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Abstract

This article presents a Support Vector Machine (SVM) likarhéng sys-
tem to handle multi-label problems. Such problems are lyisdatom-
posed into many two-class problems but the expressive pofxgrch a
system can be weak [5, 7]. We explore a new direct approathb#tsed
on a large margin ranking system that shares a lot of commopepr
ties with SVMs. We tested it on a Yeast gene functional clasdion
problem with positive results.

1 Introduction

Many problems in Text Mining or Bioinformatics are multblelled. That is, each point
in a learning set is associated to a set of labels. Considdn$tance the classification
task of determining the subjects of a document, or of rgjatine protein to its many
effects on a cell. In either case, the learning task wouldblmutput a set of labels whose
size is not known in advance: one document can for instancabbat food, meat and
finance, although another one would concern only food andfab-class and multi-class
classification or ordinal regression problems can all bé¢ ices multi-label ones. This

makes the latter quite attractive but at the same time itsgavevarning: their generality
hides their difficulty to solve them. The number of publioat is not going to contradict
this statement: we are aware of only a few works about theestf4, 5, 7] and they all

concern text mining applications.

In Schapire and Singer’s work about Boostexter, one of tHg ganeral purpose multi-
label ranking systems [7], they observe that overfittinguoson learning sets of relatively
small size & 1000). They conclude that controlling the complexity of the @lElearning
system is an important research goal. The aim of the currgpémis to provide a way
of controlling this complexity while having a small empaicerror. For that purpose, we
consider only architectures based on linear models amaddhe same reasoning as for the
definition of Support Vector Machines [1]. Defining a costdtian (section 2) and margin
for multi-label models, we focus our attention mainly on @pm@ach based on a ranking
method combined with a predictor of the size of the setsi@e&and 4). Sections 5 and
6 present experiments on a toy problem and on a real dataset.

2 Cost functions

Let X = R? be a d-dimensional input space. We consider as an outpu¢ shacspace
Y formed by all the sets of integer between 1 apddentified here as the labels of the



learning problem. Such an output space contafhglements and one output corresponds
to one set of labels. The learning problem we are interestesto find from a learning set

S ={(z1,Y1),-, (@m, Ym)} C (X xY)™, drawn identically and independently from
an unknown distributiorD, a functionf such that the following generalization error is as
low as possible:

R(f) = E(LY)ND [C(f, €T, Y)] (1)
The functiorce is a real-valued loss and can take different forms deperatirtipow f () is
computed. Here, we consider only linear models. Giggevectorsw; , . .., wg andQ bias
bi,...,bg, we follow two schemes:

Wth the binary approach: f () = sign({(wy,z) + by, ..., {wg,z) + bg), where the sign
function applies component-wise. The valuef¢f) is a binary vector from which the set
of labels can be retrieved easily by stating that l&kislin the set iff sigf{wy,, ) +by) > 0.
For example this can be achieved by using a SVM for each bipianylem and applying
the latter rule [4].

With the ranking approach: assume that(x), the size of the label set for the input is
known. We definer, (z) = (wy, ) + by and consider that a labglis in the label set of;
iff 7 (z) is among the largest(z) elementgr; (x), ..,rg(x)). The algorithm Boostexter
[7] is an example of such a system. The ranking approach iyzethmore precisely in
section 3.

We consider the same loss functions as in [7] for any muftelasystem built from real
functions(f1, .., fo). Itincludes the so-calledamming Loss defined as

HL(f.2.¥) = 5 @AY]

whereA stands for the symmetric difference of sets. Wiign = 1 a multi-label sys-
tem is in fact a multi-class one and the Hamming Los%id;imes the loss of the usual
classification loss. We also consider tiree-error:

_ [0 ifargmax, fi(z) € Y
L-entf,z,Y) = {1 otherwise
which is exactly the same as the classification error foriruldiss problems (it ignores the
rankings apart from the highest ranked one and so does ngsdidhe quality of the other
labels).

