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Maximum Margin Partial Label Learning

Fei Yu · Min-Ling Zhang

Abstract Partial label learning aims to learn from training examples each associated with
a set of candidate labels, among which only one label is valid for the training example.
The basic strategy to learn from partial label examples is disambiguation, i.e. by trying to
recover the ground-truth labeling information from the candidate label set. As one of the
popular machine learning paradigms, maximum margin techniques have been employed
to solve the partial label learning problem. Existing attempts perform disambiguation by
optimizing the margin between the maximum modeling output from candidate labels and
that from non-candidate ones. Nonetheless, this formulation ignores considering the margin
between the ground-truth label and other candidate labels. In this paper, a new maximum
margin formulation for partial label learning is proposed which directly optimizes the margin
between the ground-truth label and all other labels. Specifically, the predictive model is
learned via an alternating optimization procedure which coordinates the task of ground-truth
label identification and margin maximization iteratively. Extensive experiments on artificial
as well as real-world datasets show that the proposed approach is highly competitive to other
well-established partial label learning approaches.

Keywords Partial label learning · Candidate label · Disambiguation · Maximum margin

1 Introduction

Partial label learning deals with the problem where each training example is associated with
a set of candidate labels, among which only one label is valid (Cour et al, 2011; Zhang,
2014). In recent years, partial label learning techniques have been found useful in solving
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many real-world scenarios such as web mining (Jie and Orabona, 2010), multimedia content
analysis (Cour et al, 2009; Zeng et al, 2013), ecoinformatics (Liu and Dietterich, 2012), etc.

Formally speaking, let X = Rd be the d-dimensional instance space and Y = {1, 2, . . . ,
q} be the label space with q class labels. Given the partial label training set D = {(xi, Si) |
1 ≤ i ≤ m}, the task of partial label learning is to induce a multi-class classifier f : X 7→ Y
from D. Here, xi ∈ X is a d-dimensional feature vector (xi1, xi2, . . . , xid)

⊤ and Si ⊆ Y
is the associated candidate label set. Partial label learning takes the core assumption that the
ground-truth label yi of xi resides in its candidate label set Si and not directly accessible to
the learning algorithm.1

Intuitively, the basic strategy for handling partial label learning problem is disambigua-
tion, i.e. trying to identify the ground-truth label from the candidate label set associated
with each training example. As one of the popular machine learning techniques, maximum
margin criterion has been applied to learn from partial label examples. Specifically, ex-
isting attempts disambiguate the partial label training example by optimizing the margin
between the maximum modeling output from its candidate labels and that from its non-
candidate labels (Nguyen and Caruana, 2008). In other words, given the parametric mod-
el with parameters Θ and xi’s modeling output F (xi, y;Θ) on each class label y ∈ Y ,
the existing formulation works by maximizing the following predictive difference over xi:
maxyj∈Si

F (xi, yj ;Θ) − maxyk /∈Si
F (xi, yk;Θ). Nonetheless, this formulation fails to

consider the predictive difference between the ground-truth label (i.e. yi) and other labels in
the candidate label set (i.e. Si \ {yi}). Due to the ignorance of such discriminative proper-
ties, the generalization performance of the resulting maximum margin partial label learning
approach might be suboptimal.

Essentially, the task of partial label learning is to induce a multi-class classifier f : X 7→
Y . Therefore, the canonical multi-class margin, i.e. F (xi, yi;Θ)−maxỹi ̸=yi

F (xi, ỹi;Θ),
should be a natural choice to learn from partial label examples. In this way, the modeling out-
put from the ground-truth label is distinguished with those from all the other labels. In view
of this observation, a new maximum margin partial label learning approach named M3PL,
i.e. MaxiMum Margin Partial Label learning, is proposed in this paper. Evidently, the ma-
jor challenge in making use of the multi-class margin for partial label training examples
lies in that the ground-truth labeling information is not accessible to the learning algorith-
m. To overcome this difficulty, an iterative optimization procedure is employed by M3PL
which alternates between the task of identifying the ground-truth label and maximizing the
multi-class margin. Comprehensive comparative studies against state-of-the-art partial label
learning approaches clearly validate the effectiveness of the proposed formulation.

The remainder of this paper is organized as follows. Section 2 briefly discusses related
work on partial label learning. Section 3 introduces technical details of the proposed M3PL
approach. Section 4 reports experimental results across a broad range of datasets. Finally,
Section 5 summarizes the paper and indicates several future research issues.

2 Related Work

As the labeling information conveyed by each partial label training example is ambiguous,
partial label learning can be regarded as one of the weakly-supervised learning frameworks.

1 In some of the literature the framework of partial label learning is also termed as ambiguous label
learning (Hüllermeier and Beringer, 2006; Chen et al, 2014), soft label learning (Côme et al, 2008), or
superset label learning (Liu and Dietterich, 2014). In addition, there are studies which admit cases where the
ground-truth label is not confined with the candidate label set (Cid-Sueiro, 2012).
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Conceptually speaking, it situates between the two ends of the supervision spectrum, i.e.
standard supervised learning with explicit supervision and unsupervised learning with blind
supervision. Learning with weak supervision has found wide application in solving various
learning tasks as it is generally hard to obtain explicit and sufficient supervision informa-
tion in real-world scenarios (Pfahringer, 2012). In particular, partial label learning is related
to several well-studied weakly-supervised learning frameworks, including semi-supervised
learning, multi-instance learning and multi-label learning, while the weak supervision sce-
nario considered by partial label learning is different to those counterpart frameworks.

