.r.t. each label space by maximizing the likelihood of the observed multiple

class labels. Secondly, the thresholding predictions from all base models are

used to augment the original feature space to yield stacked multi-label predictive

models. The two-level models are refined alternately via empirical threshold tun-
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ing. Experiments on four real-world MDML data sets validate the effectiveness

of CLIM in learning from training examples with heterogeneous label spaces and

multi-label annotations.

Keywords: Machine learning, supervised learning, multi-dimensional

classification, multi-label classification, multi-dimensional multi-label

classification

1. Introduction

In traditional supervised learning, one common task is to learn from objects

whose semantics are characterized by annotating a single class label from one

homogeneous label space, e.g., multi-class classification. Although this learning

setting has been successfully applied in many real-world applications [1, 2, 3],

some recent studies show that this simplified assumption may not work well

when the needs of modeling objects with rich semantics arise. On one hand, if

the semantics of objects need to be characterized with multiple label spaces from

different dimensions rather than a single label space, then multi-dimensional

classification is more suitable [4, 5]. For example, given one vehicle, we are

usually interested in its information from the type dimension (including possible

classes car, SUV, bus, etc.) and from the brand dimension (including possible

classes Audi, Benz, BMW, etc.) [6, 7]. On the other hand, if the semantics of

objects need to be characterized with multiple class labels rather than a single

class label, then multi-label classification is more suitable [8, 9]. For example,

one natural scene image may contain several kinds of sceneries simultaneously

(e.g., desert, mountains, sunset, etc.) [10, 11].

In this paper, we focus on a more sophisticated scenario which encompasses

heterogeneous label spaces and multi-label annotations to characterize the rich

semantics of objects. In fact, the needs of learning in such scenario naturally arise

in many real-world applications. Take song categorization as an example, each

song can be categorized by its emotion, genre, scenario, and each song might also

contain many different emotions, belong to many kinds of genres, be suitable for
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playing in many scenarios. We formalize this problem as a new learning framework

called Multi-Dimensional Multi-Label (MDML) classification. Compared to multi-

class/multi-label/multi-dimensional classification, each MDML example is also

represented by a single instance while associated with multiple sets of labels.

Here, each set of labels belong to one heterogeneous label space [12, 13] which

characterizes the semantics of objects from one specific dimension. Similar to

MDML, the traditional multi-class/multi-label/multi-dimensional classification

can also be referred to as Single-Dimensional Single-Label (SDSL) classification,

Single-Dimensional Multi-Label (SDML) classification, Multi-Dimensional Single-

Label (MDSL) classification, respectively.

Obviously, the MDML problem cannot be solved by directly adopting exist-

ing multi-class/multi-dimensional classification methods due to the multi-label

nature in each label space.1 If the MDML problem is decomposed into multi-

ple multi-label classification problems, one per dimension, or transformed into

one multi-label classification problem by simply concatenating all label spaces

into a single one, existing multi-label classification methods could be used to

solve the MDML problem. However, the decomposition strategy deals with

each dimension independently and thus cannot consider the label correlations

across different dimensions, while the transformation strategy aligns labels from

heterogeneous label spaces into a homogeneous one and thus cannot consider

the multi-dimensional nature of heterogeneous label spaces in MDML. In other

words, the derived MDML model should not only consider the two kinds of label

correlations within individual dimension and across multiple dimensions, but

also treat them in different ways.

To address these issues, an approach named CLIM, i.e., Considering Label

1Generally speaking, when designing multi-dimensional classification methods, the charac-

teristics of single relevant label in each label space will be specially exploited which prevents

the designed methods from being applied to solve MDML problem [14, 15]. Nonetheless, some

ideas of dealing with multi-dimensional semantic spaces in multi-dimensional classification can

still be borrowed to design MDML methods.
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correlations within Individual dimension and across Multiple dimensions, is

proposed to solve the MDML problem based on an augmented stacking strategy.

Specifically, CLIM induces a predictive model for each dimension by maximizing

the likelihood of relevant labels to consider the label correlations within individual

dimension, where it utilizes the fact that modeling outputs of labels from the

same label space are comparable. To consider the label correlations across

multiple dimensions, CLIM augments the original feature space with binary

predictions from predictive models w.r.t. all dimensions and then refines these

predictive models based on the augmented feature space. The predictive models

and augmented feature space will be updated alternately until convergence. To

investigate the effectiveness of the proposed approach, comparative studies are

conducted over four real-world MDML data sets, and the experimental results

clearly show the effectiveness of the proposed CLIM approach for solving MDML

problems.

The rest of this paper is organized as follows. Firstly, Section 2 discusses some

related works on multi-dimensional multi-label classification. Then, Section 3

presents the technical details of two benchmark MDML approaches and the

proposed CLIM approach. After that, Section 4 conducts experimental studies

to investigate the effectiveness of the proposed approach. Finally, Section 5

concludes this paper.

2. Related Work

The multi-dimensional multi-label classification framework is closely related to

multi-dimensional classification and multi-label classification. Figure 1 shows an

intuitive comparison among different classification paradigms. Specifically, multi-

class classification can be regarded as a special case of both multi-dimensional

classification and multi-label classification, where multi-dimensional classification

generalizes the single label space assumption in multi-class classification to

multiple label spaces to characterize multi-dimensional semantics of objects,

and multi-label classification generalizes the single relevant label assumption in
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multi-class classification to multiple relevant labels to characterize ambiguous

semantics of objects. Furthermore, both multi-dimensional classification and

multi-label classification can be regarded as a special case of multi-dimensional

multi-label classification, which can be regarded as either the generalization of

multi-dimensional classification by no longer restricting single relevant label in

each label space or the generalization of multi-label classification by assuming

multiple label spaces in output space.

Figure 1: Relationships among SDSL (multi-class classification), SDML (multi-label classifica-

tion), MDSL (multi-dimensional classification) and the proposed MDML framework. Here,

relevant labels are shown in shaded style.

Here, we would like to further discuss what new challenges the multi-

dimensional assumption in MDML brings for model induction. Conceptually,

each label space characterizes the semantics of objects from one dimension

and each label in one label space specifies the relevancy of one concept in this

dimension. Generally, we can optimize the MDML model to make the modeling

outputs of relevant labels larger than the modeling outputs of irrelevant labels

in the same label space. However, we cannot require that the modeling outputs

of relevant labels from one label space are larger than the modeling outputs of

either relevant or irrelevant labels from another label space. In other words, the

modeling outputs of labels from different label spaces are not directly compa-

rable even though they are correlated to each other. Take song categorization

as an example, we can only expect that, if the modeling output of label ‘happy ’
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from emotion dimension is larger, then the modeling outputs of labels ‘wedding ’

and ‘memorial ’ from scenario dimension are likely to be larger and smaller,

respectively. We cannot require that the modeling output of label ‘happy ’ is

larger than the modeling output of label ‘memorial ’ even if ‘memorial ’ is an

irrelevant label.

Multi-label classification has been widely studied in the past two decades. The

basic strategy for solving multi-label classification problem is binary relevance

(BR) [16], which deals with each label independently. However, this strategy

is usually criticized for being incapable of considering label correlations. An

improved strategy is to deal with each label in a chaining structure, i.e., classifier

chains (CC) [17, 18], where labeling information for training previous classifiers

on the chain will be used as extra features when training subsequent classifiers.

Another common strategy to consider label correlations is to optimize the label

ranking results [19, 20] based on the single label space assumption, i.e., promoting

the modeling outputs of relevant labels while depressing the modeling outputs of

irrelevant labels. In addition to explicitly consider label correlations in label space,

learning label-specific features [21, 22] has also been shown as a good alternative

solution for multi-label classification, where a distinct feature representation for

each label is extracted to help induce the multi-label predictive model [23, 24]. For

more details of multi-label classification (e.g., problem formulation, evaluation

metrics, categorization and description of existing algorithms, emerging trends

and new challenges), the comprehensive surveys in [25, 26] are recommended.

Multi-dimensional classification has also attracted more and more attentions

in recent years. The BR strategy in multi-label field can also be adapted to

solve the multi-dimensional classification problem in a dimension-wise manner.

To consider label correlations across different dimensions, one common strategy

is to assume some specific structure over label spaces, such as directed acyclic

graph [27, 28], chaining structure [29, 30], super-class partition [4], etc. Due

to the heterogeneity of label spaces, it is very challenging to consider label

correlations with only one specific structure. Recent studies show that it is

helpful to progressively consider low-order and high-order label correlations in a

6



cascaded way [31, 32] or learn the multi-dimensional classification model in a

transformed label space [33, 34]. In addition to these aforementioned approaches

which aim at manipulating the output space, another recently proposed feature

augmentation strategy [35, 36] which aims at manipulating feature space has also

been shown as an effective solution for multi-dimensional classification, where an

augmented feature vector is generated for each example by exploiting its labeling

information and then predictive model is induced based on the concatenation of

the original and augmented features.

