End-to-End Probabilistic Label-Specific Feature Learning for Multi-Label Classification Supplementary Material

Jun-Yi Hang^{1,2}, Min-Ling Zhang^{1,2*}, Yanghe Feng³, Xiaocheng Song⁴

¹School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
²Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, China
³College of Systems Engineering, National University of Defense Technology, Changsha 410073, China
⁴Department of Beijing Institute of Electronic Engineering, Beijing 100854, China
{hangjy, zhangml}@seu.edu.cn, fengyanghe@nudt.edu.cn, sxchitman@126.com

Further Experimental Results

Comparative Studies

We employ ten-fold cross validation to evaluate our PACA and six well-established multi-label classification approaches on the 14 benchmark data sets. Table 3 reports detailed experimental results in terms of *One-error*, *Coverage* and *Ranking loss*, which are not covered in the *Comparative Studies* part of the main body due to page limit.

Further Analyses

The Wilcoxon signed-ranks test at 0.05 significance level is conducted to analyze whether PACA performs statistically better than its variants described in the *Further Analyses* part of the main body. Table 1 summarizes the *p*-value statistics on each evaluation metric, which show PACA is statistically superior to its variants in terms of all evaluation metrics.

Classifier Considerations Theoretically, for the 2-dimensional label-specific features in PACA, a softmax-based parameter-free classifier is equivalent to the commonly-used sigmoid classifier with $[1,-1]^{\rm T}$ weights and zero bias. We further validate the equivalence by empirical ablation studies. Table 2 reports detailed experimental results of such a variant named PACA-cls in terms of *Average precision*, where a sigmoid classifier is attached to the label-specific features for each class label. The results show that PACA-cls achieves almost the same results as PACA.

Naive Label-Specific Feature Learning Table 2 reports ablation study results of a naive model named NaiveLearning, which shares the same encoder with PACA but the last layer of the encoder is label-specific to generate label-specific features. The results demonstrate the superiority of PACA in learning discriminative label-specific features.

Additional Parameter Sensitivity Figure 1(a) further analyzes how the performance of PACA changes when the hidden dimensionalities of the autoencoders change. The results show that the $1.0\times$ width is a quite reasonable choice as default setting.

Copyright © 2022, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

Table 1: Summary of the Wilcoxon signed-ranks test for PACA against its variants at 0.05 significance level. *p*-values are shown in the brackets.

PACA against	PACA-sp	PACA-nr
Average precision	win [0.0001]	win [0.0009]
Macro-averaging AUC	win [0.0023]	win [0.0067]
Hamming loss	win [0.0112]	win [0.0195]
One error	win [0.0004]	win [0.0010]
Coverage	win [0.0017]	win [0.0171]
Ranking loss	win [0.0004]	win [0.0103]

Table 2: Further ablation studies of PACA. Best and second best results are shown in **boldface** and <u>underlined</u> respectively.

Data sets	Average precision ↑					
	PACA	PACA-cls	NaiveLearning			
CAL500	$0.5246{\pm}0.0170$	$0.5226{\pm}0.0155$	$0.5140{\pm}0.0138$			
Image	0.8561 ± 0.0173	0.8565 ± 0.0170	0.8125 ± 0.0265			
scene	0.9048 ± 0.0161	0.9036 ± 0.0189	0.8816 ± 0.0159			
yeast	0.7717 ± 0.0176	0.7718 ± 0.0185	0.7666 ± 0.0146			
corel5k	0.3339 ± 0.0126	$0.3349 {\pm} 0.0108$	0.3104 ± 0.0108			
rcv1-s1	0.6444 ± 0.0113	$0.6498 {\pm} 0.0111$	0.6113 ± 0.0141			
Corel16k-s1	0.3717 ± 0.0068	0.3747 ± 0.0129	0.3511 ± 0.0056			
delicious	0.4129 ± 0.0046	0.4113 ± 0.0054	0.3850 ± 0.0044			
iaprtc12	$0.4430 {\pm} 0.0053$	0.4419 ± 0.0052	0.4106 ± 0.0070			
espgame	$0.3146 {\pm} 0.0039$	0.3111 ± 0.0019	0.2895 ± 0.0055			
mirflickr	0.7022 ± 0.0058	0.7009 ± 0.0056	0.6815 ± 0.0079			
tmc2007	$0.8322 {\pm} 0.0036$	$\overline{0.8287 \pm 0.0035}$	0.8273 ± 0.0042			
mediamill	0.7864 ± 0.0033	$\overline{0.7867 \pm 0.0042}$	0.7647 ± 0.0048			
bookmarks	$\overline{0.5126 \pm 0.0027}$	$\underline{0.5048 {\pm} 0.0021}$	$0.4900{\pm}0.0030$			

