End-to-End Probabilistic Label-Specific Feature Learning for Multi-Label Classification Supplementary Material Jun-Yi Hang^{1,2}, Min-Ling Zhang^{1,2*}, Yanghe Feng³, Xiaocheng Song⁴ ¹School of Computer Science and Engineering, Southeast University, Nanjing 210096, China ²Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, China ³College of Systems Engineering, National University of Defense Technology, Changsha 410073, China ⁴Department of Beijing Institute of Electronic Engineering, Beijing 100854, China {hangjy, zhangml}@seu.edu.cn, fengyanghe@nudt.edu.cn, sxchitman@126.com ## **Further Experimental Results** ## **Comparative Studies** We employ ten-fold cross validation to evaluate our PACA and six well-established multi-label classification approaches on the 14 benchmark data sets. Table 3 reports detailed experimental results in terms of *One-error*, *Coverage* and *Ranking loss*, which are not covered in the *Comparative Studies* part of the main body due to page limit. ## **Further Analyses** The Wilcoxon signed-ranks test at 0.05 significance level is conducted to analyze whether PACA performs statistically better than its variants described in the *Further Analyses* part of the main body. Table 1 summarizes the *p*-value statistics on each evaluation metric, which show PACA is statistically superior to its variants in terms of all evaluation metrics. Classifier Considerations Theoretically, for the 2-dimensional label-specific features in PACA, a softmax-based parameter-free classifier is equivalent to the commonly-used sigmoid classifier with $[1,-1]^{\rm T}$ weights and zero bias. We further validate the equivalence by empirical ablation studies. Table 2 reports detailed experimental results of such a variant named PACA-cls in terms of *Average precision*, where a sigmoid classifier is attached to the label-specific features for each class label. The results show that PACA-cls achieves almost the same results as PACA. Naive Label-Specific Feature Learning Table 2 reports ablation study results of a naive model named NaiveLearning, which shares the same encoder with PACA but the last layer of the encoder is label-specific to generate label-specific features. The results demonstrate the superiority of PACA in learning discriminative label-specific features. **Additional Parameter Sensitivity** Figure 1(a) further analyzes how the performance of PACA changes when the hidden dimensionalities of the autoencoders change. The results show that the $1.0\times$ width is a quite reasonable choice as default setting. Copyright © 2022, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. Table 1: Summary of the Wilcoxon signed-ranks test for PACA against its variants at 0.05 significance level. *p*-values are shown in the brackets. | PACA against | PACA-sp | PACA-nr | |---------------------|---------------------|---------------------| | Average precision | win [0.0001] | win [0.0009] | | Macro-averaging AUC | win [0.0023] | win [0.0067] | | Hamming loss | win [0.0112] | win [0.0195] | | One error | win [0.0004] | win [0.0010] | | Coverage | win [0.0017] | win [0.0171] | | Ranking loss | win [0.0004] | win [0.0103] | Table 2: Further ablation studies of PACA. Best and second best results are shown in **boldface** and <u>underlined</u> respectively. | Data sets | Average precision ↑ | | | | | | |-------------|--------------------------------|-----------------------------------|---------------------|--|--|--| | | PACA | PACA-cls | NaiveLearning | | | | | CAL500 | $0.5246{\pm}0.0170$ | $0.5226{\pm}0.0155$ | $0.5140{\pm}0.0138$ | | | | | Image | 0.8561 ± 0.0173 | 0.8565 ± 0.0170 | 0.8125 ± 0.0265 | | | | | scene | 0.9048 ± 0.0161 | 0.9036 ± 0.0189 | 0.8816 ± 0.0159 | | | | | yeast | 0.7717 ± 0.0176 | 0.7718 ± 0.0185 | 0.7666 ± 0.0146 | | | | | corel5k | 0.3339 ± 0.0126 | $0.3349 {\pm} 0.0108$ | 0.3104 ± 0.0108 | | | | | rcv1-s1 | 0.6444 ± 0.0113 | $0.6498 {\pm} 0.0111$ | 0.6113 ± 0.0141 | | | | | Corel16k-s1 | 0.3717 ± 0.0068 | 0.3747 ± 0.0129 | 0.3511 ± 0.0056 | | | | | delicious | 0.4129 ± 0.0046 | 0.4113 ± 0.0054 | 0.3850 ± 0.0044 | | | | | iaprtc12 | $0.4430 {\pm} 0.0053$ | 0.4419 ± 0.0052 | 0.4106 ± 0.0070 | | | | | espgame | $0.3146 {\pm} 0.0039$ | 0.3111 ± 0.0019 | 0.2895 ± 0.0055 | | | | | mirflickr | 0.7022 ± 0.0058 | 0.7009 ± 0.0056 | 0.6815 ± 0.0079 | | | | | tmc2007 | $0.8322 {\pm} 0.0036$ | $\overline{0.8287 \pm 0.0035}$ | 0.8273 ± 0.0042 | | | | | mediamill | 0.7864 ± 0.0033 | $\overline{0.7867 \pm 0.0042}$ | 0.7647 ± 0.0048 | | | | | bookmarks | $\overline{0.5126 \pm 0.0027}$ | $\underline{0.5048 {\pm} 0.0021}$ | $0.4900{\pm}0.0030$ | | | | Complexity Analyses Let b be the batch size and d_h be the hidden dimensionality of conditioner in the normalizing flows, the density estimation process for generating label-specific features with $2 \cdot q$ probabilistic prototypes has time complexity $\mathcal{O}(bqd_zd_hd_\tau)$. Compared with a fully-connected counterpart with hidden dimensionality d_h , generating label-specific features via the normalizing flows has d_τ times time complexity, which is highly controllable by setting d_τ a small value ($d_\tau=16$ in our experiments). Furthermore, Figure 1(b)(c) illustrate the empirical training and test time of each comparing approach, which show that PACA is comparable to existing approaches in time overhead. ^{*}Corresponding author Figure 1: (a) Performance of PACA with varying network widths in terms of *Average precision*. (b)(c) Running time (training/test) of each comparing approach on six benchmark data sets. For histogram illustration, the *y*-axis corresponds to the logarithm of running time. Table 3: Predictive performance of each comparing approach (mean \pm std. deviation). $\uparrow (\downarrow)$ indicates the larger (smaller) the value, the better the performance. Best and second best results are shown in **boldface** and <u>underlined</u> respectively. | | | | | One-error↓ | | | | | |-------------|-----------------------|---------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--| | Data sets | ML-KNN | Lift | LLSF | WRAP | C2AE | MPVAE | PACA | | | CAL500 | $0.1155\!