3. MDML Approaches

3.1. Problem Formulation

Let X = Rd be the d-dimensional input (feature) space and Y = Y1 ∪

Y2 ∪ . . . ∪ Yq be the output space. Here, Y corresponds to the union of q

heterogeneous label spaces and there are Kj labels in the jth label space

Yj , i.e., Yj = {yj1, y
j
2, . . . , y

j
Kj
} (1 ≤ j ≤ q). Given a set of MDML train-

ing examples D = {(xi, li) | 1 ≤ i ≤ m}, for each example (xi, li) ∈ D,

xi = [xi1, xi2, . . . , xid]> ∈ X is the d-dimensional instance vector and li =

[l1i ; l2i ; . . . ; lqi ] ∈ {0, 1}K is the corresponding binary label vector associated with

xi, where l
j
i = [lji1, l

j
i2, . . . , l

j
iKj

]> ∈ {0, 1}Kj and K =
∑q

j=1Kj . The ath entry

ljia in lji indicates whether the ath label (i.e., yja) in the jth label space (i.e., Yj) is

relevant to xi or not (1-relevant, 0-irrelavant). Besides, we use comma/semicolon

to represent row/column vector concatenation throughout this paper. The task

of MDML is to learn a multi-dimensional multi-label classifier f : X 7→ {0, 1}K

from D which can properly assign a label vector l̂∗ = f(x∗) for unseen instance

x∗.

Moreover, we use h(·) to denote the corresponding hypothesis whose outputs

are real-valued vector instead of binary one, and the relationship between f(·)

and h(·) is f(x) = T (h(x)), where T (·) denotes the threshold function that can

divide label set into relevant part and irrelevant part according to the real-valued

modeling outputs of h(·). We also use f j(x) ∈ {0, 1}Kj and hj(x) ∈ RKj to
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denote the corresponding predictions of x w.r.t. the jth label space, and use

f ja(x) ∈ {0, 1} and hja(x) ∈ R to denote the ath entry of f j(x) and hj(x),

respectively. To facilitate understanding, Table 1 summarizes the notations used

in this section.

Table 1: Notations used in the MDML formulation.
Notation Descriptions

d the number of features in input space
q the number of label spaces (dimensions) in output space
Kj the number of labels in the jth label space (1 ≤ j ≤ q)
K the number of labels in the whole output space, i.e., K =

∑q
j=1Kj

m the number of training examples
X the d-dimensional input (feature) space, i.e., X = Rd

Yj the jth label space where Yj = {yj1, y
j
2, . . . , y

j
Kj
} (1 ≤ j ≤ q)

yja the ath label in Yj (1 ≤ a ≤ Kj)
Y the output space where Y = Y1 ∪ Y2 ∪ . . . ∪ Yq

D the MDML training set where D = {(xi, li) | 1 ≤ i ≤ m}
xi the ith feature vector where xi = [xi1, xi2, . . . , xid]> ∈ X
li the label vector associated with xi where li = [l1i ; l2i ; . . . ; lqi ] ∈ {0, 1}K

lji the part of label vector in li w.r.t. Yj where lji = [lji1, l
j
i2, . . . , l

j
iKj

]> ∈ {0, 1}Kj

ljia the ath entry in lji where ljia = 1 (or 0) denotes that yja is relevant (or irrelevant) to xi

f (or h) the MDML predictive model which returns binary (or real-valued) predictions
f j (or hj) the part of MDML predictive model f (or h) w.r.t. the jth label space
f ja (or hja) the part of MDML predictive model f (or h) w.r.t. the ath label in the jth label space
T (·) the threshold function where f(·) = T (h(·))
x∗ the unseen instance where x∗ ∈ X
l̂∗ the predicted label vector for x∗, i.e., l̂∗ = f(x∗) ∈ {0, 1}K

3.2. Benchmark Approaches

Motivated by the binary relevance strategy in multi-label classification and

multi-dimensional classification, we can also solve the MDML problem via

dimension decomposition strategy where a multi-label classifier is induced for

each label space independently. Without loss of generality, a multi-label data

set Dj = {(xi, l
j
i ) | 1 ≤ i ≤ m} can be constructed based on the MDML

training set D for the jth label space Yj , and a multi-label classifier f j can

be trained over it, i.e., f j ← [ M(Dj), where M is the employed multi-label

classification algorithm. In testing phase, the predicted label vector l̂∗ of unseen

instance x∗ can be obtained by concatenating the predictions of f1, f2, . . . , fq,
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i.e., l̂∗ = [f1(x∗); f
2(x∗); . . . ; f

q(x∗)]. For brevity, this baseline is denoted as

DiDe (i.e., Dimension Decomposition) in the following parts of this paper.

Moreover, motivated by the relationships between multi-label classification

and MDML, we can also solve the MDML problem via dimension concatenation

strategy where labels in different label spaces are no longer discriminated. In other

words, this strategy simply aligns all labels in output space into a homogeneous

label space and ignores the multi-dimensional nature in the MDML framework.

Specifically, given a multi-label classification algorithmM, the MDML model f

is just learned over the MDML training set D withM, i.e., f ← [M(D). The

predicted label vector l̂∗ of unseen instance x∗ can be obtained via l̂∗ = f(x∗).

For brevity, this baseline is denoted as DiCo (i.e., Dimension Concatenation) in

the following parts of this paper.

It is worth noting that DiDe deals with each label space in an independent way,

which leads to the issue of ignoring label correlations across different dimensions.

On the other hand, DiCo treats class labels for all label spaces in a homogeneous

way, which leads to the issue of ignoring the heterogeneity nature of different

dimensions.

3.3. The Proposed Approach

In this section, we present technical details of the proposed CLIM approach

which works in an augmented stacking strategy. Based on the fact that modeling

outputs of labels belonging to the same label space are comparable, CLIM chooses

to consider the label correlations within individual dimension by maximizing the

likelihood of relevant labels. Motivated by the feature augmentation strategy in

multi-dimensional classification [36, 35, 7], CLIM chooses to consider the label

correlations across multiple dimensions by manipulating feature space, which

is good at dealing with examples with heterogeneous label spaces and does

not need to compare modeling outputs of labels. Compared with DiDe, CLIM

considers the label correlations not only within individual dimension, but also

across multiple dimensions. Compared with DiCo, CLIM does not align labels

from heterogeneous label spaces into a homogeneous one, but still considers the
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label correlations across multiple dimensions via feature augmentation strategy.

Comparative studies in Section 4 will show that the technical designs make

CLIM achieve very superior performance against DiDe and DiCo.

Figure 2 shows the workflow of the proposed CLIM approach, where each

kind of colors denotes one working phase. In the first phase (blue color), CLIM

induces predictive model for each dimension over the original feature space to

initialize the augmented features. In the second phase (red color), CLIM induces

predictive model for each dimension again over the augmented feature space. In

the third phase (green color), CLIM updates the predictions that are used to

augment the feature space in the second phase if specific conditions are satisfied.

CLIM works in the second phase and third phase alternately until convergence.

Figure 2: The workflow of the proposed CLIM approach.

3.3.1. Predictive Model Induction for Each Dimension

Without loss of generality, for the jth label space, let Θj = [θj1,θ
j
2, . . . ,θ

j
Kj

] ∈

Rd×Kj be the model parameters of hypothesis hj(·), which can return a Kj-

dimensional probability estimation vector for instance xi as follows:

hj(xi) =


P (yj1 | xi,Θ

j)

P (yj2 | xi,Θ
j)

...

P (yjKj
| xi,Θ

j)

 =
1∑Kj

s=1 e
〈θj

s,xi〉


e〈θ

j
1,xi〉

e〈θ
j
2,xi〉

...

e
〈θj

Kj
,xi〉

 (1)
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where 〈·, ·〉 computes the inner product of two vectors. We hope that Θj can

make the probabilities of relevant labels as large as possible. Therefore, we

use the maximum likelihood estimation (MLE) method to determine the model

parameters Θj . The likelihood function can be given as follows:

L(Θj) =

m∏
i=1

Kj∏
a=1

[
P (yja | xi,Θ

j)
]ljia (2)

Note that ljia = 1 if yja is a relevant label of xi and l
j
ia = 0 if yja is an irrelevant

label of xi. Therefore, only the probabilities w.r.t. relevant labels will function in

Eq.(2). Instead of the likelihood function, we usually optimize the log-likelihood

function which can be given as follows:

LL(Θj) = lnL(Θj) =

m∑
i=1

Kj∑
a=1

ljia · lnP (yja | xi,Θ
j) (3)

According to MLE, the value of Θj can be determined via maxΘj LL(Θj), which

can be equivalently formulated as minΘj −LL(Θj). Moreover, we penalize the

complexity of Θj by adding a regularization term in objective function to avoid

overfitting and then obtain the following optimization problem:

min
Θj

−
m∑
i=1

Kj∑
a=1

ljia · lnP (yja | xi,Θ
j) +

λ

2

∥∥Θj
∥∥2

F
(4)

where λ is the regularization parameter and ‖·‖F computes the Frobenius norm

of matrices. Because there is not an analytical solution to problem (4), we use

gradient descent to solve it in this paper. Specifically, let’s denote the objective

function by J(Θj), the gradient w.r.t. θjt can be calculated as follows:

∂J(Θj)

∂θjt
= −

m∑
i=1

Kj∑
a=1

ljiaxi·
(
I(t = a)− P (yja | xi,Θ

j)
)
+λθjt , (1 ≤ t ≤ Kj) (5)

where I(·) is the indicator function, i.e., I(π) returns 1 if predicate π holds and 0

otherwise.