Complexity Analyses Let b be the batch size and d_h be the hidden dimensionality of conditioner in the normalizing flows, the density estimation process for generating label-specific features with $2 \cdot q$ probabilistic prototypes has time complexity $\mathcal{O}(bqd_zd_hd_\tau)$. Compared with a fully-connected counterpart with hidden dimensionality d_h , generating label-specific features via the normalizing flows has d_τ times time complexity, which is highly controllable by setting d_τ a small value ($d_\tau=16$ in our experiments). Furthermore, Figure 1(b)(c) illustrate the empirical training and test time of each comparing approach, which show that PACA is comparable to existing approaches in time overhead.

^{*}Corresponding author

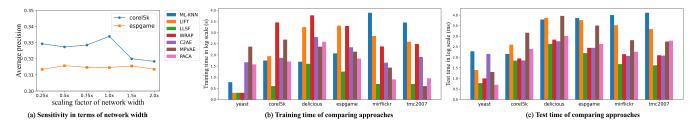


Figure 1: (a) Performance of PACA with varying network widths in terms of *Average precision*. (b)(c) Running time (training/test) of each comparing approach on six benchmark data sets. For histogram illustration, the *y*-axis corresponds to the logarithm of running time.

Table 3: Predictive performance of each comparing approach (mean \pm std. deviation). $\uparrow (\downarrow)$ indicates the larger (smaller) the value, the better the performance. Best and second best results are shown in **boldface** and <u>underlined</u> respectively.