Semi-supervised learning (Chapelle et al, 2006; Zhu and Goldberg, 2009) aims to induce
a classifier f : X 7→ Y from few labeled training examples along with abundant unlabeled
training examples. For an unlabeled example the ground-truth label assumes the whole label
space, while for a partial label example the ground-truth label is confined within its candidate
label set. Multi-instance learning (Dietterich et al, 1997; Amores, 2013) aims to induce
a classifier f : 2X 7→ Y from training examples each represented as a labeled bag of
instances. For a multi-instance example the label is assigned to bag of instances, while for a
partial label example the label is assigned to single instance. Multi-label learning (Zhang and
Zhou, 2014; Gibaja and Ventura, 2015) aims to learn a classifier f : X 7→ 2Y from training
examples each associated with multiple labels. For a multi-label example the associated
labels are all valid ones, while for a partial label example the associated labels are only
candidate ones.

In recent years, a number of partial label learning approaches have been proposed by
adapting major machine learning techniques. Maximum likelihood techniques are intro-
duced to learn from partial label examples by maximizing the likelihood function

∑m
i=1 log

(
∑

y∈Si
F (xi, y; θ)), where EM-based optimization is performed by treating the ground-

truth label as a latent variable (Jin and Ghahramani, 2003; Liu and Dietterich, 2012). To
enable convex optimization for partial label learning, a relaxed formulation is proposed by
discriminating the average output from all candidate labels, i.e. 1

|Si|
∑

y∈Si
F (xi, y; θ), a-

gainst the outputs from non-candidate labels, i.e. F (xi, y; θ) (y /∈ Si) (Cour et al, 2011).
For instanced-based approaches, the labeling information from neighboring training exam-
ples are combined by weighted voting to make predictions for unseen instances (Hüllermeier
and Beringer, 2006; Zhang and Yu, 2015). There are also some approaches which transfor-
m the problem of partial label learning into the problem of binary classification by error-
correcting output codes (ECOC) (Zhang, 2014), the problem of sparse coding by dictionary
learning (Chen et al, 2014), or the problem of multioutput regression by manifold analysis
(Zhang et al, 2016).

Specifically, maximum margin techniques have also been employed to design partial
label learning approaches (Nguyen and Caruana, 2008). Given the parametric model Θ =
{(wp, bp) | 1 ≤ p ≤ q} with one linear classifier (wp, bp) for each class label, the existing
maximum margin partial label formulation aims to solve the following optimization problem
(OP):

OP 1: Existing Maximum Margin Formulation

min
Θ,ξ

1

2

q∑
p=1

||wp||2 + C
m∑
i=1

ξi

s.t. : max
yj∈Si

(w⊤
yj

· xi + byj )− max
yk /∈Si

(w⊤
yk

· xi + byk) ≥ 1− ξi

ξi ≥ 0 ∀i ∈ {1, 2, . . . ,m}
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Here, ξ = {ξ1, ξ2, . . . , ξm} represents the set of slack variables and C is the regular-
ization parameter. As shown in OP 1, the existing formulation focuses on distinguishing the
maximum output from candidate labels, i.e. maxyj∈Si

(w⊤
yj

·xi + byj ), with the maximum
output from non-candidate labels, i.e. maxyk /∈Si

(w⊤
yk

· xi + byk). One potential drawback
of this formulation lies in the fact that the predictive difference between the ground-truth
label and other candidate labels are not taken into account, which may lead to suboptimal
performance for the resulting partial label learning approach.

In the next section, a new maximum margin formulation towards partial label learning
is proposed, which aims to maximize the canonical multi-class margin between the ground-
truth label and all other labels in the label space.

3 The M3PL Approach

3.1 Proposed Formulation

Based on the notation given in Section 1, the training set D is composed of m partial
label examples (xi, Si) (1 ≤ i ≤ m) with xi ∈ X and Si ⊆ Y . In addition, let
y = (y1, y2, . . . , ym) be the (unknown) ground-truth label assignments for the training
examples. Following partial label learning assumption, the ground-truth label of each in-
stance xi should reside in its candidate label set Si. Therefore, the feasible solution space
of y corresponds to S = S1 × S2 × · · · × Sm.

As in common practice, M3PL assumes a maximum margin learning system with q lin-
ear classifiers Θ = {(wp, bp) | 1 ≤ p ≤ q}, one for each class label. Once the ground-truth
label assignments y = (y1, y2, . . . , ym) are fixed, M3PL proceeds to maximize the canoni-
cal multi-class margin over each instance xi, i.e.: (w⊤

yi
·xi+byi)−maxỹi ̸=yi

(w⊤
ỹi
·xi+bỹi).

By introducing slack variables ξ = {ξ1, ξ2, . . . , ξm} to accommodate margin relaxations,
the maximum margin problem considered by M3PL can be formulated as follows:

OP 2: Proposed Maximum Margin Formulation

min
y,Θ,ξ

1

2

q∑
p=1

||wp||2 + C
m∑
i=1

ξi

s.t. : (w⊤
yi

· xi + byi)− max
ỹi ̸=yi

(w⊤
ỹi

· xi + bỹi) ≥ 1− ξi

ξi ≥ 0 ∀i ∈ {1, 2, . . . ,m}
y ∈ S
m∑
i=1

I(yi = p) = np ∀p ∈ {1, 2, . . . , q}

As shown in OP 2, the first two constraints enforce the maximum margin criterion over
each training example. In addition, the third constraint enforces that the ground-truth label
assignment y should take values within the feasible solution space S. The fourth constraint,
i.e.

∑m
i=1 I(yi = p) = np, serves as an extra enforcement on y reflecting its compatibility

with the prior class distribution.2 Intuitively, np represents the prior number of examples
which take the p-th class label in Y as their ground-truth label.

