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Further Experimental Results
Comparative Studies

We employ ten-fold cross validation to evaluate our
PACA and six well-established multi-label classification ap-
proaches on the 14 benchmark data sets. Table 3 reports de-
tailed experimental results in terms of One-error, Coverage
and Ranking loss, which are not covered in the Comparative
Studies part of the main body due to page limit.

Further Analyses

The Wilcoxon signed-ranks test at 0.05 significance level is
conducted to analyze whether PACA performs statistically
better than its variants described in the Further Analyses part
of the main body. Table 1 summarizes the p-value statistics
on each evaluation metric, which show PACA is statistically
superior to its variants in terms of all evaluation metrics.

Classifier Considerations Theoretically, for the 2-
dimensional label-specific features in PACA, a softmax-
based parameter-free classifier is equivalent to the
commonly-used sigmoid classifier with [1,—1]T weights
and zero bias. We further validate the equivalence by
empirical ablation studies. Table 2 reports detailed experi-
mental results of such a variant named PACA-cls in terms of
Average precision, where a sigmoid classifier is attached to
the label-specific features for each class label. The results
show that PACA-cls achieves almost the same results as
PACA.

Naive Label-Specific Feature Learning Table 2 reports
ablation study results of a naive model named NaiveLearn-
ing, which shares the same encoder with PACA but the
last layer of the encoder is label-specific to generate label-
specific features. The results demonstrate the superiority of
PACA in learning discriminative label-specific features.

Additional Parameter Sensitivity Figure 1(a) further an-
alyzes how the performance of PACA changes when the hid-
den dimensionalities of the autoencoders change. The results
show that the 1.0x width is a quite reasonable choice as de-
fault setting.
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Table 1: Summary of the Wilcoxon signed-ranks test for
PACA against its variants at 0.05 significance level. p-values
are shown in the brackets.

PACA against

PACA-sp

PAcA-nr

Average precision
Macro-averaging AUC
Hamming loss

win [0.0001]
win [0.0023]
win [0.0112]

win [0.0009]
win [0.0067]
win [0.0195]

One error win [0.0004] win [0.0010]
Coverage win [0.0017] win [0.0171]
Ranking loss win [0.0004] win [0.0103]

Table 2: Further ablation studies of PACA. Best and second
best results are shown in boldface and underlined respec-

tively.
I Average precision T
Data sets PACA PACA-cls NaiveLearning
CALS500 0.5246+0.0170 0.52264+0.0155 0.5140+0.0138
Image 0.8561+0.0173  0.8565+0.0170 0.8125+0.0265
scene 0.9048-£0.0161 0.9036+0.0189  0.8816+0.0159
yeast 0.7717£0.0176  0.7718+0.0185 0.7666+£0.0146
corelSk 0.3339+0.0126  0.3349+0.0108 0.3104£0.0108
revl-sl 0.64444+0.0113  0.6498+0.0111 0.6113+0.0141
Corell6k-s1  0.37174+0.0068  0.3747+£0.0129  0.3511+0.0056
delicious 0.4129+0.0046 0.41134+0.0054 0.3850-+£0.0044
iaprtc12 0.4430+0.0053 0.441940.0052 0.4106=£0.0070
espgame 0.3146+0.0039 0.311140.0019  0.2895+0.0055
mirflickr 0.7022+0.0058 0.70094+0.0056 0.6815+0.0079
tmc2007 0.8322+0.0036  0.828740.0035 0.8273£0.0042
mediamill 0.7864+0.0033  0.7867+0.0042 0.7647+0.0048
bookmarks  0.5126+0.0027 0.5048+0.0021  0.4900+0.0030

Complexity Analyses

Let b be the batch size and dj, be

the hidden dimensionality of conditioner in the normalizing
flows, the density estimation process for generating label-
specific features with 2 - ¢ probabilistic prototypes has time
complexity O(bqd.d},d,). Compared with a fully-connected
counterpart with hidden dimensionality dj, generating label-
specific features via the normalizing flows has d, times time
complexity, which is highly controllable by setting d, a
small value (d; = 16 in our experiments). Furthermore, Fig-
ure 1(b)(c) illustrate the empirical training and test time of
each comparing approach, which show that PACA is compa-
rable to existing approaches in time overhead.
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Figure 1: (a) Performance of PACA with varying network widths in terms of Average precision. (b)(c) Running time (train-
ing/test) of each comparing approach on six benchmark data sets. For histogram illustration, the y-axis corresponds to the
logarithm of running time.