Other losses concern only ranking systems (a system theifisgea ranking but no set size
predictors(z)). Let us denote by the complementary set &f in {1, .., Q}. We define
theRanking Loss [7] to be:

RL(f,z,Y) = )€Y x Y s.tri(z) <rj (a:)‘ 2)

1
oo (6:d)
vy
It represents the average fraction of pairs that are noectlyrordered. For ranking sys-

tems, this loss is natural and is related to pinecision which is a common error measure
in Information Retrieval:

precisionf, z, Y) = 1‘ 3 7 {l € Y sit.r(x) > ri(2)}]

Y| e{1,.,Q}str(z) > re(a)}]

from which a loss can be directly deduced. All these losstione have been discussed
in [7]. Good systems should have a high precision and a low rHisgn or Ranking Loss.
We do not consider the one-error to be a good loss for mdtllaystems but we retain it
because it was measured in [7].

keY



For multi-label linear models, we need to define a way of miring the empirical error
measured by the appropriate loss and at the same time tootdmrcomplexity of the
resulting model. A direct method would be to use the binagyragch and thus take the
benefit of good two-class systems. However, as it has besadran [5, 7], the binary
approach does not take into account the correlation betadefs and therefore does not
capture the structure of some learning problems. We propeseto instead focus on the
ranking approach. This will be done by introducing notiofisnargin and regularization
as has been done for the two-class case in the definition ofsSVM

3 Ranking based system

Our goal is to define a linear model that minimizes the Rankings while having a large
margin. For systems that rank the values®f,, z) + b, the decision boundaries far
are defined by the hyperplanes whose equationgw@are- w;, z) + by — by = 0, wherek
belongs to the label sets ofand/ does not. So, the margin @f, Y) can be expressed as:
. (wr, — wy,x) + b, — by
min
kEY IEY llwr, — wil|

It represents the signed distance ofi: to the decision boundary. Considering that all the
data in the learning s&t are well ranked, we can normalize the parameigrsuch that:

(wp —wi,x)y + b — b > 1
with equality for somer € S, and(k,1) € Y x Y. Maximizing the margin on the whole
learning set can then be done via the following problem:

. . _ 1
w]‘;iaf)f.@ M (2, Y)es ML eY 1€ Y Ty — w2 3)
subjectto: (wg —wy,z;) +bp — b > 1, (k1) €Y; xY; (4)

In the case where the problem is not ill-conditioned (twcelalare always co-occurring),
the objective function can be replaced byax,,; ming m = min,,, maxy, ||wi—

wy||?. In order to get a simpler optimization procedure we apprate this maximum by
the sum and, after some calculations (see [3] for details)phtain:

Q
min well? .
w5 j=1,0,Q I;H kl )
subject to: (wy, — wy, z;) + b —b > 1, (k1) € Y; x Y, ©6)

To generalize this problem in the case where the learningssehot be ranked exactly we
follow the same reasoning as for the binary case: the ulérgatl would be to maximize

the margin and at the same time to minimize the Ranking Ldss.|&tter can be expressed
quite directly by extending the constraints of the previpusblems. Indeed, if we have
(wg — wy, ;) + b, — by > 1 — &y for (k,1) € Y; x Yy, then the Ranking Loss on the

learning sefS is:

kle(Y:xY;)

whered is the Heaviside funct|0n. As for SVMs we approximate thectionsf(—1+ &;x;)
by only &, and this gives the final quadratic optimization problem:

rnln Z l|lw])? + C'Z Y, HY ‘ Z Eikl @)

wj,j=1,..,Q
eY; xY;
subjectto: (wy —wy,x;) +bp — b >1— fikl, (k,1)eY; xY; (8)
&t >0 )



In the case where the label s&fs all have a size of we find the same optimization prob-
lem as has been derived for multi-class Support Vector Me=hj8]. For this reason, we
call the solution of this problem a ranking Support Vectorddime (Rank-SVM). Another

common property with SVM is the possibility to use kernelthea than linear dot prod-

ucts. This can be achieved by computing the dual of the foop#mization problem. We

refer the reader to [3] for the dual formluation and to [2] aaferences therein for more
information about kernels and SVMs.

Solving a constrained quadratic problem like those we jutsbduced requires an amount
of memory that is quadratic in terms of the learning set simtitiis generally solved in
O(m?) computational steps where we have put into ¢héhe number of labels. Such a
complexity is too high to apply these methods in many reaskts. To circumvent this lim-
itation, we propose to use a linearization method in cortjonavith a predictor-corrector
logarithmic barrier procedure. Details are described Jm{igh all the calculations relative
to the implementation. The memory cost of the method thenmesO (mQQ ... ) where
Qma: = max;|Y;| is the maximum number of labels. In many applicatighss much
larger than®,,.... The time cost of each iteration 3(m?Q).