It is worth noting that we normalize the distribution by
∑Kj

s=1 e
〈θj

s,xi〉 in

Eq.(1) to make the sum of the Kj probabilities be equal to one. This operation

also makes the model parameters Θj overparameterized. Therefore, we always

11



fix θjKj
as 0 and only optimize θj1,θ

j
2, . . . ,θ

j
Kj−1 when implementing the above

optimizing procedure.

With the obtained Θj via optimizing problem (4), the modeling outputs of

any instance can be determined via Eq.(1), where the corresponding modeling

output of one label represents its probability of being relevant to the instance.

The larger the modeling output is, the more likely the label is relevant to the

instance. To further distinguish relevant and irrelevant labels according to

their real-valued modeling outputs, CLIM needs to determine one threshold to

decide whether one label is relevant or irrelevant. In this paper, the threshold

is determined with maximum a posteriori (MAP) criterion in a dimension-wise

manner. Specifically, CLIM searches in the candidate threshold set and selects

the value which can minimize the metric value of hamming loss (cf. Section 4.1.2)

over training set as the final threshold (denoted by T j). Here, hamming loss

is used as it is one of the simplest classification-based multi-label evaluation

metrics and other classification-based metrics can also be investigated in the

future. Algorithm 1 presents the complete procedure of MAP-based threshold

determination for the jth dimension, where η(i), vecYs(i) denote the ith element

of η, vecYs and ε denotes any positive value. Specifically, we firstly initialize

η(1) as the number of labels that are predicted correctly when the threshold is

set so small that all labels are predicted to be relevant, i.e., the number of ones

in Y. Then, we gradually raise the threshold to predict the corresponding items

in the sorted vector as irrelevant labels in turn. It is easy to know that we will

make wrong (or correct) prediction if vecYs(i) is equal to 1 (or 0). Finally, we

determine the threshold according to the index ī of the largest value in η.

With the threshold, we can obtain the multi-label classifier f j(·) which

returns binary predictions for any instance x based on the learned hypothesis

hj(·) for the jth dimension:

f ja(x) = I(hja(x) > T j), (1 ≤ a ≤ Kj) (6)
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Algorithm 1 MAP-based threshold determination for the jth dimension
Input: The ground-truth label matrix Y ∈ {0, 1}m×Kj , the real-valued modeling

outputs matrix Yr ∈ Rm×Kj ;

Output: The determined threshold T j ;

1: Vectorize Y, Yr as vecY, vecYr with length (m×Kj);

2: Sort the items of vecYr in ascending order;

3: Rearrange the items of vecY according to the ascending order of vecYr and

denote the sorted vector as vecYs;

4: Initialize η = 0 with length (m×Kj + 1);

5: Set η(1) =
∑m×Kj

i=1 vecYs(i);

6: for i = 1 to (m×Kj) do

7: if vecYs(i) is equal to 1 then

8: η(i+ 1) = η(i)− 1; %wrong prediction

9: else

10: η(i+ 1) = η(i) + 1; %correct prediction

11: end if

12: end for

13: Determine the index ī of the largest value in η;

14: if ī is equal to 1 then

15: Return T j = vecYs(̄i)− ε;

16: else if ī is equal to (m×Kj + 1) then

17: Return T j = vecYs(̄i) + ε;

18: else

19: Return T j = vecYs (̄i−1)+vecYs (̄i)
2 ;

20: end if

3.3.2. Feature Augmentation and Predictive Model Updating

After traversing all dimensions, we can obtain the multi-dimensional multi-

label classifier f(·) which returns binary predicted vector for any instance x.

To consider the label correlations across different dimensions, CLIM further

manipulates the feature space via feature augmentation mechanism [36, 35,
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7]. Specifically, the MDML training set D = {(xi, li) | 1 ≤ i ≤ m} can be

transformed into the following data set D̃:

D̃ = {(x̃i, li) | 1 ≤ i ≤ m}, where x̃i = [xi; f(xi)] (7)

Here, each instance x̃i belongs to the augmented feature space (denoted by X̃ )

which corresponds to the Cartesian product between X and a K-dimensional

feature space.

Similar to Eq.(1) to Eq.(5), based on the transformed data set D̃, we can

also determine the model parameters Θ̃j = [θ̃j1, θ̃
j
2, . . . , θ̃

j
Kj

] ∈ R(d+K)×Kj of

hypothesis hj(·) for the jth label space, which can return a Kj-dimensional

probability estimation vector for instance xi as follows:2

hj(xi) =


P (yj1 | x̃i, Θ̃

j)

P (yj2 | x̃i, Θ̃
j)

...

P (yjKj
| x̃i, Θ̃

j)

 =
1∑Kj

s=1 e
〈θ̃j

s,x̃i〉


e〈θ̃

j
1,x̃i〉

e〈θ̃
j
2,x̃i〉

...

e
〈θ̃j

Kj
,x̃i〉

 (8)

With the newly obtained hj(·), if it achieves better performance in terms of

ranking loss (cf. Section 4.1.2) over training set, then the threshold T j will be re-

calculated and the multi-label classifier f j(·) will be updated accordingly, which

will be used to generate D̃. Otherwise, the part of augmented features w.r.t. the

jth label space won’t be updated when generating D̃. The model parameters Θ̃j

will be updated until D̃ keeps unchanged. Here, we use the ranking-based multi-

label evaluation metric ranking loss (cf. Section 4.1.2) to test updating condition

and other ranking-based metrics besides ranking loss can also be investigated in

the future. The reason is that the proposed CLIM approach aims at optimizing

the likelihood of relevant labels and ranking-based metrics is more sensitive to

model parameters than classification-based metrics. Take the following example

for an intuition, assume that the ground-truth label vector is [1, 0, 1, 1, 0, 0], two

2For convenience, we slightly abuse the notations in Eq.(8), where the hypothesis is also

denoted by hj(·) even though it is different from the one in Eq.(1).
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sets of slightly different model parameters respectively return the corresponding

modeling outputs [0.2014, 0.2172, 0.1775, 0.1571, 0.1637, 0.0831] and [0.2172,

0.2014, 0.1775, 0.1637, 0.1571, 0.0831], the threshold is fixed as 0.1667, it is

easy to know that the two modeling outputs correspond to the same binary

prediction [1, 1, 1, 0, 0, 0], which means that the two modeling outputs will

result in the same value w.r.t. classification-based metrics (e.g., hamming loss).

However, because the two modeling outputs correspond to different ranks for

relevant labels and irrelevant labels, they will result in different values w.r.t.

ranking-based metrics (e.g., ranking loss). In other words, ranking-based metrics

is more sensitive to model parameters than classification-based metrics.

4. Experiments

To validate the effectiveness of the proposed CLIM approach, comparative

studies are conducted in this section. Specifically, Subsection 4.1 firstly introduces

the experimental setup, including benchmark data sets, evaluation metrics, and

compared approaches. Then, Subsection 4.2 reports the detailed experimental

results with corresponding analyses. Finally, Subsection 4.3 further investigates

some algorithmic properties of CLIM.

4.1. Experimental Setup

4.1.1. Benchmark Data Sets

In this paper, we have collected four benchmark data sets from real-world

MDML tasks to compare the performance of CLIM and some baselines. The

detailed characteristics of each dimension w.r.t. these four benchmark data

sets are summarized in Table 2 and Table 3 respectively, including number of

examples (#Examples), number of features (#Features), number of dimensions

(#Dim.), and number of labels in each dimension (#Labels). In addition, as each

label space corresponds to a multi-label classification problem, the two tables

also show the multi-label properties of each dimension characterized by several

statistics, including label cardinality (LCard), label density (LDen), distinct label
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sets (DL) and proportion of distinct label sets (PDL). The detailed definitions of

these statistics can be easily found in multi-label literatures [17, 25], and thus

we omit them in this paper.