2 I(a) is an indicator function which returns 1 if predicate a is true, and 0 otherwise.
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By sharing equal labeling confidence 1
|Si| among each candidate label in Si, the prior

number can be roughly estimated as:

n̂p =
m∑
i=1

I(p ∈ Si) ·
1

|Si|
(1)

Obviously,
∑q

p=1 n̂p = m holds. Furthermore, let ⌊n̂p⌋ be the integer part of n̂p and r =
m−

∑q
p=1⌊n̂p⌋ be the corresponding residual number w.r.t. the rounding operation. Then,

the integer value np for the fourth constraint is set as:

np =

{
⌊n̂p⌋+ 1 if p is among the r class labels with least n̂p values

⌊n̂p⌋ otherwise
(2)

Accordingly,
∑q

p=1 np = m still holds.
Note that OP 2 corresponds to an optimization problem involving mixed-type variables

(i.e. integer variables y and real-valued variables Θ), whose values are difficult to be opti-
mized simultaneously. In the following subsection, an alternating optimization procedure is
employed to update y and Θ in an iterative manner.

3.2 Alternating Optimization

3.2.1 Fix y, Update Θ

By fixing the ground-truth label assignments y = (y1, y2, . . . , ym), OP 2 turns out to be
the following optimization problem:

OP 3: Classification Model Optimization

min
Θ,ξ

1

2

q∑
p=1

||wp||2 + C
m∑
i=1

ξi

s.t. : (w⊤
yi

· xi + byi)− max
ỹi ̸=yi

(w⊤
ỹi

· xi + bỹi) ≥ 1− ξi

ξi ≥ 0 ∀i ∈ {1, 2, . . . ,m}

As shown in OP 3, the resulting optimization problem coincides with the well-studied
single-label multi-class maximum margin formulation (Crammer and Singer, 2001; Hsu and
Lin, 2002). Therefore, OP 3 can be readily solved by utilizing any off-the-shelf implemen-
tation on multi-class SVM (Fan et al, 2008).

3.2.2 Fix Θ, Update y

By fixing the classification model Θ = {(wp, bp) | 1 ≤ p ≤ q}, OP 2 turns out to be the
following optimization problem:
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OP 4: Ground-truth Label Assignment Optimization (Version 1)

min
y,ξ

m∑
i=1

ξi

s.t. : ξi ≥ 1− ηyi

i

ξi ≥ 0 ∀i ∈ {1, 2, . . . ,m}
y ∈ S
m∑
i=1

I(yi = p) = np ∀p ∈ {1, 2, . . . , q}

Here, ηyi

i represents the multi-class margin on xi by taking yi as its ground-truth label, i.e.:

ηyi

i = (w⊤
yi

· xi + byi)− max
ỹi ̸=yi

(w⊤
ỹi

· xi + bỹi) (3)

By setting ξi = max(0, 1 − ηyi

i ) according to the first two constraints, OP 4 can be re-
written in the following form:

OP 5: Ground-truth Label Assignment Optimization (Version 2)

min
y

m∑
i=1

max(0, 1− ηyi

i )

s.t. : y ∈ S
m∑
i=1

I(yi = p) = np ∀p ∈ {1, 2, . . . , q}

Let Z = [zpi]q×m be the binary-valued labeling matrix for training examples, where
zpi = 1 indicates that the p-th class label in Y is the ground-truth label for xi. Accordingly,
set the coefficient matrix C = [cpi]q×m as follows:

∀1 ≤ p ≤ q, 1 ≤ i ≤ m : cpi =

{
max(0, 1− ηpi ) if p ∈ Si

M otherwise
(4)

Here, M is a user-specified large constant so that the learning algorithm can refrain from as-
signing ground-truth labels outside the candidate label set.3 Based on the above definitions,
OP 5 can be re-written in the following form:

OP 6: Ground-truth Label Assignment Optimization (Version 3)

min
Z

q∑
p=1

m∑
i=1

cpi · zpi

s.t. :

q∑
p=1

zpi = 1 ∀i ∈ {1, 2, . . . ,m}

m∑
i=1

zpi = np ∀p ∈ {1, 2, . . . , q}

zpi ∈ {0, 1}
3 In this paper, M is set to be 105.
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Here, the first constraint
∑q

p=1 zpi = 1 ensures that each training example has a unique
ground-truth label. In addition, the second constraint

∑m
i=1 zpi = np enforces the constraint

w.r.t. the prior class distribution.
Note that OP 6 corresponds to a binary integer programming (BIP) problem, which is

generally NP-hard to solve. Nonetheless, it is interesting that OP 6 actually falls into a spe-
cial case of BIP where the constraint matrix is totally unimodular (TU) and the right-hand
sides of the constraints are integers. To show this, let z = [z11, . . . , zq1, . . . , z1m, . . . , zqm]⊤

denote the vector formed by sequentially concatenating each column of Z. According to OP
6, the set of constraints

∑q
p=1 zpi = 1 (∀q ∈ {1, 2, . . . ,m}) and

∑m
i=1 zpi = np (∀p ∈

{1, 2, . . . , q}) can be expressed in the following form:

Az = s (5)

Here, A ∈ R(m+q)×mq is the constraint matrix which corresponds to the concatenation
of two matrices B ∈ Rm×mq and C ∈ Rq×mq , i.e. A = [B⊤,C⊤]⊤. Specifically,
entries of the matrices B = [bij ]m×mq , C = [cij ]q×mq and the right-hand side vector
s = [s1, s2, . . . , sm+q]

⊤ are set as:

∀1 ≤ i ≤ m, 1 ≤ j ≤ mq : bij =

{
1, if j ∈ [(i− 1) ·m+ 1, i ·m]

0, otherwise
(6)

∀1 ≤ i ≤ q, 1 ≤ j ≤ mq : cij =

{
1, if j mod m = i− 1

0, otherwise

∀1 ≤ i ≤ m+ q : si =

{
1, if i ∈ [1,m]

ni−m, if i ∈ [m+ 1,m+ q]

To show that the constraint matrix A is TU, it suffices to show that A satisfies the following
four conditions (Heller and Tompkins, 1956):

1. Each column of A contains at most two non-zero entries;
2. Every entry in A takes value of 0, 1 or -1;
3. If two non-zero entries in a column of A have the same sign, then the row of one entry

is in B and the row of another entry is in C;
4. If two non-zero entries in a column of A have opposite sign, then the rows of both

entries are either in B or in C.