				One-error↓				
Data sets	ML-KNN	Lift	LLSF	WRAP	C2AE	MPVAE	PACA	
CAL500	$0.1155\!\pm\!0.0259$	0.1235 ± 0.0333	0.1175 ± 0.0425	$0.1155 {\pm} 0.0259$	$0.1155 {\pm} 0.0259$	0.1175 ± 0.0340	$0.1155 {\pm} 0.0412$	
Image	0.3220 ± 0.0410	0.2690 ± 0.0330	$\overline{0.3800\pm0.0388}$	0.3480 ± 0.0299	0.2660 ± 0.0340	0.2775 ± 0.0342	$0.2180{\pm}0.0266$	
scene	0.2343 ± 0.0311	0.1961 ± 0.0293	0.2547 ± 0.0250	0.2796 ± 0.0377	$\overline{0.1874\pm0.0361}$	0.2094 ± 0.0376	$0.1595{\pm}0.0258$	
yeast	0.2234 ± 0.0285	0.2181 ± 0.0341	0.2176 ± 0.0250	0.2251 ± 0.0235	0.2396 ± 0.0317	0.2280 ± 0.0300	0.2152 ± 0.0219	
corel5k	0.7364 ± 0.0190	0.6824 ± 0.0118	$\overline{0.6452\pm0.0180}$	0.6156 ± 0.0155	0.6424 ± 0.0223	0.6206 ± 0.0187	$0.6086 {\pm} 0.0156$	
rcv1-s1	0.5650 ± 0.0179	0.4078 ± 0.0153	0.4122 ± 0.0155	0.3960 ± 0.0221	0.4232 ± 0.0248	0.3973 ± 0.0171	$0.3948 {\pm} 0.0146$	
Corel16k-s1	0.7319 ± 0.0109	0.6758 ± 0.0128	0.6364 ± 0.0175	$\overline{0.6303\pm0.0173}$	0.6463 ± 0.0168	0.6272 ± 0.0136	0.6154 ± 0.0122	
delicious	0.3965 ± 0.0099	0.3253 ± 0.0122	0.3536 ± 0.0110	0.3385 ± 0.0099	0.3299 ± 0.0084	0.3013 ± 0.0097	0.3000 ± 0.0090	
iaprtc12	0.4867 ± 0.0116	0.5007 ± 0.0074	0.4776 ± 0.0092	0.4639 ± 0.0081	0.4617 ± 0.0092	0.4200 ± 0.0136	0.4130 ± 0.0076	
espgame	0.6828 ± 0.0097	0.6305 ± 0.0090	0.6402 ± 0.0130	0.6235 ± 0.0147	0.6321 ± 0.0195	0.6009 ± 0.0110	0.5944 ± 0.0096	
mirflickr	0.3576 ± 0.0111	0.3170 ± 0.0077	0.2998 ± 0.0109	0.2954 ± 0.0099	0.2790 ± 0.0094	0.2660 ± 0.0089	0.2520 ± 0.0094	
tmc2007	0.3081 ± 0.0094	0.2171 ± 0.0043	0.2229 ± 0.0080	0.2322 ± 0.0075	0.2234 ± 0.0134	0.2025 ± 0.0043	$0.1955 {\pm} 0.0052$	
mediamill	0.1553 ± 0.0058	0.1580 ± 0.0062	0.1589 ± 0.0056	0.1564 ± 0.0058	0.1531 ± 0.0062	0.1407 ± 0.0065	0.1321 ± 0.0063	
bookmarks	0.6307 ± 0.0052	0.5331 ± 0.0045	0.5226 ± 0.0030	0.5430 ± 0.0056	$0.5325 {\pm} 0.0065$	0.5112 ± 0.0034	0.5162 ± 0.0035	
	Coverage ↓							
Data sets	ML-KNN	Lift	LLSF	WRAP	C2AE	MPVAE	PACA	
CAL500	0.7518±0.0150	0.7531±0.0235	0.7542±0.0164	0.7403±0.0111	0.7943±0.0213	0.7406±0.0113	0.7323±0.0155	
Image	0.1972 ± 0.0190	0.1689 ± 0.0132	0.2219 ± 0.0193	0.1937 ± 0.0194	0.1724 ± 0.0177	0.1700 ± 0.0139	0.1501 ± 0.0176	
scene	0.0803 ± 0.0077	0.0656 ± 0.0075	0.0887 ± 0.0088	0.0906 ± 0.0096	0.0765 ± 0.0107	0.0745 ± 0.0104	$0.0585{\pm}0.0080$	
yeast	$0.4445 {\pm} 0.0138$	0.4517 ± 0.0149	0.4535 ± 0.0166	0.4532 ± 0.0161	0.4737 ± 0.0212	0.4534 ± 0.0174	0.4577 ± 0.0192	
corel5k	0.3053 ± 0.0119	0.2905 ± 0.0119	0.4361 ± 0.0144	0.3011 ± 0.0176	0.3121 ± 0.0169	0.2275 ± 0.0121	$0.2252 {\pm} 0.0137$	
rcv1-s1	0.2260 ± 0.0086	0.1212 ± 0.0073	0.1176 ± 0.0098	0.1025 ± 0.0087	0.1172 ± 0.0131	0.0893 ± 0.0070	$0.0885{\pm}0.0072$	
Corel16k-s1	0.3342-0.0072	0.3236 ± 0.0068	0.3237 ± 0.0079	0.2690 ± 0.0069	0.3029 ± 0.0055	0.2348 ± 0.0048	$0.2315 {\pm} 0.0058$	