The two Song data sets are collected from music domain and annotated by

the authors’ research group. In these two data sets, each example corresponds

to one Chinese song and each dimension corresponds to one kind of semantics.

Specifically, the three dimensions correspond to emotion, genre, and scenario,

respectively. After listening to a song, we (eight annotators) assign a confidence

value to each label for this song and the average of our assignments will be

used as the final confidence value for each label. For Song-v1, the label will be

regarded to be relevant to one instance when its confidence value is larger than

the average value within this dimension. For Song-v2, assume that labels of one

instance in the same dimension are sorted in descending order according to their

confidence values, here we just focus on those labels whose confidence values are

larger than the average value within this dimension, the label will be regarded as

a relevant one if it is in the front of the position of the largest difference between

two adjacent labels.

The two Yeast data sets are collected from biology domain. In these two

data sets, each example corresponds to one yeast gene and each dimension

corresponds to one biological experiment on the budding yeast Saccharomyces

cerevisiae [37]. Specifically, the six dimensions correspond to alpha factor arrest

& release, cdc15 arrest & release, elutriation, diauxic shift, heat shock, and

sporulation, respectively.3 In each dimension, each label corresponds to one

discrete time point during the biological experiment. For Yeast-v1, the time

point will be regarded as a relevant label when the current gene expression level

(after normalization) is larger than the average level in the biological experiment.

For Yeast-v2, assume that time points during the same biological experiment

are sorted in descending order according to their gene expression levels, here we

just focus on those time points whose gene expression levels are larger than the

3Supplementary material at https://www.pnas.org/doi/10.1073/pnas.95.25.14863
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average value in the biological experiment, the time point will be regarded as a

relevant label if it is in the front of the position of the largest difference between

two adjacent time points.

Table 2: The data sets Song-v1 and Song-v2 collected from Chinese song categorization.
Dim. #Examples #Features #Label LCard(v1/v2) LDen(v1/v2) DL(v1/v2) PDL(v1/v2) Domain
Dim.1

785 98
11 3.524/1.738 0.320/0.158 204/105 0.260/0.134

musicDim.2 10 2.270/1.333 0.227/0.133 89/46 0.113/0.059
Dim.3 18 8.505/4.084 0.472/0.227 381/269 0.485/0.343

Table 3: The data sets Yeast-v1 and Yeast-v2 collected from biological experiments on the

budding yeast Saccharomyces cerevisiae.
Dim. #Examples #Features #Label LCard(v1/v2) LDen(v1/v2) DL(v1/v2) PDL(v1/v2) Domain
Dim.1

2465 24

18 8.904/2.977 0.495/0.165 2264/862 0.918/0.350

biology

Dim.2 15 7.601/3.205 0.507/0.214 1662/750 0.674/0.304
Dim.3 14 7.167/3.476 0.512/0.248 1519/838 0.616/0.340
Dim.4 7 3.527/2.572 0.504/0.367 95/91 0.039/0.037
Dim.5 6 3.014/2.089 0.502/0.348 58/60 0.024/0.024
Dim.6 6 2.867/2.103 0.478/0.350 58/59 0.024/0.024

4.1.2. Evaluation Metrics

To measure the generalization performance of MDML approaches, we evaluate

their performance w.r.t. each dimension as well as their average performance over

all dimensions. Because each dimension in the MDML problem corresponds to a

multi-label classification task, a total of six multi-label evaluation metrics are

utilized in this paper, including four ranking-based metrics (ranking loss, coverage,

one-error, average precision) and two classification-based metrics (hamming loss,

macro-F1). Specifically, following the notations defined in previous sections,

given the MDML test set S = {(xi, li) | 1 ≤ i ≤ p} with p examples, and the

MDML predictive models h(·) and f(·) to be evaluated, for the jth dimension

(1 ≤ j ≤ q), these six evaluation metrics can be formulated as follows [21, 38, 39]:

• Ranking loss: 1
p

∑p
i=1

|Zj
i |

rji×r̄
j
i

, where Zj
i = {(yja1

, yja2
) | 1 ≤ a1, a2 ≤

Kj , h
j
a1

(xi) ≤ hja2
(xi), l

j
ia1

= 1, ljia2
= 0}, rji =

∑Kj

a=1 l
j
ia and r̄ji =∑Kj

a=1(1− ljia).
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• Coverage: 1
Kj

[
1
p

∑p
i=1 maxk∈Kj

i
rank(xi, y

j
k)− 1

]
, where rank(xi, y

j
k) =∑Kj

a=1 I(hja(xi) ≥ hjk(xi)) and Kj
i = {k | ljik = 1, 1 ≤ k ≤ Kj}.

• One-error : 1
p

∑p
i=1 I(l

j
iâ 6= 1), where â = arg max1≤a≤Kj

hja(xi).

• Average precision: 1
p

∑p
i=1

1

rji

∑
k∈Kj

i

|R(xi,y
j
k)|

rank(xi,y
j
k)
, where R(xi, y

j
k) = {yja |

hja(xi) ≥ hjk(xi), a ∈ Kj
i }.

• Hamming loss: 1
p

∑p
i=1

1
Kj

∑Kj

a=1 l
j
ia × f ja(xi).

• Macro-F1: 1
Kj

∑Kj

a=1
2
∑p

i=1 ljia×f
j
a(xi)∑p

i=1 ljia+
∑p

i=1 fj
a(xi)

.

Based on the above definitions, the average value over all dimensions for each

evaluation metric corresponds to:

• Average metric value: 1
q

∑q
j=1M(j), where M(j) denotes the metric value

w.r.t. the jth dimension (e.g., average ranking loss, average coverage).

It is easy to know that all these evaluation metrics take values in [0, 1]. For

ranking loss, coverage, one-error, hamming loss, the smaller the metric value, the

better the performance, while for average precision and macro-F1, the larger the

metric value, the better the performance. In experiments, we conduct ten-fold

cross validation over each data set and record both mean value and standard

deviation in terms of each evaluation metric.

4.1.3. Compared Approaches

As a new learning framework, there aren’t existing MDML approaches which

can be used as baselines to make comparisons. In this paper, the performance of

the proposed CLIM approach is compared with the two benchmark approaches

(i.e., DiDe and DiCo) proposed in Subsection 3.2 as well as three multi-label

classification baselines, including Binary Relevance (BR) [16], Classifier Chains

(CC) [17, 18] and WRAPping multi-label classification with label-specific features

generation (WRAP) [24].

Technical details of DiDe and DiCo can be found in Subsection 3.2. For

fair comparison, the multi-label problems in DiDe and DiCo are also solved by
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maximizing the likelihood of relevant labels similar to CLIM, which makes the

two benchmark approaches act as degenerated versions of CLIM. For the three

multi-label classification approaches, we simply regard the MDML problem as

a vanilla multi-label classification problem by concatenating all label spaces as

an entirety. Specifically, BR independently learns a binary classifier for each

label and then all possible label correlations are ignored. CC learns a chain of

binary classifiers, one per label, where the subsequent classifiers on the chain

will use the labeling information for training previous classifiers as extra features.

WRAP is a recently proposed multi-label approach which wraps the multi-label

model induction and label-specific features generation in a unified formulation.

For fair comparison, the binary classifiers in BR and CC are trained with logistic

regression which is implemented by the popular the LIBLINEAR package [40].

For WRAP, its parameters are set according to the suggestions in the original

literature [24], i.e., α = 0.9, λ1 = 5, λ2 = 5, λ3 = 0.1. For the proposed CLIM

approach, the only parameter λ is set to 2−3.

4.2. Experimental Results

The detailed experimental results in terms of each evaluation metric over

the four data sets are reported in Tables 4-7, respectively. In this paper, both

the experimental results of each dimension and the average experimental result

of all dimensions are reported and the best performance is shown in bold face.

Besides, the performance ranks of all compared approaches are also shown in

parentheses for clearer comparison.