As defined in Eq.(6), for both matrices B and C, every entry takes a value of 0 or 1 and each
column contains a unique non-zero entry. Therefore, it is not difficult to show that all four
TU conditions hold for the constraint matrix A. Furthermore, the right-hand-side vector of
Eq.(5) contain integer entries according to the definition of Eq.(6).

Based on the properties of A being TU and s being integer-valued, the original BIP
problem of OP 6 can be equivalently solved in its linear programming (LP) relaxation form
by replacing the integer constraint zpi ∈ {0, 1} with the weaker interval constraint zpi ∈
[0, 1] (Papadimitriou and Steiglitz, 1998):
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OP 7: Ground-truth Label Assignment Optimization (Version 4)

min
Z

q∑
p=1

m∑
i=1

cpi · zpi

s.t. :

q∑
p=1

zpi = 1 ∀i ∈ {1, 2, . . . ,m}

m∑
i=1

zpi = np ∀p ∈ {1, 2, . . . , q}

0 ≤ zpi ≤ 1

Thereafter, a solution to the relaxation problem OP 7 can be efficiently found by em-
ploying standard LP solvers such as the simplex algorithm or the interior point algorithm
(Boyd and Vandenberghe, 2004).

3.3 Iterative Implementation

To initialize the alternating optimization procedure, M3PL sets the initial coefficient matrix
C by consulting the candidate label sets:

∀1 ≤ p ≤ q, 1 ≤ i ≤ m : cpi =

{
1

|Si| if p ∈ Si

M otherwise
(7)

By solving OP 7 based on initialized coefficients, the ground-truth label assignment y =
(y1, y2, . . . , ym) would be yi = argmax1≤p≤q zpi. Then, the classification model Θ is
updated by solving OP 3 and the alternating optimization procedure iterates. After every
round of alternating update, the iteration procedure will terminate once the objective func-
tion value in OP 2 decreases less than δ.

Other than fixing the value for the regularization parameter C, M3PL chooses to grad-
ually increase the value of C within an outer annealing loop. A similar strategy has been
used in solving other weakly-supervised learning problems (Joachims, 1999; Chapelle et al,
2008) to reduce the risk of getting stuck with a local minimum solution.

Algorithm 1 summarizes the complete procedure of M3PL.4 Given the partial label
training set, M3PL firstly initializes the regularization parameter C and the ground-truth
label assignment (Steps 1-3). After that, the classification model and ground-truth label as-
signment are alternatively optimized until convergence (Steps 7-13). An outer loop is used to
gradually increase the value of C by a factor of 1+∆ (Step 5). Finally, the unseen instance is
classified based on the learned classification model (Step 15).5 In Step 9, by introducing the
kernel trick to solve the multi-class maximum margin problem OP 3 (Crammer and Singer,
2001), the resulting kernelized version of M3PL is denoted as M3PL-kernel.

Within each outer loop, it is not difficult to show that the objective function in OP
2 converges as the inner alternating optimization procedure proceeds (Steps 7-13). Let

4 Code package of the M3PL algorithm is publicly-available at http://cse.seu.edu.cn/
PersonalPage/zhangml/files/M3PL.zip

5 In this paper, OP 3 (Step 9) and OP 7 (Step 11) are implemented with the LibLinear toolbox (Fan et al,
2008) and the CVX toolbox (Grant and Boyd, 2014) respectively. Furthermore, ∆ is set to be 0.5 following
(Chapelle et al, 2008) and δ is set to be 10−4.
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Algorithm 1 The M3PL Approach
Inputs:

D: the partial label training set {(xi, Si) | 1 ≤ i ≤ m} (xi ∈ X , Si ⊆ Y)
Cmax: the maximum value for regularization parameter
x∗: the unseen instance

Outputs:
y∗: the predicted class label for x∗

Process:
1: Initialize the regularization parameter: C = 10−5 · Cmax;
2: Initialize the coefficient matrix C according to Eq.(7);
3: Solve the LP problem OP 7, and then initialize the ground-truth label assignment y with

yi = argmax1≤p≤q zpi (1 ≤ i ≤ m);
4: while C < Cmax do
5: C = min{(1 +∆)C, Cmax};
6: Initialize the objective function value in OP 2: Obj = −∞;
7: repeat
8: Objold = Obj;
9: Solve the multi-class maximum margin problem OP 3, and then update the classi-

fication model Θ;
10: Set the coefficient matrix C according to Eq.(4);
11: Solve the LP problem OP 7, and then update the ground-truth label assignment y

with yi = argmax1≤p≤q zpi (1 ≤ i ≤ m);
12: Calculate the new objective function value in OP 2: Obj = 1

2

∑q
p=1 ||wp||2 +

C
∑m

i=1 max(0, 1− ηyi

i );
13: until Objold −Obj < δ
14: end while
15: return y∗ = argmaxp∈Y w⊤

p · x∗ + bp;

f(Θ(t),y(t)) denote the value of the objective function at the t-th iteration, it suffices
to prove the convergence of the objective function if f(·, ·) is bounded below and non-
increasing as t increases. On the one hand, as shown in OP 2, f(Θ,y) = 1