Table 3: Predictive performance of each comparing approach (mean=+tstd. deviation). 1 (J) indicates the larger (smaller) the

value, the better the performance. Best and second best results are shown in boldface and underlined respectively.

Data sets One-error |

ML-KNN LIFT LLSF WRAP C2AE MPVAE PACA
CALS00 0.1155+0.0259 0.1235+0.0333  0.11754+0.0425 0.1155+0.0259 0.11554+0.0259 0.117540.0340 0.1155+0.0412
Image 0.3220+0.0410  0.2690+0.0330  0.3800+0.0388  0.3480+0.0299 0.2660+0.0340 0.27754+0.0342  0.2180+0.0266
scene 0.2343+0.0311  0.1961+£0.0293  0.2547+0.0250 0.2796+0.0377 0.18744+0.0361 0.209440.0376  0.1595+0.0258
yeast 0.2234+0.0285 0.2181+0.0341 0.2176+0.0250 0.22514+0.0235 0.23964+0.0317 0.22804+0.0300 0.2152+0.0219
corel5k 0.7364+0.0190 0.6824+0.0118 0.6452+0.0180 0.6156+0.0155 0.64244+0.0223 0.62064+0.0187 0.6086+0.0156
rcvl-sl 0.5650+0.0179 0.4078+0.0153 0.41224+0.0155 0.3960+0.0221 0.42324+0.0248 0.39734+0.0171  0.3948+0.0146
Corell6k-s1  0.731940.0109 0.6758+0.0128 0.6364+0.0175 0.6303+0.0173 0.6463+0.0168 0.6272+0.0136 0.6154+0.0122
delicious 0.3965+0.0099 0.3253+0.0122  0.3536+0.0110 0.3385+0.0099 0.32994+0.0084 0.30134+0.0097  0.3000+0.0090
iaprtc12 0.4867+0.0116  0.5007+0.0074 0.4776+0.0092 0.4639+0.0081 0.46174+0.0092 0.42004+0.0136 0.4130+0.0076
espgame 0.6828+0.0097 0.6305+0.0090 0.6402+0.0130 0.6235+0.0147 0.63214+0.0195 0.60094+0.0110  0.5944+0.0096
mirflickr 0.3576+0.0111  0.3170+0.0077  0.2998+0.0109  0.2954+0.0099  0.27904+0.0094 0.26604+0.0089  0.2520+0.0094
tmc2007 0.3081+£0.0094 0.2171+0.0043  0.22294+0.0080 0.2322+0.0075 0.22344+0.0134  0.202540.0043  0.1955+0.0052
mediamill 0.1553+0.0058 0.1580+0.0062 0.1589+0.0056 0.1564+0.0058 0.15314+0.0062 0.140740.0065 0.1321+0.0063
bookmarks 0.6307+£0.0052  0.5331+£0.0045 0.5226+0.0030 0.5430+0.0056 0.5325+0.0065 0.51124+0.0034 0.5162+0.0035