According to the reported experimental results, we can have the following

observations:

• Compared with DiDe and DiCo, it is shown that the proposed CLIM

approach achieves superior average performance in terms of each metric

over all data sets. DiDe ignores the label correlations across dimensions

while DiCo violates the multi-dimensional assumption in MDML. In other

words, the comparison between CLIM and these two benchmark approaches
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Table 4: Experimental results (mean±std. deviation) of CLIM and each compared approach

over data set Song-v1. In addition, the performance ranks of all compared approaches are

also shown in parentheses and the best performance is in bold. ↓ (↑) behind the name of each

evaluation metric indicates that the smaller (larger) the value, the better the performance.
Dim. of Ranking loss (↓)
Song-v1 CLIM DiDe DiCo BR CC WRAP
Dim1 0.216±0.015(2) 0.241±0.018(5) 0.240±0.018(4) 0.222±0.051(3) 0.214±0.046(1) 0.258±0.020(6)
Dim2 0.111±0.013(4) 0.110±0.012(2) 0.109±0.012(1) 0.281±0.024(5) 0.284±0.025(6) 0.110±0.014(2)
Dim3 0.086±0.009(1) 0.098±0.009(2) 0.098±0.009(2) 0.119±0.024(6) 0.101±0.021(4) 0.105±0.009(5)
Avg. 0.138±0.008(1) 0.150±0.010(3) 0.149±0.010(2) 0.207±0.025(6) 0.200±0.019(5) 0.157±0.011(4)

Dim. of Coverage (↓)
Song-v1 CLIM DiDe DiCo BR CC WRAP
Dim1 0.504±0.014(3) 0.560±0.017(5) 0.557±0.016(4) 0.489±0.043(2) 0.476±0.036(1) 0.576±0.016(6)
Dim2 0.294±0.021(3) 0.295±0.020(4) 0.293±0.021(2) 0.464±0.028(5) 0.468±0.029(6) 0.292±0.023(1)
Dim3 0.605±0.016(2) 0.631±0.021(5) 0.631±0.021(5) 0.616±0.023(3) 0.602±0.020(1) 0.624±0.018(4)
Avg. 0.468±0.011(1) 0.495±0.014(3) 0.493±0.013(2) 0.523±0.021(6) 0.515±0.015(5) 0.497±0.014(4)

Dim. of One error (↓)
Song-v1 CLIM DiDe DiCo BR CC WRAP
Dim1 0.237±0.049(3) 0.234±0.040(1) 0.234±0.050(1) 0.379±0.261(6) 0.367±0.233(5) 0.257±0.055(4)
Dim2 0.020±0.012(1) 0.020±0.012(1) 0.020±0.012(1) 0.464±0.098(5) 0.466±0.093(6) 0.020±0.012(1)
Dim3 0.004±0.006(1) 0.006±0.007(2) 0.006±0.007(2) 0.010±0.010(4) 0.011±0.013(5) 0.025±0.015(6)
Avg. 0.087±0.016(1) 0.087±0.012(1) 0.087±0.016(1) 0.284±0.101(6) 0.282±0.085(5) 0.101±0.018(4)

Dim. of Average precision (↑)
Song-v1 CLIM DiDe DiCo BR CC WRAP
Dim1 0.729±0.024(1) 0.711±0.023(2) 0.711±0.025(2) 0.699±0.085(5) 0.711±0.077(2) 0.692±0.026(6)
Dim2 0.853±0.015(3) 0.855±0.013(1) 0.854±0.013(2) 0.584±0.033(5) 0.582±0.032(6) 0.848±0.017(4)
Dim3 0.920±0.008(1) 0.912±0.008(2) 0.912±0.008(2) 0.879±0.026(6) 0.898±0.026(5) 0.899±0.009(4)
Avg. 0.834±0.011(1) 0.826±0.010(2) 0.826±0.011(2) 0.721±0.037(6) 0.730±0.026(5) 0.813±0.012(4)

Dim. of Hamming loss (↓)
Song-v1 CLIM DiDe DiCo BR CC WRAP
Dim1 0.235±0.015(1) 0.245±0.013(4) 0.239±0.014(3) 0.246±0.034(5) 0.237±0.031(2) 0.255±0.015(6)
Dim2 0.128±0.011(2) 0.129±0.010(3) 0.127±0.011(1) 0.166±0.013(5) 0.168±0.012(6) 0.131±0.008(4)
Dim3 0.164±0.010(3) 0.175±0.011(5) 0.174±0.011(4) 0.157±0.012(1) 0.158±0.013(2) 0.182±0.013(6)
Avg. 0.176±0.007(1) 0.183±0.007(3) 0.180±0.006(2) 0.190±0.014(6) 0.187±0.013(4) 0.189±0.006(5)

Dim. of Macro-F1 (↑)
Song-v1 CLIM DiDe DiCo BR CC WRAP
Dim1 0.378±0.031(3) 0.320±0.027(5) 0.356±0.024(4) 0.471±0.031(2) 0.520±0.028(1) 0.249±0.015(6)
Dim2 0.214±0.031(4) 0.218±0.022(3) 0.213±0.020(5) 0.260±0.027(2) 0.263±0.028(1) 0.101±0.007(6)
Dim3 0.502±0.012(3) 0.443±0.014(5) 0.442±0.009(6) 0.605±0.023(2) 0.613±0.017(1) 0.444±0.012(4)
Avg. 0.365±0.013(3) 0.327±0.010(5) 0.337±0.009(4) 0.445±0.019(2) 0.465±0.016(1) 0.265±0.006(6)

actually act as ablation studies and the experimental results clearly vali-

date that either ignoring label correlations among multiple dimensions or

aligning labels from heterogeneous label spaces into a homogeneous one

will lead to performance degeneration.

• Compared with BR and CC, it is shown that the proposed CLIM approach

achieves superior average performance in terms of the four ranking-based

metrics and hamming loss over all data sets. These experimental results

show the superiority of CLIM against the two compared approaches. It is
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Table 5: Experimental results (mean±std. deviation) of CLIM and each compared approach

over data set Yeast-v1. In addition, the performance ranks of all compared approaches are

also shown in parentheses and the best performance is in bold. ↓ (↑) behind the name of each

evaluation metric indicates that the smaller (larger) the value, the better the performance.
Dim. of Ranking loss (↓)
Yeast-v1 CLIM DiDe DiCo BR CC WRAP

Dim1 0.389±0.016(1) 0.392±0.015(2) 0.392±0.015(2) 0.396±0.023(4) 0.404±0.024(6) 0.399±0.015(5)
Dim2 0.393±0.007(1) 0.403±0.014(3) 0.400±0.013(2) 0.415±0.017(6) 0.412±0.016(5) 0.404±0.013(4)
Dim3 0.378±0.012(1) 0.387±0.010(2) 0.387±0.009(2) 0.387±0.022(2) 0.388±0.019(5) 0.396±0.009(6)
Dim4 0.278±0.011(3) 0.291±0.010(5) 0.283±0.009(4) 0.277±0.008(2) 0.276±0.009(1) 0.300±0.009(6)
Dim5 0.406±0.019(2) 0.421±0.021(5) 0.414±0.020(3) 0.404±0.021(1) 0.414±0.020(3) 0.447±0.018(6)
Dim6 0.389±0.024(1) 0.391±0.026(3) 0.399±0.025(6) 0.391±0.027(3) 0.396±0.024(5) 0.390±0.026(2)
Avg. 0.372±0.009(1) 0.381±0.009(4) 0.379±0.009(3) 0.378±0.011(2) 0.382±0.009(5) 0.389±0.008(6)

Dim. of Coverage (↓)
Yeast-v1 CLIM DiDe DiCo BR CC WRAP

Dim1 0.837±0.007(1) 0.841±0.006(3) 0.840±0.006(2) 0.842±0.009(4) 0.844±0.011(5) 0.844±0.006(5)
Dim2 0.830±0.005(3) 0.837±0.008(5) 0.835±0.008(4) 0.827±0.010(1) 0.829±0.006(2) 0.841±0.007(6)
Dim3 0.803±0.012(1) 0.815±0.011(4) 0.815±0.011(4) 0.811±0.011(2) 0.812±0.010(3) 0.818±0.010(6)
Dim4 0.611±0.009(1) 0.621±0.008(5) 0.616±0.007(4) 0.612±0.008(2) 0.612±0.008(2) 0.625±0.008(6)
Dim5 0.650±0.012(3) 0.672±0.013(5) 0.665±0.015(4) 0.643±0.015(1) 0.649±0.015(2) 0.698±0.012(6)
Dim6 0.568±0.015(3) 0.567±0.016(2) 0.569±0.015(4) 0.574±0.016(5) 0.582±0.013(6) 0.566±0.016(1)
Avg. 0.717±0.005(1) 0.725±0.005(5) 0.724±0.005(4) 0.718±0.006(2) 0.721±0.005(3) 0.732±0.004(6)

Dim. of One error (↓)
Yeast-v1 CLIM DiDe DiCo BR CC WRAP

Dim1 0.318±0.028(1) 0.321±0.035(2) 0.321±0.035(2) 0.371±0.133(5) 0.401±0.119(6) 0.340±0.041(4)
Dim2 0.314±0.033(1) 0.315±0.034(2) 0.315±0.034(2) 0.328±0.024(5) 0.335±0.030(6) 0.315±0.034(2)
Dim3 0.333±0.028(4) 0.316±0.026(1) 0.316±0.026(1) 0.334±0.038(5) 0.338±0.041(6) 0.316±0.026(1)
Dim4 0.196±0.034(1) 0.196±0.031(1) 0.196±0.031(1) 0.201±0.032(6) 0.199±0.034(5) 0.196±0.031(1)
Dim5 0.376±0.036(1) 0.391±0.033(3) 0.391±0.033(3) 0.382±0.024(2) 0.392±0.024(6) 0.391±0.033(3)
Dim6 0.387±0.031(3) 0.386±0.024(2) 0.441±0.027(6) 0.392±0.032(4) 0.398±0.044(5) 0.381±0.021(1)
Avg. 0.321±0.013(1) 0.321±0.014(1) 0.330±0.012(4) 0.335±0.018(5) 0.344±0.017(6) 0.323±0.014(3)