2

∑q
p=1 ||wp||2+

C
∑m

i=1 max(0, 1−ηyi

i ) with ηyi

i = (w⊤
yi
·xi+byi)−maxỹi ̸=yi

(w⊤
ỹi
·xi+bỹi). Therefore,

the property of being bounded below naturally holds with f(Θ,y) ≥ 0. On the other hand,
solving the first alternating optimization problem (OP 3; Step 9) leads to f(Θ(t),y(t)) ≥
f(Θ(t+1),y(t)), and solving the second alternating optimization problem (OP 7; Steps 10-
11) leads to f(Θ(t+1),y(t)) ≥ f(Θ(t+1),y(t+1)). Therefore, the property of being non-
increasing naturally holds with f(Θ(t),y(t)) ≥ f(Θ(t+1),y(t)) ≥ f(Θ(t+1),y(t+1)).

It is obvious that the proposed M3PL approach coincides with the existing maximum
margin formulation (Nguyen and Caruana, 2008) if the size of the candidate label set shrinks
to 1. Correspondingly, iterative optimization has also been employed by a number of partial
label learning approaches for disambiguating the candidate label set (Jin and Ghahramani,
2003; Nguyen and Caruana, 2008; Liu and Dietterich, 2012; Chen et al, 2014). As shown
in Eq.(4), a parameter M is utilized such that OP 6 (or equivalently OP 5) can be solved
by restricting the assigned label only in the candidate label set. This restriction ensures the
validity of the ground-truth label assignments y which will be fixed as constants for solving
OP 3.
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Table 1 Characteristics of the experimental datasets.

Controlled UCI Datasets
Configurations

Dataset #Examples #Features #Class Labels
glass 214 10 5 (I) r = 1, p ∈ {0.1, 0.2, . . . 0.7}
ecoli 336 7 8 (II) r = 2, p ∈ {0.1, 0.2, . . . 0.7}

dermatology 364 23 6 (III) r = 3, p ∈ {0.1, 0.2, . . . 0.7}
vehicle 846 18 4 (IV) p = 1, r = 1, ϵ ∈ {0.1, 0.2, . . . 0.7}

segment 2310 18 7
satimage 6435 36 7

Real-World Datasets

Dataset # Examples # Features # Class Labels avg. #CLs Domain
FG-NET 1002 262 78 7.48 facial age estimation

Lost 1122 108 16 2.23 automatic face naming
MSRCv2 1758 48 23 3.16 object classification
BirdSong 4998 38 13 2.18 bird song classification

Soccer Player 17472 279 171 2.09 automatic face naming
Yahoo! News 22991 163 219 1.91 automatic face naming

4 Experiment

4.1 Experimental Setup

In this section, two series of experiments are conducted to evaluate the performance of
M3PL, with one series on controlled UCI datasets (Bache and Lichman, 2013) and the other
on real-world partial label datasets. Table 1 summarizes characteristics of the employed
datasets.

Following the widely-used controlling protocol over multi-class UCI datasets (Cour
et al, 2011; Chen et al, 2014; Liu and Dietterich, 2012; Zhang, 2014), an artificial partial
label dataset can be generated under different configurations of three controlling param-
eters p, r and ϵ. Here, p controls the proportion of examples which are partially labeled
(i.e. |Si| > 1), r controls the number of false positive labels in the candidate label set (i.e.
|Si| = r + 1), and ϵ controls the co-occurring probability between one coupling candidate
label and the ground-truth label. As shown in Table 1, a total of 28 (4x7) configurations are
considered for each of the six UCI datasets.

The real-world partial label datasets are collected from several task domains, such as
facial age estimation including FG-NET (Panis and Lanitis, 2015), automatic face naming
including Lost (Cour et al, 2011), Soccer Player (Zeng et al, 2013), Yahoo! News
(Guillaumin et al, 2010), bird song classification including BirdSong (Briggs et al, 2012),
and object classification including MSRCv2 (Liu and Dietterich, 2012).6 For the task of
facial age estimation, human faces with landmarks are represented as instances while ages
annotated by ten crowdsourced labelers together with the ground-truth age are regarded
as candidate labels. For the task of automatic face naming, faces cropped from an image or
video frame are represented as instances while names extracted from the associated captions
or subtitles are regarded as candidate labels. For the task of bird song classification, singing

6 These datasets are publicly-available at: http://cse.seu.edu.cn/PersonalPage/
zhangml/Resources.htm#partial_data
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Fig. 1 Classification accuracy of each comparing algorithm changes as p (proportion of partially labeled
example) increases from 0.1 to 0.7 (r = 1).

syllables of the birds are represented as instances while bird species jointly singing during a
10-second period are regarded as candidate labels. For the task of object classification, image
segmentations are represented as instances while objects appearing within the same image
are regarded as candidate labels. As shown in Table 1, the average number of candidate
labels (avg. #CLs) for each real-world partial label dataset is also recorded.

Four well-established partial label learning approaches are employed for comparative
studies, each implemented with parameter setup as suggested in the respective literature:

– An existing maximum margin partial label learning approach named PL-SVM (Nguyen
and Caruana, 2008) [suggested setup: regularization parameter pool with {10−3, . . . , 103}]
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Fig. 2 Classification accuracy of each comparing algorithm changes as p (proportion of partially labeled
example) increases from 0.1 to 0.7 (r = 2).

as well as its kernelized version named PL-SVM-kernel [suggested setup: polynomial
kernel and degree pool with {1, . . . , 5}].

– The k-nearest neighbor partial label learning approach named PL-KNN (Hüllermeier
and Beringer, 2006) [suggested setup: k=10].