\pm\!0.0259$ | 0.1235 ± 0.0333 | 0.1175 ± 0.0425 | $0.1155 {\pm} 0.0259$ | $0.1155 {\pm} 0.0259$ | 0.1175 ± 0.0340 | $0.1155 {\pm} 0.0412$ | | | Image | 0.3220 ± 0.0410 | 0.2690 ± 0.0330 | $\overline{0.3800\pm0.0388}$ | 0.3480 ± 0.0299 | 0.2660 ± 0.0340 | 0.2775 ± 0.0342 | $0.2180{\pm}0.0266$ | | | scene | 0.2343 ± 0.0311 | 0.1961 ± 0.0293 | 0.2547 ± 0.0250 | 0.2796 ± 0.0377 | $\overline{0.1874\pm0.0361}$ | 0.2094 ± 0.0376 | $0.1595{\pm}0.0258$ | | | yeast | 0.2234 ± 0.0285 | 0.2181 ± 0.0341 | 0.2176 ± 0.0250 | 0.2251 ± 0.0235 | 0.2396 ± 0.0317 | 0.2280 ± 0.0300 | 0.2152 ± 0.0219 | | | corel5k | 0.7364 ± 0.0190 | 0.6824 ± 0.0118 | $\overline{0.6452\pm0.0180}$ | 0.6156 ± 0.0155 | 0.6424 ± 0.0223 | 0.6206 ± 0.0187 | $0.6086 {\pm} 0.0156$ | | | rcv1-s1 | 0.5650 ± 0.0179 | 0.4078 ± 0.0153 | 0.4122 ± 0.0155 | 0.3960 ± 0.0221 | 0.4232 ± 0.0248 | 0.3973 ± 0.0171 | $0.3948 {\pm} 0.0146$ | | | Corel16k-s1 | 0.7319 ± 0.0109 | 0.6758 ± 0.0128 | 0.6364 ± 0.0175 | $\overline{0.6303\pm0.0173}$ | 0.6463 ± 0.0168 | 0.6272 ± 0.0136 | 0.6154 ± 0.0122 | | | delicious | 0.3965 ± 0.0099 | 0.3253 ± 0.0122 | 0.3536 ± 0.0110 | 0.3385 ± 0.0099 | 0.3299 ± 0.0084 | 0.3013 ± 0.0097 | 0.3000 ± 0.0090 | | | iaprtc12 | 0.4867 ± 0.0116 | 0.5007 ± 0.0074 | 0.4776 ± 0.0092 | 0.4639 ± 0.0081 | 0.4617 ± 0.0092 | 0.4200 ± 0.0136 | 0.4130 ± 0.0076 | | | espgame | 0.6828 ± 0.0097 | 0.6305 ± 0.0090 | 0.6402 ± 0.0130 | 0.6235 ± 0.0147 | 0.6321 ± 0.0195 | 0.6009 ± 0.0110 | 0.5944 ± 0.0096 | | | mirflickr | 0.3576 ± 0.0111 | 0.3170 ± 0.0077 | 0.2998 ± 0.0109 | 0.2954 ± 0.0099 | 0.2790 ± 0.0094 | 0.2660 ± 0.0089 | 0.2520 ± 0.0094 | | | tmc2007 | 0.3081 ± 0.0094 | 0.2171 ± 0.0043 | 0.2229 ± 0.0080 | 0.2322 ± 0.0075 | 0.2234 ± 0.0134 | 0.2025 ± 0.0043 | $0.1955 {\pm} 0.0052$ | | | mediamill | 0.1553 ± 0.0058 | 0.1580 ± 0.0062 | 0.1589 ± 0.0056 | 0.1564 ± 0.0058 | 0.1531 ± 0.0062 | 0.1407 ± 0.0065 | 0.1321 ± 0.0063 | | | bookmarks | 0.6307 ± 0.0052 | 0.5331 ± 0.0045 | 0.5226 ± 0.0030 | 0.5430 ± 0.0056 | $0.5325 {\pm} 0.0065$ | 0.5112 ± 0.0034 | 0.5162 ± 0.0035 | | | | Coverage ↓ | | | | | | | | | Data sets | ML-KNN | Lift | LLSF | WRAP | C2AE | MPVAE | PACA | | | CAL500 | 0.7518±0.0150 | 0.7531±0.0235 | 0.7542±0.0164 | 0.7403±0.0111 | 0.7943±0.0213 | 0.7406±0.0113 | 0.7323±0.0155 | | | Image | 0.1972 ± 0.0190 | 0.1689 ± 0.0132 | 0.2219 ± 0.0193 | 0.1937 ± 0.0194 | 0.1724 ± 0.0177 | 0.1700 ± 0.0139 | 0.1501 ± 0.0176 | | | scene | 0.0803 ± 0.0077 | 0.0656 ± 0.0075 | 0.0887 ± 0.0088 | 0.0906 ± 0.0096 | 0.0765 ± 0.0107 | 0.0745 ± 0.0104 | $0.0585{\pm}0.0080$ | | | yeast | $0.4445 {\pm} 0.0138$ | 0.4517 ± 0.0149 | 0.4535 ± 0.0166 | 0.4532 ± 0.0161 | 0.4737 ± 0.0212 | 0.4534 ± 0.0174 | 0.4577 ± 0.0192 | | | corel5k | 0.3053 ± 0.0119 | 0.2905 ± 0.0119 | 0.4361 ± 0.0144 | 0.3011 ± 0.0176 | 0.3121 ± 0.0169 | 0.2275 ± 0.0121 | $0.2252 {\pm} 0.0137$ | | | rcv1-s1 | 0.2260 ± 0.0086 | 0.1212 ± 0.0073 | 0.1176 ± 0.0098 | 0.1025 ± 0.0087 | 0.1172 ± 0.0131 | 0.0893 ± 0.0070 | $0.0885{\pm}0.0072$ | | | Corel16k-s1 | 0.3342-0.0072 | 0.3236 ± 0.0068 | 0.3237 ± 0.0079 | 0.2690 ± 0.0069 | 0.3029 ± 0.0055 | 0.2348 ± 0.0048 | $0.2315 {\pm} 0.0058$ | | | delicious | 0.5966 ± 0.0090 | 0.4805 ± 0.0073 | 0.6179 ± 0.0091 | 