Dim. of Average precision (↑)
Yeast-v1 CLIM DiDe DiCo BR CC WRAP

Dim1 0.656±0.013(1) 0.654±0.014(3) 0.655±0.014(2) 0.647±0.027(5) 0.639±0.027(6) 0.649±0.014(4)
Dim2 0.675±0.008(1) 0.669±0.010(3) 0.670±0.010(2) 0.658±0.014(6) 0.660±0.011(5) 0.668±0.010(4)
Dim3 0.689±0.009(1) 0.683±0.007(2) 0.683±0.007(2) 0.683±0.020(2) 0.681±0.017(5) 0.677±0.008(6)
Dim4 0.786±0.014(3) 0.781±0.013(5) 0.783±0.013(4) 0.788±0.010(2) 0.789±0.012(1) 0.772±0.013(6)
Dim5 0.707±0.015(2) 0.694±0.015(5) 0.698±0.015(4) 0.711±0.013(1) 0.704±0.013(3) 0.682±0.015(6)
Dim6 0.738±0.012(3) 0.740±0.013(2) 0.718±0.013(6) 0.731±0.013(4) 0.725±0.012(5) 0.742±0.011(1)
Avg. 0.709±0.006(1) 0.704±0.006(2) 0.701±0.006(4) 0.703±0.007(3) 0.700±0.006(5) 0.698±0.006(6)

Dim. of Hamming loss (↓)
Yeast-v1 CLIM DiDe DiCo BR CC WRAP

Dim1 0.426±0.014(1) 0.426±0.012(1) 0.427±0.012(3) 0.429±0.014(4) 0.436±0.015(5) 0.437±0.012(6)
Dim2 0.417±0.007(1) 0.424±0.010(3) 0.425±0.010(4) 0.423±0.008(2) 0.427±0.006(6) 0.426±0.010(5)
Dim3 0.409±0.009(1) 0.419±0.006(4) 0.419±0.006(4) 0.413±0.010(2) 0.413±0.009(2) 0.428±0.010(6)
Dim4 0.336±0.009(3) 0.336±0.008(3) 0.337±0.007(5) 0.335±0.007(2) 0.334±0.010(1) 0.343±0.009(6)
Dim5 0.433±0.020(2) 0.446±0.017(5) 0.440±0.015(4) 0.432±0.016(1) 0.436±0.018(3) 0.474±0.010(6)
Dim6 0.412±0.015(1) 0.414±0.016(2) 0.414±0.017(2) 0.416±0.022(4) 0.420±0.021(5) 0.424±0.016(6)
Avg. 0.406±0.007(1) 0.411±0.006(4) 0.410±0.006(3) 0.408±0.008(2) 0.411±0.005(4) 0.422±0.005(6)

Dim. of Macro-F1 (↑)
Yeast-v1 CLIM DiDe DiCo BR CC WRAP

Dim1 0.468±0.011(3) 0.375±0.030(4) 0.374±0.029(5) 0.488±0.016(2) 0.496±0.012(1) 0.368±0.010(6)
Dim2 0.472±0.018(3) 0.444±0.025(4) 0.414±0.037(5) 0.495±0.012(2) 0.500±0.012(1) 0.388±0.004(6)
Dim3 0.514±0.017(3) 0.453±0.024(4) 0.451±0.023(5) 0.521±0.014(2) 0.522±0.013(1) 0.424±0.020(6)
Dim4 0.433±0.008(6) 0.438±0.006(4) 0.435±0.005(5) 0.474±0.010(2) 0.477±0.013(1) 0.444±0.006(3)
Dim5 0.537±0.028(4) 0.592±0.070(1) 0.530±0.035(5) 0.540±0.016(3) 0.543±0.020(2) 0.302±0.027(6)
Dim6 0.382±0.022(3) 0.349±0.003(4) 0.328±0.018(5) 0.389±0.019(2) 0.419±0.018(1) 0.292±0.010(6)
Avg. 0.467±0.007(3) 0.442±0.015(4) 0.422±0.016(5) 0.485±0.008(2) 0.493±0.007(1) 0.370±0.006(6)
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Table 6: Experimental results (mean±std. deviation) of CLIM and each compared approach

over data set Song-v2. In addition, the performance ranks of all compared approaches are

also shown in parentheses and the best performance is in bold. ↓ (↑) behind the name of each

evaluation metric indicates that the smaller (larger) the value, the better the performance.
Dim. of Ranking loss (↓)
Song-v2 CLIM DiDe DiCo BR CC WRAP
Dim1 0.183±0.022(1) 0.213±0.013(3) 0.213±0.016(3) 0.422±0.091(5) 0.445±0.082(6) 0.201±0.017(2)
Dim2 0.064±0.012(2) 0.071±0.014(3) 0.071±0.014(3) 0.633±0.043(6) 0.628±0.045(5) 0.061±0.015(1)
Dim3 0.103±0.016(1) 0.112±0.018(2) 0.112±0.018(2) 0.446±0.095(6) 0.435±0.084(5) 0.115±0.021(4)
Avg. 0.117±0.010(1) 0.132±0.008(3) 0.132±0.009(3) 0.500±0.065(5) 0.502±0.060(6) 0.126±0.011(2)

Dim. of Coverage (↓)
Song-v2 CLIM DiDe DiCo BR CC WRAP
Dim1 0.267±0.029(1) 0.305±0.027(4) 0.303±0.025(3) 0.453±0.079(5) 0.471±0.067(6) 0.287±0.026(2)
Dim2 0.109±0.024(2) 0.116±0.024(3) 0.116±0.024(3) 0.591±0.040(6) 0.586±0.041(5) 0.105±0.025(1)
Dim3 0.334±0.039(1) 0.345±0.037(3) 0.345±0.037(3) 0.553±0.073(6) 0.544±0.064(5) 0.341±0.037(2)
Avg. 0.237±0.019(1) 0.255±0.015(4) 0.254±0.015(3) 0.532±0.054(5) 0.534±0.048(6) 0.244±0.017(2)

Dim. of One error (↓)
Song-v2 CLIM DiDe DiCo BR CC WRAP
Dim1 0.396±0.036(2) 0.396±0.030(2) 0.394±0.032(1) 0.977±0.022(5) 0.977±0.017(5) 0.409±0.037(4)
Dim2 0.161±0.049(1) 0.161±0.049(1) 0.161±0.049(1) 0.995±0.007(5) 0.995±0.007(5) 0.161±0.049(1)
Dim3 0.213±0.043(1) 0.239±0.041(2) 0.245±0.041(3) 0.985±0.013(5) 0.985±0.013(5) 0.294±0.024(4)
Avg. 0.256±0.015(1) 0.265±0.022(2) 0.266±0.022(3) 0.986±0.008(5) 0.986±0.006(5) 0.288±0.020(4)

Dim. of Average precision (↑)
Song-v2 CLIM DiDe DiCo BR CC WRAP
Dim1 0.683±0.018(1) 0.658±0.012(4) 0.660±0.013(2) 0.283±0.050(5) 0.273±0.051(6) 0.659±0.016(3)
Dim2 0.867±0.030(2) 0.857±0.031(3) 0.857±0.031(3) 0.181±0.012(6) 0.183±0.012(5) 0.868±0.032(1)
Dim3 0.783±0.020(1) 0.762±0.027(2) 0.760±0.028(3) 0.288±0.033(6) 0.292±0.031(5) 0.727±0.028(4)
Avg. 0.778±0.009(1) 0.759±0.012(2) 0.759±0.013(2) 0.251±0.026(5) 0.249±0.026(6) 0.751±0.015(4)

Dim. of Hamming loss (↓)
Song-v2 CLIM DiDe DiCo BR CC WRAP
Dim1 0.136±0.012(1) 0.138±0.013(3) 0.137±0.012(2) 0.219±0.011(5) 0.219±0.011(5) 0.204±0.009(4)
Dim2 0.067±0.011(3) 0.067±0.011(3) 0.066±0.011(2) 0.163±0.012(5) 0.163±0.012(5) 0.065±0.012(1)
Dim3 0.175±0.012(1) 0.179±0.013(2) 0.180±0.014(3) 0.230±0.015(6) 0.229±0.015(5) 0.205±0.019(4)
Avg. 0.126±0.006(1) 0.128±0.007(2) 0.128±0.007(2) 0.204±0.007(5) 0.204±0.008(5) 0.158±0.008(4)

Dim. of Macro-F1 (↑)
Song-v2 CLIM DiDe DiCo BR CC WRAP
Dim1 0.119±0.007(4) 0.119±0.010(4) 0.122±0.012(3) 0.197±0.035(1) 0.197±0.035(1) 0.100±0.004(6)
Dim2 0.106±0.012(3) 0.099±0.010(5) 0.105±0.013(4) 0.137±0.022(2) 0.139±0.024(1) 0.091±0.003(6)
Dim3 0.226±0.013(4) 0.231±0.007(3) 0.207±0.014(5) 0.249±0.019(2) 0.250±0.021(1) 0.174±0.009(6)
Avg. 0.150±0.004(3) 0.150±0.006(3) 0.145±0.007(5) 0.194±0.011(2) 0.196±0.013(1) 0.122±0.004(6)

also shown that CLIM achieves inferior performance in terms of macro-F1

over all data sets. Possible reason is that both BR and CC directly learn a

binary classifier for each label while CLIM divides label set into relevant

part and irrelevant part according the threshold determined by maximizing

the metric value of hamming loss over training set.