– The convex optimization partial label learning approach named CLPL (Cour et al, 2011)
[suggested setup: SVM with squared hinge loss].
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Fig. 3 Classification accuracy of each comparing algorithm changes as p (proportion of partially labeled
example) increases from 0.1 to 0.7 (r = 3).

– The maximum likelihood partial label learning algorithm named LSB-CMM (Liu and
Dietterich, 2012) [suggested setup: q mixture components].

For PL-SVM and LSB-CMM, both algorithms conduct disambiguation by treating the
ground-truth label as a latent variable to be iteratively refined. Specifically, PL-SVM (and
its kernelized version) works by maximizing the margin between the largest output from
candidate labels and that from non-candidate labels, while LSB-CMM works by maximiz-
ing the likelihood function over partial label training examples with EM-based optimization
over a conditional multinomial model. For PL-KNN and CLPL, both algorithms conduct
disambiguation by treating each candidate label equally to be further aggregated. Specifi-
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Fig. 4 Classification accuracy of each comparing algorithm changes as ϵ (co-occurring probability of the
coupling label) increases from 0.1 to 0.7 (p = 1, r = 1).

cally, PL-KNN works by voting among the candidate labels of each neighboring example
whose voting weight is inversely proportional to its distance from the test instance, while
CLPL works by transforming the original partial label learning problem into a binary learn-
ing problem which is then solved by conventional SVM classification.

For M3PL, the parameter Cmax is chosen among {10−2, . . . , 102} via cross-validation.
In addition, a Gaussian kernel with width parameter 1

d is used to instantiate the M3PL-
kernel. In this paper, ten-fold cross-validation is performed on each artificial as well as
real-world dataset where the mean predictive accuracies as well as standard deviations are
recorded for all comparing approaches.
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Table 2 Win/tie/loss counts (pairwise t-test at 0.05 significance level) on the classification performance of
M3PL against each comparing algorithm. In addition, multi-class SVM (MSVM) trained with ground-truth
label and its kernelized version (MSVM-kernel) are also utilized as the upper-bound baselines for reference
purposes.

M3PL against
PL-SVM PL-SVM-kernel PL-KNN CLPL LSB-CMM

r=1, varying p 14/25/3 13/15/14 7/26/9 14/27/1 6/24/12
r=2, varying p 16/22/4 16/16/10 7/34/1 14/27/1 7/19/16
r=3, varying p 17/18/7 14/18/10 7/31/4 18/19/5 7/20/15
r=1, p=1, varying ϵ 5/14/23 4/20/18 3/19/20 6/18/18 4/16/22
In Total 52/79/37 47/69/52 24/110/34 52/91/25 24/79/65

M3PL against
MSVM MSVM-kernel

r=1, varying p 0/24/18 0/13/29
r=2, varying p 0/20/22 0/9/33
r=3, varying p 0/17/25 0/9/33
r=1, p=1, varying ϵ 0/6/36 0/0/42
In Total 0/67/101 0/31/137

4.2 Experimental Result

4.2.1 Controlled UCI datasets

Figures 1 to 3 illustrate the classification accuracy of each comparing algorithm as p in-
creases from 0.1 to 0.7 with step-size 0.1 (r = 1, 2, 3). For any partial label example, its
candidate label set contains the ground-truth label along with r additional labels randomly
chosen from Y . Figure 4 illustrates the classification accuracy of each comparing algorithm
as ϵ increases from 0.1 to 0.7 with step-size 0.1 (p = 1, r = 1). For any label y ∈ Y ,
one extra label y′ ∈ Y is designated as the coupling label which co-occurs with y in the
candidate label set with probability ϵ. Otherwise, any other class label would be randomly
chosen to co-occur with y.

As shown in Figures 1 to 4, in most cases, M3PL and its kernelized version achieve
competitive performance against the comparing algorithms. Based on pairwise t-test at 0.05
significance level, Tables 2 and 3 summarize the win/tie/loss counts of M3PL and M3PL-
kernel against the comparing algorithms respectively. Out of the 168 statistical comparisons
(28 configurations × 6 datasets), the following observations can be made:

– Compared to the existing maximum margin counterpart PL-SVM (Nguyen and Carua-
na, 2008), M3PL achieves superior or at least comparable performance in 77.9% cas-
es. Although M3PL does not perform favorably against PL-SVM-kernel, its kernelized
version M3PL-kernel achieves superior or at least comparable performance against PL-
SVM and PL-SVM-kernel in 74.4% and 85.7% cases respectively. These results indicate
the advantage of the proposed formulation against existing maximum margin partial la-
bel formulations;

– Compared to PL-KNN (Hüllermeier and Beringer, 2006), CLPL (Cour et al, 2011) and
LSB-CMM (Liu and Dietterich, 2012), M3PL achieves superior or at least comparable
performance in 79.8%, 85.1% and 61.3% cases respectively, and M3PL-kernel achieves
superior or at least comparable performance in 65.4%, 81.5% and 82.1% cases respec-
tively. These results validate the ability of M3PL in achieving state-of-the-art general-
ization performance for the partial label learning problem.
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Table 3 Win/tie/loss counts (pairwise t-test at 0.05 significance level) on the classification performance of
M3PL-kernel against each comparing algorithm. In addition, multi-class SVM (MSVM) trained with ground-
truth label and its kernelized version (MSVM-kernel) are also utilized as the upper-bound baselines for ref-
erence purposes.