0.5369 ± 0.0077 | 0.5049 ± 0.0077 | 0.4040 ± 0.0061 | 0.3906 ± 0.0059 | | | iaprtc12 | 0.3518 ± 0.0066 | 0.3204 ± 0.0046 | 0.3768 ± 0.0080 | 0.3401 ± 0.0067 | 0.2903 ± 0.0063 | 0.2305 ± 0.0039 | $0.2256 {\pm} 0.0058$ | | | espgame | 0.4414 ± 0.0064 | 0.3509 ± 0.0088 | 0.4537 ± 0.0078 | 0.3767 ± 0.0086 | 0.3942 ± 0.0076 | 0.3231 ± 0.0057 | 0.3102 ± 0.0060 | | | mirflickr | 0.3410 ± 0.0026 | 0.3173 ± 0.0030 | 0.3193 ± 0.0038 | 0.3103 ± 0.0042 | 0.3032 ± 0.0066 | 0.2676 ± 0.0041 | $0.2661 {\pm} 0.0040$ | | | tmc2007 | 0.1833 ± 0.0041 | 0.1210 ± 0.0038 | 0.1270 ± 0.0042 | 0.1299 ± 0.0045 | 0.1432 ± 0.0053 | $\overline{0.1130\pm0.0031}$ | 0.1147 ± 0.0025 | | | mediamill | 0.1369 ± 0.0023 | 0.1555 ± 0.0028 | 0.1735 ± 0.0041 | 0.1675 ± 0.0037 | 0.1544 ± 0.0035 | 0.1217 ± 0.0029 | 0.1156 ± 0.0018 | | | bookmarks | $0.2575 {\pm} 0.0028$ | 0.1308 ± 0.0021 | 0.1569 ± 0.0038 | 0.1557 ± 0.0029 | $0.1831 {\pm} 0.0036$ | 0.1172 ± 0.0020 | 0.1118 ± 0.0018 | | | Data sats | Ranking loss ↓ | | | | | | | | | Data sets | ML-KNN | Lift | LLSF | Wrap | C2AE | MPVAE | PACA | | | CAL500 | 0.1831 ± 0.0041 | $0.1814{\pm}0.0058$ | $0.1835{\pm}0.0070$ | 0.1761 ± 0.0054 | $0.1962 {\pm} 0.0047$ | $0.1768 {\pm} 0.0046$ | $0.1736 {\pm} 0.0060$ | | | Image | 0.1785 ± 0.0218 | 0.1432 ± 0.0137 | 0.2116 ± 0.0227 | 0.1772 ± 0.0241 | 0.1477 ± 0.0221 | 0.1471 ± 0.0168 | 0.1228 ± 0.0184 | | | scene | 0.0790 ± 0.0106 | 0.0622 ± 0.0100 | 0.0893 ± 0.0112 | 0.0916 ± 0.0113 | 0.0734 ± 0.0144 | 0.0729 ± 0.0146 | $0.0538 {\pm} 0.0117$ | | | yeast | 0.1644 ± 0.0107 | 0.1637 ± 0.0095 | 0.1684 ± 0.0101 | 0.1690 ± 0.0096 | 0.1828 ± 0.0136 | 0.1682 ± 0.0123 | 0.1663 ± 0.0136 | | | corel5k | 0.1340 ± 0.0053 | 0.1221 ± 0.0046 | 0.1912 ± 0.0076 | 0.1308 ± 0.0073 | 0.1511 ± 0.0088 | 0.1011 ± 0.0045 | 0.1004 ± 0.0067 | | | rcv1-s1 | 0.1083 ± 0.0049 | 0.0481 ± 0.0031 | 0.0463 ± 0.0038 | 0.0399 ± 0.0034 | 0.0483 ± 0.0060 | 0.0365 ± 0.0036 | 0.0370 ± 0.0031 | | | Corel16k-s1 | 0.1722 ± 0.0032 | 0.1627 ± 0.0030 | $0.1624{\pm}0.0035$ | 0.1376 ± 0.0039 | 0.1622 ± 0.0030 | 0.1222 ± 0.0026 | $\overline{0.1206\pm0.0035}$ | | | delicious | 0.1265 ± 0.0024 | 0.0996 ± 0.0018 | 0.1433 ± 0.0033 | 0.1052 ± 0.0019 | 0.1171 ± 0.0017 | 0.0882 ± 0.0017 | $0.0876 {\pm} 0.0019$ | | | iaprtc12 | 0.1217 ± 0.0028 | 0.1110 ± 0.0019 | 0.1232 ± 0.0032 | 0.1102 ± 0.0027 | 0.1017 ± 0.0036 | 0.0771 ± 0.0019 | $0.0768 {\pm} 0.0024$ | | | espgame | 0.1839 ± 0.0023 | 0.1432 ± 0.0028 | 0.1823 ± 0.0037 | 0.1512 ± 0.0034 | 0.1704 ± 0.0030 | 0.1347 ± 0.0031 | $0.1297 {\pm} 0.0021$ | | | mirflickr | 0.1329 ± 0.0033 | 0.1196 ± 0.0022 | $0.1188 {\pm} 0.0034$ | 0.1143 ± 0.0035 | 0.1096 ± 0.0038 | 0.0910 ± 0.0024 | 0.0914 ± 0.0029 | | | tmc2007 | 0.0891 ± 0.0031 | 0.0466 ± 0.0021 | 0.0485 ± 0.0017 | 0.0508 ± 0.0019 | $0.0584 {\pm} 0.0021$ | $0.0407 {\pm} 0.0015$ | 0.0417 ± 0.0017 | | | mediamill | $0.0386 {\pm} 0.0008$ | 0.0446 ± 0.0009 | 0.0524 ± 0.0018 | 0.0492 ± 0.0016 | 0.0467 ± 0.0015 | 0.0335 ± 0.0010 | 0.0320 ± 0.0008 | | | bookmarks | 0.1759 ± 0.0023 | 0.0833 ± 0.0014 | 0.0977 ± 0.0026 | 0.0963 ± 0.0017 | 0.1213 ± 0.0028 | 0.0755 ± 0.0016 | 0.0719 ± 0.0014 | |