• Compared with WRAP, it is shown that the proposed CLIM approach

achieves superior average performance in terms of each metric over all data

sets except average precision over Yeast-v2. WRAP is one of the state-of-
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Table 7: Experimental results (mean±std. deviation) of CLIM and each compared approach

over data set Yeast-v2. In addition, the performance ranks of all compared approaches are

also shown in parentheses and the best performance is in bold. ↓ (↑) behind the name of each

evaluation metric indicates that the smaller (larger) the value, the better the performance.
Dim. of Ranking loss (↓)
Yeast-v2 CLIM DiDe DiCo BR CC WRAP

Dim1 0.349±0.014(1) 0.366±0.015(4) 0.353±0.015(2) 0.614±0.021(5) 0.614±0.021(5) 0.356±0.015(3)
Dim2 0.323±0.010(1) 0.325±0.011(4) 0.323±0.012(1) 0.525±0.056(5) 0.525±0.056(5) 0.323±0.011(1)
Dim3 0.405±0.012(2) 0.415±0.011(4) 0.397±0.011(1) 0.566±0.015(5) 0.567±0.015(6) 0.405±0.011(2)
Dim4 0.263±0.006(1) 0.270±0.009(3) 0.265±0.008(2) 0.423±0.043(5) 0.429±0.035(6) 0.275±0.009(4)
Dim5 0.396±0.019(1) 0.406±0.022(3) 0.405±0.021(2) 0.580±0.029(5) 0.580±0.026(5) 0.408±0.021(4)
Dim6 0.333±0.021(1) 0.334±0.022(2) 0.513±0.017(4) 0.650±0.040(6) 0.643±0.036(5) 0.337±0.022(3)
Avg. 0.345±0.006(1) 0.353±0.006(3) 0.376±0.005(4) 0.560±0.009(5) 0.560±0.009(5) 0.351±0.006(2)

Dim. of Coverage (↓)
Yeast-v2 CLIM DiDe DiCo BR CC WRAP

Dim1 0.487±0.021(1) 0.503±0.020(4) 0.489±0.020(2) 0.708±0.025(5) 0.708±0.025(5) 0.492±0.019(3)
Dim2 0.488±0.018(3) 0.490±0.018(4) 0.484±0.018(1) 0.642±0.055(5) 0.642±0.054(5) 0.485±0.018(2)
Dim3 0.592±0.010(3) 0.601±0.009(4) 0.581±0.011(1) 0.677±0.020(5) 0.677±0.019(5) 0.587±0.009(2)
Dim4 0.453±0.011(3) 0.454±0.012(4) 0.451±0.012(1) 0.519±0.037(5) 0.530±0.031(6) 0.451±0.013(1)
Dim5 0.491±0.025(1) 0.495±0.027(2) 0.495±0.027(2) 0.630±0.024(6) 0.628±0.024(5) 0.495±0.027(2)
Dim6 0.427±0.017(1) 0.430±0.019(2) 0.595±0.018(4) 0.686±0.035(6) 0.681±0.031(5) 0.432±0.019(3)
Avg. 0.490±0.006(1) 0.496±0.006(3) 0.516±0.007(4) 0.644±0.008(5) 0.644±0.007(5) 0.490±0.006(1)

Dim. of One error (↓)
Yeast-v2 CLIM DiDe DiCo BR CC WRAP

Dim1 0.725±0.031(3) 0.732±0.031(4) 0.703±0.027(1) 0.948±0.015(5) 0.948±0.015(5) 0.703±0.027(1)
Dim2 0.627±0.029(1) 0.627±0.029(1) 0.627±0.029(1) 0.898±0.013(5) 0.898±0.013(5) 0.627±0.029(1)
Dim3 0.656±0.025(2) 0.660±0.027(3) 0.655±0.026(1) 0.845±0.023(5) 0.846±0.022(6) 0.662±0.026(4)
Dim4 0.392±0.038(1) 0.396±0.041(3) 0.394±0.042(2) 0.780±0.030(6) 0.776±0.027(5) 0.398±0.040(4)
Dim5 0.536±0.045(1) 0.558±0.034(3) 0.557±0.035(2) 0.729±0.027(6) 0.727±0.026(5) 0.558±0.034(3)
Dim6 0.438±0.027(1) 0.438±0.027(1) 0.652±0.026(4) 0.755±0.024(6) 0.753±0.026(5) 0.438±0.027(1)
Avg. 0.562±0.016(1) 0.568±0.015(3) 0.598±0.017(4) 0.826±0.010(6) 0.825±0.011(5) 0.564±0.017(2)

Dim. of Average precision (↑)
Yeast-v2 CLIM DiDe DiCo BR CC WRAP

Dim1 0.404±0.018(3) 0.380±0.019(4) 0.453±0.019(1) 0.214±0.015(5) 0.214±0.015(5) 0.452±0.018(2)
Dim2 0.491±0.018(1) 0.490±0.019(3) 0.491±0.019(1) 0.286±0.012(5) 0.286±0.012(5) 0.490±0.019(3)
Dim3 0.440±0.014(2) 0.430±0.017(4) 0.447±0.015(1) 0.327±0.012(5) 0.327±0.012(5) 0.440±0.019(2)
Dim4 0.696±0.018(1) 0.693±0.020(3) 0.694±0.020(2) 0.547±0.036(5) 0.544±0.033(6) 0.688±0.019(4)
Dim5 0.620±0.022(1) 0.607±0.017(3) 0.608±0.017(2) 0.475±0.024(6) 0.477±0.022(5) 0.606±0.017(4)
Dim6 0.714±0.011(1) 0.713±0.012(2) 0.515±0.012(4) 0.449±0.020(6) 0.452±0.020(5) 0.711±0.012(3)
Avg. 0.561±0.010(2) 0.552±0.009(3) 0.535±0.009(4) 0.383±0.007(5) 0.383±0.007(5) 0.565±0.010(1)

Dim. of Hamming loss (↓)
Yeast-v2 CLIM DiDe DiCo BR CC WRAP

Dim1 0.165±0.013(1) 0.165±0.013(1) 0.165±0.013(1) 0.289±0.025(5) 0.289±0.025(5) 0.188±0.012(4)
Dim2 0.214±0.011(1) 0.214±0.011(1) 0.214±0.011(1) 0.406±0.052(5) 0.406±0.052(5) 0.231±0.010(4)
Dim3 0.248±0.010(1) 0.248±0.010(1) 0.248±0.010(1) 0.574±0.018(6) 0.571±0.013(5) 0.271±0.007(4)
Dim4 0.322±0.009(1) 0.327±0.012(2) 0.328±0.011(3) 0.425±0.022(5) 0.430±0.020(6) 0.339±0.010(4)
Dim5 0.346±0.015(1) 0.348±0.015(3) 0.346±0.018(1) 0.585±0.024(5) 0.593±0.025(6) 0.368±0.017(4)
Dim6 0.331±0.013(3) 0.330±0.013(1) 0.351±0.006(4) 0.610±0.041(5) 0.628±0.041(6) 0.330±0.014(1)
Avg. 0.271±0.004(1) 0.272±0.005(2) 0.275±0.005(3) 0.482±0.011(5) 0.486±0.010(6) 0.288±0.004(4)

Dim. of Macro-F1 (↑)
Yeast-v2 CLIM DiDe DiCo BR CC WRAP

Dim1 0.000±0.001(4) 0.000±0.001(4) 0.000±0.000(4) 0.033±0.011(1) 0.033±0.011(1) 0.025±0.002(3)
Dim2 0.001±0.002(5) 0.001±0.002(5) 0.002±0.001(4) 0.076±0.031(2) 0.078±0.030(1) 0.036±0.002(3)
Dim3 0.015±0.003(4) 0.014±0.004(5) 0.012±0.005(6) 0.203±0.014(1) 0.202±0.012(2) 0.036±0.002(3)
Dim4 0.286±0.017(3) 0.245±0.010(4) 0.232±0.014(5) 0.368±0.010(2) 0.381±0.011(1) 0.114±0.008(6)
Dim5 0.077±0.039(4) 0.005±0.003(6) 0.060±0.010(5) 0.434±0.033(2) 0.454±0.023(1) 0.102±0.006(3)
Dim6 0.120±0.007(3) 0.120±0.008(3) 0.009±0.006(6) 0.452±0.050(2) 0.477±0.054(1) 0.120±0.004(3)
Avg. 0.083±0.008(3) 0.064±0.003(5) 0.053±0.004(6) 0.261±0.014(2) 0.271±0.010(1) 0.072±0.002(4)
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the-art multi-label classification baselines and achieves highly competitive

performance in solving multi-label learning tasks [24]. These experimental

results not only show the superiority of CLIM against WRAP, but also

demonstrate that it is necessary to specifically design learning methods for

MDML rather than solve the MDML problem by directly adopting some

algorithms from related fields.