M3PL-kernel against
PL-SVM PL-SVM-kernel PL-KNN CLPL LSB-CMM

r=1, varying p 25/11/6 23/17/2 11/21/10 26/10/6 26/13/3
r=2, varying p 21/12/9 14/22/6 8/23/11 19/17/6 19/17/6
r=3, varying p 22/10/10 13/24/5 10/19/13 21/15/6 14/15/13
r=1, p=1, varying ϵ 10/14/18 5/26/11 7/11/24 13/16/13 10/24/8
In Total 78/47/43 55/89/24 36/74/58 79/58/31 69/69/30

M3PL-kernel against
MSVM MSVM-kernel

r=1, varying p 11/24/7 0/20/22
r=2, varying p 6/21/15 0/8/34
r=3, varying p 4/17/21 0/6/36
r=1, p=1, varying ϵ 0/11/31 0/1/41
In Total 21/73/74 0/35/133

It is worth noting that on some controlled UCI datasets (e.g.: Figure 1, segment and
satimage), the performance of CLPL is much inferior to the comparing algorithms. One
potential reason might lie in the procedure employed by CLPL to transform the partial label
learning problem into the binary learning problem. Specifically, each partial label training
example (xi, Si) ∈ D is transformed into one positive example by aggregating all candidate
labels, and q − |Si| negative examples each for one non-candidate label. For the resulting
binary training set, the ratio between the number of negative examples and positive examples
would be q−q′, where q′ =

∑m
i=1 |Si|
m corresponds to the average number of candidate labels

in D. The corresponding binary learning problem would be highly class-imbalanced when
q is much larger than q′, which can lead to performance deterioration for the binary learning
algorithm.

In addition, multi-class SVM (MSVM) trained with ground-truth labels and its kernel-
ized version (MSVM-kernel) are also employed for comparative studies, which serve as the
upper-bound baseline for partial label learning algorithms.7 As shown in Table 2, the per-
formance of M3PL is comparable to MSVM and MSVM-kernel in 39.8% and 22.6% cases,
and inferior to them in the rest of the cases. As shown in Table 3, it is interesting that the
performance of M3PL-kernel is even superior to MSVM in a few (12.5%) cases, and is
comparable or inferior to MSVM and MSVM-kernel in the rest of the cases.

4.2.2 Real-world Datasets

Table 4 reports the performance of each comparing algorithm on the real-world partial label
datasets. Based on the results of ten-fold cross-validation, pairwise t-tests at 0.05 signifi-
cance level between M3PL and the comparing algorithms are recorded as well. Note that
the average number of candidate labels (avg. #CLs) for the FG-NET dataset (i.e. 7.48 as
shown in Table 1) is quite large, which makes the task of facial age estimation (based on
training examples with partial labels) rather challenging. Furthermore, the state-of-the-art

7 For the sake of illustration clarity, detailed results of MSVM and MSVM-kernel haven’t been depicted
in Figures 1 to 4.
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Table 4 Classification accuracy (mean±std) of each comparing algorithm on the real-world partial label
datasets. In addition, •/◦ indicates whether M3PL is statistically superior/inferior to the comparing algorithm
on each dataset (pairwise t-test at 0.05 significate level). Similarly, N/△ indicates whether M3PL-kernel is
statistically superior/inferior to the comparing algorithm. The performance of MSVM and MSVM-kernel are
also shown for reference purposes.

FG-NET FG-NET (MAE3) Lost MSRCv2
M3PL 0.061±0.020 0.344±0.032 0.767±0.043 0.521±0.030
M3PL-kernel 0.065±0.023 0.362±0.065 0.764±0.031 0.559±0.036
PL-SVM 0.065±0.024 0.386±0.050 0.729±0.040•N 0.482±0.043•
PL-SVM-kernel 0.062±0.026 0.372±0.031 0.791±0.030 0.443±0.042•N
PL-KNN 0.038±0.025•N 0.299±0.025•N 0.424±0.041•N 0.448±0.037•N
CLPL 0.063±0.027 0.456±0.038◦△ 0.742±0.038 0.413±0.039•N
LSB-CMM 0.052±0.012 0.380±0.035 0.707±0.055•N 0.456±0.031•N
MSVM 0.071±0.019 0.333±0.052 0.838±0.038◦△ 0.623±0.028◦△
MSVM-kernel 0.083±0.016 0.361±0.041 0.865±0.036◦△ 0.693±0.026◦△

BirdSong Soccer Player Yahoo! News
M3PL 0.709±0.010 0.446±0.013 0.655±0.009
M3PL-kernel 0.716±0.022 0.534±0.018 0.654±0.010
PL-SVM 0.663±0.032•N 0.443±0.014•N 0.636±0.010•N
PL-SVM-kernel 0.692±0.015 N 0.498±0.012◦N 0.630±0.010•N
PL-KNN 0.614±0.024•N 0.497±0.014◦N 0.457±0.010•N
CLPL 0.632±0.017•N 0.368±0.010•N 0.462±0.009•N
LSB-CMM 0.717±0.024 0.525±0.015◦ 0.648±0.007 N
MSVM 0.758±0.011◦△ 0.597±0.009◦△ 0.670±0.008◦△
MSVM-kernel 0.770±0.012◦△ 0.567±0.014◦△ 0.688±0.012◦△

performance on this dataset (based on training examples with ground-truth labels) corre-
sponds to more than 3 years of mean average error (MAE) between the predicted age and
the ground-truth age (Panis and Lanitis, 2015). In Table 4, one extra classification accuracy
is reported on the FG-NET dataset where an unseen example is regarded to be correctly
classified if the difference between the predicted age and the ground-truth age is less than 3
years (MAE3).