4 Set size prediction

So far we have only developed ranking systems. To obtain paenmulti-label system
we need to design a set size predict@r). A natural way of doing this is to look for
inspiration from the binary approach. The latter can indeednterpreted as a ranking
system whose ranks are derived from the real valifes., fo). The predictor of the set
size is then quite simplei(z) = |{fr(z) > 0}] is the number of;, that are greater thah
The functions(z) is computed from a threshold value that differentiateslkinethe target
set from others. For the ranking system introduced in theipus section we generalize
this idea by designing a functioriz) = |{fx(x) > t(x)}|. The remaining problem now
is to choosei(z) which is done by solving a learning problem. The trainingadate
composed by théfi (z;), .., fo(z:)) given by the ranking system, and by the target values
defined by:

t(z;) = argmin [{k € Y s.t. fir(z;) <t} + [{k € Y s.t. f(z;) > t}]

When the minimum is not unique and the optimal values are msag we choose the
middle of this segment. We refer to this method of predictimgyset size as thibreshold
based method. In the following, we have used linear least squaned,we applied it not
only to Rank-SVM but also to Boostexter in order to transfdimase algorithms from
ranking methods to multi-label ones.

Note that we could have followed a much simpler scheme tallthi¢ functions(z). A
naive method would be to consider the set size predictionragr@ssion problem on the
original training data with the target$Y;|);=1,..» and to use any regression learning
system. This however does not provide a satisfactory swiutiainly because it does not
take into account how the ranking is performed. In particué&en there are some errors in
the ranking, it does not learn how to compensate these aitbieugh the threshold based
approach tries to learn the best threshold with respecetsetirrors.

5 Toy problem

As previously noticed the binary approach is not approefiiat problems where correla-
tion between labels exist. To illustrate this point consfifure 2. There are only three la-
bels. One of them (labé)) is present for all points in the learning set. The binaryrapph
leads to a system that will fail to separate, for instancé&tpavith label3 from points of



label sets not containingy that is, on points of labdl and2. We see then that the express-
ible power of a binary system can be quite low when simple gonditions occur. If we
consider the ranking approach, one can imagine the follgwoitution:w; = 0, b; = oo,
(w2, be) is the hyperplane separating class 2 from class 3,(andbs) = — (w2, b2). By
taking the number of labels at pointto bes(z) = (w,z) + b wherew = (—1,1) and

b = 0, we have a simple multi-label system that separates alkiiens exactly.

Figure 2: Three labels and three
regions in the input space. The upper
left region is labelled with1l. The
bottom right region is partitioned into
two sub-regions with labelk 2 or 1, 3.

To make this point more concrete we samplégoints uniformly on0, 1]2 and solved all
optimization problems witl’ = co. On the learning set the Hamming Loss for the binary
approach wa#8.08 although for the direct approach it wass expected.

6 Experiments on real data

Yeast

Saccharomyces cerevisiae
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Figure 3: First level of the hierarchy of the gene functioclakses. There are 14 groups.
One gene, for instance the gene YALO41W can belong to diftegeoups (shaded in grey
on the figure).

The Yeast dataset is formed by micro-array expression dath mnylogenetic pro-
files with 1500 genes in the learning set and 917 in the test Jdte input dimen-
sion is 103. Each gene is associated with a set of functional classesevhmax-
imum size can be potentially more tha®0. This dataset has already been ana-
lyzed with a two-class approach [6] and is known to be difficuln order to make

it easier, we used the known structure of the functionalselas The whole set of
classes is indeed structured in a tree whose leaves are tlctiofual categories (see
http://m ps. gsf.de/ proj/yeast/catal ogues/funcat/ for more details). Given

a gene, knowing which edge to take from one level to anotteetdalirectly to a leaf and



thus to a functional class. Here we try to predict which edgtake from the root to the
first level of the tree (see figure 3).

Since one gene can have many functional classes this is alahédt problem: one gene is
associated to different edges. We then h@ve: 14 and the average number of labels for
all genes in the learning set4s2 + 1.6. We assessed the quality of our method from two
perspectives. First as a ranking system with the Ranking laosl the precision. In that
case, for the binary approach, the real outputs of the taescEVMs were used as ranking
values. Second, the methods were compared as multi-lab&lmyg using the Hamming
Loss. We computed the latter for the binary approach usednjuaction with SVMs, for
the Rank-SVM and for Boostexter. To measure the Hamming withBoostexter we used

a threshold based ) function in combination with the ranking given by the algom.