• As shown in Tables 2-3, the four benchmark data sets have diverse char-

acteristics (e.g., the two Song data sets and the two Yeast data sets have

three and six dimensions in output space, respectively), while as shown in

Tables 4-7, there are not too many differences in their respective experi-

mental results. These experimental results show that our CLIM approach

can achieve stably superior performance over diverse MDML learning tasks

which is a desirable property in real-world applications.

4.3. Further Analysis

4.3.1. Parameter Sensitivity Analysis

As shown in Section 3.3, the proposed CLIM approach only includes one

parameter λ to be set, which is used to trade-off the empirical risk and structural

risk (i.e., the regularization term). In this section, we investigate how the

performance of CLIM fluctuates when the value of λ changes. Figure 3 illustrates

the performance curves when λ increases from 2−10 to 210 over data sets Song-v1

and Yeast-v1 in terms of each metric. Generally speaking, it is shown that the

performance of CLIM is sensitive to the value of λ where either small or large λ

will lead to performance degeneration. As stated in Section 3.3, the convergence

condition in CLIM corresponds to that the ranking loss over training set cannot

be further improved, which might be the cause of this phenomenon. In previous

sections, we fix λ as the moderate value 2−3 which is usually a better choice

over all data sets in terms of all metrics except for macro-F1. The exception

might be due to that the dividing threshold is determined by maximizing the

metric value of hamming loss over training set. Similar results also exist in the

comparison of CLIM against BR&CP.
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Figure 3: Performance of CLIM changes as λ increase from 2−10 to 210 in terms of each

evaluation metric over data sets Song-v1 and Yeast-v1.

4.3.2. Ablation Study

As we have stated before, DiDe and DiCo act as two degenerated versions of

CLIM. Then the comparison between CLIM and these two benchmark approaches

act as ablation studies to investigate the effectiveness of CLIM’s design. The

superiority of CLIM against DiDe and DiCo clearly show that either ignoring label

correlations among multiple dimensions or aligning labels from heterogeneous

label spaces into a homogeneous one will lead to performance degeneration.

In this subsection, we further investigate the effectiveness of the MAP-based

threshold determination strategy. Specifically, CLIM searches in the candidate
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Table 8: Experimental results (mean±std. deviation) of CLIM and its two degenerated versions

in terms of average hamming loss and average macro-F1. In addition, the performance ranks

of all compared approaches are also shown in parentheses and the best performance is in bold.

↓ (↑) behind the name of each evaluation metric indicates that the smaller (larger) the value,

the better the performance.

Data Hamming loss (↓)
Set CLIM CLIM-THv1 CLIM-THv2

Song-v1 0.176±0.007(1) 0.219±0.008(3) 0.187±0.008(2)
Yeast-v1 0.406±0.007(1) 0.406±0.008(1) 0.436±0.007(3)
Song-v2 0.126±0.006(1) 0.180±0.005(3) 0.129±0.008(2)
Yeast-v2 0.271±0.004(1) 0.406±0.005(3) 0.303±0.006(2)

Data Macro-F1 (↑)
Set CLIM CLIM-THv1 CLIM-THv2

Song-v1 0.365±0.013(2) 0.439±0.006(1) 0.302±0.010(3)
Yeast-v1 0.467±0.007(1) 0.446±0.005(2) 0.254±0.016(3)
Song-v2 0.150±0.004(2) 0.234±0.016(1) 0.143±0.004(3)
Yeast-v2 0.083±0.008(3) 0.298±0.008(1) 0.166±0.014(2)

threshold set and selects the value which can minimize the metric value of

hamming loss over training set as the final threshold. Based on the obtained

threshold, the label set is divided into relevant part and irrelevant part according

to the real-valued modeling outputs of one instance (c.f. Eq.(6)). We compare

this strategy with another two general strategies, which are respectively named

as CLIM-THv1 and CLIM-THv2.

For CLIM-THv1, the threshold is simply fixed as the average value of modeling

outputs, which is similar to the relevant labels determination strategy of Song-v1

and Yeast-v1. For CLIM-THv2, assume that labels in one dimension are sorted

in descending order according to their modeling outputs, among the labels whose

modeling outputs are larger than the average value, we compute all differences of

modeling outputs between one label and its adjacent one with smaller modeling

output, the label will be predicted as a relevant one if it is in the front of the

position of the largest difference. In other words, this strategy is similar to the

relevant labels determination strategy of Song-v2 and Yeast-v2.

Table 8 shows the detailed experimental results in terms of the two classification-
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based metrics hamming loss and macro-F1 which are directly related to threshold

determination. It is shown that CLIM achieves superior performance against

CLIM-THv1 and CLIM-THv2 in terms of hamming loss, but usually achieves

inferior performance against CLIM-THv1 in terms of macro-F1. These results

demonstrate that minimizing empirical hamming loss does improve the gen-

eralization performance for this metric, but not necessarily for other metrics.

This means that we should design specific threshold determination strategy for

our aiming classification-based metric. Besides, it is shown that CLIM-THv1

(or CLIM-THv2) does not necessarily achieve better performance over Song-v1

and Yeast-v1 (or Song-v2 and Yeast-v2), which means that label generation

strategy does not have necessary relationship with threshold determination strat-

egy. Overall, CLIM achieves moderate performance against the two compared

strategies and other subtler designs can be explored in future.

4.3.3. Complexity Analysis

The main computational complexity of CLIM is to optimize the problem (4),

which is solved via gradient descent. For each iteration in gradient descent, the

main complexity is to compute the objective function of problem (4) and its

gradient in Eq.(5), where the complexity corresponds to O(m · d ·Kmax). Here,

m, d, Kmax = max1≤j≤qKj denotes the number of examples, the number of

features and the largest number of labels per label space. For the threshold

determination procedure in Algorithm 1, the main complexity corresponds to

the ascending sort process (Step 2) which can be done with O(m ·Kmax · log(m ·

Kmax)). Therefore, the total computational complexity of CLIM corresponds to

O(q · Tmax ·m · d ·Kmax + q · (m ·Kmax) · log(m ·Kmax)), where q denotes the

number of dimensions and Tmax denotes the number of largest iteration rounds

of gradient descent. However, it is hard to theoretically analyze the value of

Tmax which depends on specific objective function. Table 9 shows the time costs

(unit: s) of CLIM and each compared approach over each data set. It is shown

that CLIM takes comparable time with WRAP and longer time than the rest of

compared approaches.
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Table 9: The time costs (unit: s) of CLIM and each compared approach over each data set.

Data Set CLIM DiDe DiCo BR CC WRAP
Song-v1 62 11 12 4 9 96
Yeast-v1 1030 18 46 7 29 418
Song-v2 41 8 10 4 8 145
Yeast-v2 232 13 41 6 20 672

5. Conclusion

The main contributions of this paper are three-fold: (1) We formalize a

new learning framework named multi-dimensional multi-label classification to

learn from objects whose semantics need to be characterized with multiple

heterogeneous label spaces as well as multi-label annotations in each label

space. (2) We specifically design an approach named CLIM to solve the MDML

problem which can consider label correlations within individual dimension and

across multiple dimensions. (3) We evaluate the performance of CLIM over four

real-world MDML data sets and the experimental results clearly validate the

effectiveness of the proposed approach.

This paper only makes the first attempt towards the new MDML classification

framework. As the key issue for MDML model induction, it is desirable to further

explore how to consider the two kinds of label correlations within individual

dimension and across multiple dimensions more effectively. Besides, it is also

desirable to collect more benchmark data sets from real-world MDML tasks

of diverse domains and design some specific evaluation metrics to evaluate the

performance of MDML classifiers more comprehensively in the future.
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