Coverage |,
Data sets ML-KNN LIFT LLSF WRAP C2AE MPVAE PACA
CALS500 0.7518+0.0150  0.7531+0.0235 0.7542+0.0164 0.7403+0.0111 0.7943+0.0213 0.7406+0.0113  0.7323+0.0155
Image 0.1972+0.0190  0.1689+0.0132  0.2219+0.0193  0.1937+0.0194 0.17244+0.0177 0.17004+0.0139  0.1501+0.0176
scene 0.0803+0.0077  0.0656+0.0075 0.0887+0.0088 0.0906+0.0096 0.0765+0.0107 0.07454+0.0104  0.0585+0.0080
yeast 0.4445+0.0138 0.4517+0.0149 0.4535+0.0166  0.4532+0.0161 0.47374+0.0212 0.45344+0.0174 0.457740.0192
corel5k 0.3053+0.0119  0.2905+0.0119 0.4361+0.0144 0.3011+0.0176  0.31214+0.0169 0.22754+0.0121  0.2252+0.0137
revl-sl 0.2260+0.0086  0.1212+0.0073  0.1176+0.0098 0.1025+0.0087 0.11724+0.0131 0.089340.0070  0.0885+0.0072
Corell6k-s1 ~ 0.3342-0.0072  0.323640.0068 0.323740.0079 0.2690+0.0069  0.3029+0.0055 0.2348+0.0048  0.2315+0.0058
delicious 0.5966+0.0090 0.4805+0.0073 0.6179+0.0091 0.5369+0.0077 0.50494+0.0077 0.404040.0061  0.3906+0.0059
iaprtc12 0.3518+0.0066  0.3204+0.0046 0.3768+0.0080 0.3401+0.0067 0.29034+0.0063  0.23054+0.0039  0.2256+0.0058
espgame 0.4414+0.0064  0.3509+0.0088 0.4537+0.0078 0.3767+0.0086 0.3942+0.0076  0.32314+0.0057 0.3102+0.0060
mirflickr 0.3410+0.0026  0.3173+0.0030 0.3193+0.0038 0.3103+0.0042 0.30324+0.0066 0.26764+0.0041 0.2661+0.0040
tmc2007 0.1833+0.0041 0.1210+0.0038  0.1270+0.0042  0.1299+0.0045 0.1432+0.0053  0.1130+0.0031 0.114740.0025
mediamill 0.1369+0.0023  0.1555+0.0028 0.1735+0.0041 0.1675+0.0037 0.15444+0.0035 0.121740.0029 0.1156+0.0018
bookmarks 0.2575+£0.0028 0.1308+0.0021 0.1569+0.0038 0.1557+0.0029 0.18314+0.0036 0.11724+0.0020 0.1118+0.0018
Ranking loss |

Data sets ML-KNN LIFT LLSF WRAP C2AE MPVAE PACA
CALS500 0.1831£0.0041 0.1814+0.0058 0.1835+0.0070 0.1761+0.0054 0.19624+0.0047 0.1768+0.0046  0.1736+0.0060
Image 0.1785+0.0218 0.1432+0.0137 0.2116+0.0227 0.1772+0.0241 0.14774+0.0221 0.14714+0.0168  0.1228+0.0184
scene 0.0790+0.0106  0.0622+0.0100 0.0893+0.0112 0.0916+0.0113  0.07344+0.0144 0.072940.0146  0.0538+0.0117
yeast 0.1644+0.0107 0.1637+0.0095 0.1684+0.0101 0.1690+0.0096 0.18284+0.0136 0.16824+0.0123 0.1663+0.0136
corel5k 0.1340+0.0053  0.1221+0.0046  0.1912+0.0076  0.1308+0.0073  0.15114+0.0088 0.10114+0.0045 0.1004+0.0067
rcevl-sl 0.1083+0.0049 0.0481+0.0031 0.0463+0.0038 0.0399+0.0034 0.0483+0.0060 0.0365+0.0036 0.0370+0.0031
Corell6k-s1  0.172240.0032 0.162740.0030 0.162440.0035 0.1376£0.0039  0.1622+0.0030 0.1222+0.0026  0.1206:0.0035
delicious 0.1265+0.0024  0.0996+0.0018 0.1433+0.0033  0.1052+0.0019 0.11714+0.0017 0.08824+0.0017 0.0876+0.0019
iaprtc12 0.121740.0028 0.1110+0.0019  0.12324+0.0032  0.1102+0.0027 0.101740.0036 0.07714+0.0019  0.0768+0.0024
espgame 0.1839+0.0023  0.1432+0.0028 0.1823+0.0037 0.1512+0.0034 0.1704+0.0030 0.13474+0.0031 0.1297+0.0021
mirflickr 0.1329+0.0033  0.1196+0.0022 0.1188+0.0034 0.1143+0.0035 0.1096+0.0038  0.0910+0.0024 0.0914+0.0029
tmc2007 0.0891+£0.0031 0.0466+0.0021 0.0485+0.0017 0.0508+0.0019 0.0584+0.0021 0.0407+0.0015 0.0417+0.0017
mediamill 0.0386£0.0008  0.0446+0.0009 0.0524+0.0018 0.0492+0.0016  0.04674+0.0015 0.033540.0010  0.0320+0.0008
bookmarks 0.1759+0.0023  0.0833+0.0014 0.0977+0.0026  0.0963+0.0017 0.12134+0.0028 0.07554+0.0016  0.0719+0.0014
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