Rank-SVM Binary-SVM
degree 2 | 3 ] 4 1 5 2 | 31 41 5
Precision 0.703 | 0.740 | 0.746 | 0.762 || 0.692 | 0.721 | 0.714 | 0.753
Ranking Loss || 0.227 | 0.191 | 0.190 | 0.175 || 0.241 | 0.212 | 0.196 | 0.184
Hamming Loss|| 0.238 | 0.217 | 0.209 | 0.201 || 0.247 | 0.224 | 0.211 | 0.207
one-error 0.334 | 0.262 | 0.255 | 0.232 || 0.341 | 0.306 | 0.267 | 0.250

Figure 4: Polynomials of degree 2-5. Loss functions for tekrSVM and the binary
approach based on two-class SVMs. Considering the sizeegirtbblem, two values dif-
ferent from less tha.01 are not significantly different. Bold values represent sigpe
performance comparing classifiers with the same kernel.

For rank-SVMs and for two-class SVMs in the binary approaechioose polynomial

kernels of degrees two to nine (experiments on two-cladsl@nts using the Yeast data in
[6] already showed that polynomial kernels were approeffiat this task). Boostexter was
used with the standard stump weak learner and was stoppdL8f0 iterations. Results
are reported in tables 4, 5 and 6.

Rank-SVM Binary-SVM
degree 6 [ 7 ] 8 | 9 6 | 7 ] 8 ] 9
Precision 0.765 | 0.770 | 0.773 | 0.769 0.760 | 0.765 | 0.770 0.769
Ranking Loss || 0.170 | 0.166 | 0.163 | 0.163 || 0.176 | 0.170 | 0.165 | 0.164
Hamming Loss|| 0.199 | 0.198 | 0.196 | 0.197 || 0.200 | 0.199 | 0.195 | 0.195
one-error 0.232 | 0.223 | 0.217 | 0.225 || 0.232 | 0.227 | 0.218 0.226

Figure 5: Polynomials of degree 6-9. Loss functions for tekrSVM and the binary
approach based on two-class SVMs. Considering the sizeegirtbblem, two values dif-
ferent from less than.01 are not significantly different. Bold values represent sigqre
performance comparing classifiers with the same kernel.

| || Boostexter (1000 iterations)

Precision 0.717
Ranking Loss 0.298
Hamming Loss 0.237
one-error 0.302

Figure 6: Loss functions for Boostexter. Note that theseltesire worse than with the
binary approach or with rank-SVM.

Note that Boostexter performs quite poorly on this datasetgared to SVM-based ap-
proaches. This may be due to the simple decision functidizeshby Boostexter. One



of the main advantages of the SVM-based approaches is tliy &biincorporate priori
knowledge into the kernel and control complexity via thenledrand regularization. We
believe this may also be possible with Boostexter but we at@aware of any work in this
area.

To compare the binary and the rank-SVM we put in bold the bestlts for each kernel.
For all kernels and for almost all losses, the combinatiokireg based SVM approach is
better than the binary one. In terms of the Ranking Loss, ifierénce is significantly in
favor of the rank-SVM. It is consistent with the fact thatstBiystem tends to minimize this
particular loss function. It is worth noticing that when tkernel becomes more and more
complex the difference between rank-SVM and the binary ogkthisappears.

7 Discussion and conclusion

In this paper we have defined a whole system to deal with rfabi#f problems. The main
contribution is the definition of a ranking based SVM thateexts the use of the latter to
many problems in the area of Bioinformatics and Text Mining.

We have seen on complex, real data that rank-SVMs lead terlpettformance than Boost-
exter and the binary approach. On its own this could be inééed as a sufficient argument
to motivate the use of such a system. However, we can alsodxite rank-SVM sys-
tem to perform feature selection on ranking problems [3] isEpplication can be very
useful in the field of bioinformatics as one is often inteeesn interpretability of a multi-
label decision rule. For example one could be interestedsmall set of genes which is
discriminative in a multi-condition physical disorder.

We have presented only first experiments using multi-labledlystems applied to Bioinfor-
matics. Our future work is to conduct more investigationthis area.
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