As shown in Table 4, it is impressive to observe that:

– M3PL significantly outperforms its maximum margin counterpart on all real-world dataset-
s except FG-NET and its MAE3 variant, on which both algorithms achieve comparable
performance. In terms of the kernelized version, M3PL-kernel significantly outperforms
PL-SVM-kernel on the MSRCv2, BirdSong, Soccer Player and Yahoo! News
datasets, and performs comparably on the rest of the datasets;

– Both M3PL and its kernelized version significantly outperforms PL-KNN on all dataset-
s, except on Soccer Playerwhere the performance of M3PL is inferior to PL-KNN;

– For M3PL, its performance is only inferior to CLPL and LSB-CMM on FG-NET (MAE3)
and Soccer Player respectively. For M3PL-kernel, its performance is only inferi-
or to CLPL on FG-NET (MAE3). On the other cases, both M3PL and M3PL-kernel
achieve superior or at least comparable performance against CLPL and LSB-CMM.

In addition, both M3PL and its kernelized version achieves comparable performance to
MSVM and MSVM-kernel on FG-NET and its MAE3 variant, and are inferior to MSVM
and MSVM-kernel in the rest of the cases. It is worth noting that for either M3PL or PL-
SVM, although their performance is expected to be improved by employing the kernel trick,
there are still some cases where the kernelized version achieves lower classification accura-
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Table 5 Transductive accuracy (mean±std) of each comparing algorithm on the real-world partial label
datasets. In addition, •/◦ indicates whether M3PL is statistically superior/inferior to the comparing algorithm
on each dataset (pairwise t-test at 0.05 significate level). Similarly, N/△ indicates whether M3PL-kernel is
statistically superior/inferior to the comparing algorithm.

FG-NET FG-NET (MAE3) Lost MSRCv2
M3PL 0.134±0.020 0.505±0.016 0.860±0.006 0.732±0.025
M3PL-kernel 0.144±0.006 0.580±0.020 0.803±0.015 0.699±0.031
M3PL† 0.134±0.020 0.510±0.015 0.860±0.006 0.732±0.025
M3PL-kernel† 0.144±0.006 0.580±0.020 0.794±0.011 0.681±0.031
PL-SVM 0.145±0.006 0.534±0.015◦N 0.887±0.012 △ 0.653±0.024•
PL-SVM-kernel 0.173±0.012◦△ 0.595±0.022◦ 0.901±0.020 △ 0.666±0.030•
PL-KNN 0.109±0.005•N 0.580±0.008◦ 0.615±0.036•N 0.616±0.006•N
CLPL 0.173±0.012◦△ 0.589±0.008◦ 0.894±0.005 △ 0.656±0.010•
LSB-CMM 0.162±0.006◦△ 0.564±0.012◦ 0.721±0.010•N 0.524±0.007•N

BirdSong Soccer Player Yahoo! News
M3PL 0.855±0.030 0.761±0.010 0.870±0.002
M3PL-kernel 0.816±0.010 0.705±0.010 0.841±0.002•△
M3PL† 0.861±0.048 0.766±0.009 0.881±0.002
M3PL-kernel† 0.816±0.010 0.701±0.010 0.840±0.002•△
PL-SVM 0.825±0.012• 0.688±0.014• 0.871±0.002 △
PL-SVM-kernel 0.826±0.021• 0.709±0.020• 0.845±0.002•
PL-KNN 0.772±0.021•N 0.492±0.015•N 0.692±0.010•
CLPL 0.822±0.004• 0.680±0.010• 0.834±0.002•
LSB-CMM 0.716±0.014•N 0.704±0.002•△ 0.872±0.001 △

cy. These observations indicate the necessity of kernel function selection for learning from
partial label examples.

In addition to inductive performance on unseen examples, it is also interesting to study
the transductive performance of each comparing algorithm on classifying training examples
(Cour et al, 2011). Here, for each training example (xi, Si), its ground-truth label is pre-
dicted by consulting the candidate label set, i.e.: yi = argmaxy∈Si

F (xi, y;Θ). In other
words, transductive performance of the partial label learning algorithm reflects its disam-
biguation ability in recovering ground-truth labeling information from the candidate label
set. Similar to Table 4, Table 5 reports the transductive accuracy of each comparing algorith-
m together with the outcomes of pairwise t-tests at 0.05 significance level. Furthermore, as
the training procedure of M3PL terminates, the identified ground-truth label assignment y
can be also used as the disambiguation predictions on the training examples. The resulting
transductive performance is reported in Table 5 as well (denoted as M3PL† and M3PL-
kernel†) for reference purposes.

As shown in Table 5, M3PL significantly outperforms all the other comparing algo-
rithms on the MSRCv2, BirdSong and Soccer Player datasets, and achieves superior
or at least comparable performance against other comparing algorithms on the Lost and
Yahoo! News dataset. Although the transductive performance of M3PL is not satisfacto-
ry on FG-NET and its MAE3 variant, its inductive performance on them is competitive to
the comparing algorithms in most cases. On the other hand, out of the 35 statistical tests
(7 datasets × 5 comparing algorithms), the transductive performance of M3PL-kernel† is
superior to the comparing algorithms in 9 cases, comparable in 17 cases, and inferior in
9 cases. As expected, M3PL and M3PL† (also for M3PL-kernel and M3PL-kernel†) show
similar transductive performance over each real-world dataset.
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5 Conclusion

This paper extends our earlier research on maximum margin partial label learning (Yu and
Zhang, 2015), where a new formulation of the maximum margin criterion is proposed to
learning from partial label examples. Specifically, the canonical multi-class margin is direct-
ly optimized by the proposed M3PL approach with an alternating optimization procedure.
Comprehensive comparative studies on artificial as well as real-world partial label datasets
clearly validate the effectiveness of M3PL.

In the future, it is interesting to investigate other ways to solve the proposed maximum
margin formulation OP 2 other than utilizing alternating optimization. Furthermore, domain
knowledge (e.g. the ordinal information among class labels) could be incorporated into par-
tial label learning algorithms to improve their performance on specific tasks such as facial
age estimation.
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