delicious	0.5966 ± 0.0090	0.4805 ± 0.0073	0.6179 ± 0.0091	0.5369 ± 0.0077	0.5049 ± 0.0077	0.4040 ± 0.0061	0.3906 ± 0.0059	
iaprtc12	0.3518 ± 0.0066	0.3204 ± 0.0046	0.3768 ± 0.0080	0.3401 ± 0.0067	0.2903 ± 0.0063	0.2305 ± 0.0039	$0.2256 {\pm} 0.0058$	
espgame	0.4414 ± 0.0064	0.3509 ± 0.0088	0.4537 ± 0.0078	0.3767 ± 0.0086	0.3942 ± 0.0076	0.3231 ± 0.0057	0.3102 ± 0.0060	
mirflickr	0.3410 ± 0.0026	0.3173 ± 0.0030	0.3193 ± 0.0038	0.3103 ± 0.0042	0.3032 ± 0.0066	0.2676 ± 0.0041	$0.2661 {\pm} 0.0040$	
tmc2007	0.1833 ± 0.0041	0.1210 ± 0.0038	0.1270 ± 0.0042	0.1299 ± 0.0045	0.1432 ± 0.0053	$\overline{0.1130\pm0.0031}$	0.1147 ± 0.0025	
mediamill	0.1369 ± 0.0023	0.1555 ± 0.0028	0.1735 ± 0.0041	0.1675 ± 0.0037	0.1544 ± 0.0035	0.1217 ± 0.0029	0.1156 ± 0.0018	
bookmarks	$0.2575 {\pm} 0.0028$	0.1308 ± 0.0021	0.1569 ± 0.0038	0.1557 ± 0.0029	$0.1831 {\pm} 0.0036$	0.1172 ± 0.0020	0.1118 ± 0.0018	
Data sats	Ranking loss ↓							
Data sets	ML-KNN	Lift	LLSF	Wrap	C2AE	MPVAE	PACA	
CAL500	0.1831 ± 0.0041	$0.1814{\pm}0.0058$	$0.1835{\pm}0.0070$	0.1761 ± 0.0054	$0.1962 {\pm} 0.0047$	$0.1768 {\pm} 0.0046$	$0.1736 {\pm} 0.0060$	
Image	0.1785 ± 0.0218	0.1432 ± 0.0137	0.2116 ± 0.0227	0.1772 ± 0.0241	0.1477 ± 0.0221	0.1471 ± 0.0168	0.1228 ± 0.0184	
scene	0.0790 ± 0.0106	0.0622 ± 0.0100	0.0893 ± 0.0112	0.0916 ± 0.0113	0.0734 ± 0.0144	0.0729 ± 0.0146	$0.0538 {\pm} 0.0117$	
yeast	0.1644 ± 0.0107	0.1637 ± 0.0095	0.1684 ± 0.0101	0.1690 ± 0.0096	0.1828 ± 0.0136	0.1682 ± 0.0123	0.1663 ± 0.0136	
corel5k	0.1340 ± 0.0053	0.1221 ± 0.0046	0.1912 ± 0.0076	0.1308 ± 0.0073	0.1511 ± 0.0088	0.1011 ± 0.0045	0.1004 ± 0.0067	
rcv1-s1	0.1083 ± 0.0049	0.0481 ± 0.0031	0.0463 ± 0.0038	0.0399 ± 0.0034	0.0483 ± 0.0060	0.0365 ± 0.0036	0.0370 ± 0.0031	
Corel16k-s1	0.1722 ± 0.0032	0.1627 ± 0.0030	$0.1624{\pm}0.0035$	0.1376 ± 0.0039	0.1622 ± 0.0030	0.1222 ± 0.0026	$\overline{0.1206\pm0.0035}$	
delicious	0.1265 ± 0.0024	0.0996 ± 0.0018	0.1433 ± 0.0033	0.1052 ± 0.0019	0.1171 ± 0.0017	0.0882 ± 0.0017	$0.0876 {\pm} 0.0019$	
iaprtc12	0.1217 ± 0.0028	0.1110 ± 0.0019	0.1232 ± 0.0032	0.1102 ± 0.0027	0.1017 ± 0.0036	0.0771 ± 0.0019	$0.0768 {\pm} 0.0024$	
espgame	0.1839 ± 0.0023	0.1432 ± 0.0028	0.1823 ± 0.0037	0.1512 ± 0.0034	0.1704 ± 0.0030	0.1347 ± 0.0031	$0.1297 {\pm} 0.0021$	
mirflickr	0.1329 ± 0.0033	0.1196 ± 0.0022	$0.1188 {\pm} 0.0034$	0.1143 ± 0.0035	0.1096 ± 0.0038	0.0910 ± 0.0024	0.0914 ± 0.0029	
tmc2007	0.0891 ± 0.0031	0.0466 ± 0.0021	0.0485 ± 0.0017	0.0508 ± 0.0019	$0.0584 {\pm} 0.0021$	$0.0407 {\pm} 0.0015$	0.0417 ± 0.0017	
mediamill	$0.0386 {\pm} 0.0008$	0.0446 ± 0.0009	0.0524 ± 0.0018	0.0492 ± 0.0016	0.0467 ± 0.0015	0.0335 ± 0.0010	0.0320 ± 0.0008	
bookmarks	0.1759 ± 0.0023	0.0833 ± 0.0014	0.0977 ± 0.0026	0.0963 ± 0.0017	0.1213 ± 0.0028	0.0755 ± 0.0016	0.0719 ± 0.0014	