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ABSTRACT
Partial label learning is an emerging weakly-supervised learning
framework where each training example is associated with multi-
ple candidate labels amongwhich only one is valid. Dimensionality
reduction serves as an e�ective way to help improve the general-
ization ability of learning system, while the task of partial label di-
mensionality reduction is challenging due to the unknown ground-
truth labeling information. In this paper, the �rst attempt towards
partial label dimensionality reduction is investigated by endowing
the popular linear discriminant analysis (LDA) techniques with the
ability of dealing with partial label training examples. Speci�cally,
a novel learning procedure named Delin is proposed which alter-
nates between LDA dimensionality reduction and candidate label
disambiguation based on estimated labeling con�dences over can-
didate labels. On one hand, the projection matrix of LDA is op-
timized by utilizing disambiguation-guided labeling con�dences.
On the other hand, the labeling con�dences are disambiguated by
resorting to kNN aggregation in the LDA-induced feature space.
Extensive experiments on synthetic as well as real-world partial
label data sets clearly validate the e�ectiveness of Delin in im-
proving the generalization ability of state-of-the-art partial label
learning algorithms.
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1 INTRODUCTION
Partial label learning is one of the emerging weakly-supervised
learning frameworks with ambiguous labeling [40], where each
training example is associated with multiple candidate class labels
simultaneously among which only one corresponds to the ground-
truth label [7, 36]. The task of partial label learning is to learn a
multi-class classi�cation model from the partial label training ex-
amples, which can assign proper class label for the unseen instance
in prediction phase. The task of learning from examples with can-
didate label sets naturally arises under many real-world scenarios,
such as web mining [15], multimedia content analysis [4, 6, 19, 34],
ecoinformatics [3, 37], natural language processing [39], etc.

It is well-known that dimensionality reduction serves as an ef-
fective way to help improve the generalization ability of learn-
ing system, and exploring dimensionality reduction mechanism
for partial label learning is even more desirable as the generaliza-
tion performance of partial label classi�cationmodel is usually less
satisfactory due to the limited supervision information available
from training set. Existing works on partial label learning mainly
focus on classi�cationmodel induction by disambiguating the can-
didate label set [4, 5, 7, 10, 13, 19, 21, 32, 37], while the usefulness of
dimensionality reduction for partial label learning hasn’t beenwell
investigated. Here, the major challenge for designing supervised
dimensionality reduction techniques lies in that the ground-truth
label of each partial label training example is not directly accessible
to the learning algorithm.

In this paper, the �rst attempt towards partial label dimension-
ality reduction is investigated where a novel dimensionality reduc-
tion procedure for partial label examples named Delin, i.e. Disam-
biguation Enabled LINear discriminant analysis, is proposed. Brie�y,
Delin works by adapting the popular linear discriminant analy-
sis (LDA) mechanism to accommodate the exploitation of partial
label training examples. Speci�cally, an alternating procedure is
employed to endow LDA with the ability of partial label dimen-
sionality reduction based on estimating the labeling con�dences
over candidate labels. On one hand, LDA dimensionality reduction



is performed by optimizing the projection matrix via the utiliza-
tion of disambiguation-guided labeling con�dences. On the other
hand, candidate label disambiguation is performed by resorting to
kNN aggregation in the feature space induced by LDA projection
matrix. Comprehensive experiments conducted over synthetic and
real-world partial label data sets show that the generalization per-
formance of state-of-the-art partial label learning algorithms can
be signi�cantly improved by incorporating Delin for dimension-
ality reduction.

The rest of this paper is organized as follows. Section 2 presents
technical details of the proposed Delin approach. Section 3 reports
experimental results of comparative studies. Section 4 brie�y dis-
cusses related works. Finally, Section 5 concludes.

2 THE PROPOSED APPROACH
Let X = Rd denote the d-dimensional instance space and Y =

{l1, l2, . . . , lq } denote the label space with q class labels. Given the
partial label training set D = {(xi , Si ) | 1 ≤ i ≤ m} where xi ∈ X
is a d-dimensional feature vector (xi1,xi2, . . . ,xid )

T and Si ⊆ Y
is the candidate label set associated with xi . In partial label learn-
ing, the key assumption lies in that the ground-truth label yi for
xi resides in its candidate label set Si (i.e. yi ∈ Si ) which is not di-
rectly accessible to the learning algorithm. The task of partial label
learning is to derive a multi-class classi�cation model f : X 7→ Y
from the training set D.

For partial label dimensionality reduction, the task here is trying
to �nd a projection matrix W = [w1,w2, . . . ,wd ′ ] ∈ Rd×d ′

(d ′ �
d)whichmaps the training examples X = [x1,x2, . . . ,xm ] ∈ Rd×m

into the projected d ′-dimensional feature space X′ = W>X. Cor-
respondingly, Delin adapts the linear discriminant analysis mech-
anism to learn W via an iterative procedure alternating between
LDA dimensionality reduction and candidate label disambiguation.
The alternating procedure is ful�lled by utilizing the estimated la-
beling con�dences Y = [Yi j ]m×q which is initialized as:

∀ 1 ≤ i ≤ m, 1 ≤ j ≤ q : Yi j =

{
1
|Si |
, if lj ∈ Si

0, otherwise
(1)

Here, the constraints
∑q

j=1 Yi j = 1 (1 ≤ i ≤ m) will be ensured to
hold for each iteration of Delin.

Thereafter, technical details of the two alternating steps of Delin
are scrutinized.

2.1 LDA Dimensionality Reduction
To enable multi-class LDA [9, 20] for partial label examples, the
key adaptation lies in the derivation of between-class scatter matrix
Sb ∈ Rd×d and within-class scatter matrix Sw ∈ Rd×d which are
used to optimize the projection matrix as follows:

arg max
W

tr
(
W>Sb W

)
(2)

s.t. : w>
h Swwh = 1 (1 ≤ h ≤ d ′)

Given the current labeling con�dence matrix Y, the global mean
vector μ ∈ Rd×1 and the class-wise mean vector μ j ∈ Rd×1 (1 ≤
j ≤ q) can be speci�ed as:

μ =

∑m
i=1 xi

m
(3)

μ j =

∑m
i=1 Yi j ∙ xi
∑m

i=1 Yi j
(4)

Accordingly, the total scattermatrix St ∈ Rd×d andwithin-class
scatter matrix Sw are derived as:

St =

m∑

i=1

(xi − μ)(xi − μ)> (5)

= X̄>X̄

Sw =

q∑

j=1

m∑

i=1

Yi j ∙ (xi − μ j )(xi − μ j )
> (6)

Here, X̄ = X − μe> corresponds to the centralized training exam-
ples with e = [1, 1, . . . , 1]> being the d-dimensional unit vector.
Then, it is not di�cult to show that the between-class scatter ma-
trix Sb can be derived as:

Sb = St − Sw (7)

=

q∑

j=1

(
m∑

i=1

Yi j

)

∙ (μ j − μ)(μ j − μ)>

= X̄>YC−1Y>X̄

Here, C = diag[c1, c2, . . . , cq ] corresponds to the q × q diagonal
matrix with diagonal element c j =

∑m
i=1 Yi j (1 ≤ j ≤ q).

By introducing Lagrange multipliers λh (1 ≤ h ≤ q) to Eq.(2),
the Lagrange function for each projection vector wh (1 ≤ h ≤ d ′)
in W corresponds to:

L(wh , λh ) = w>
h Sbwh − λh (w

>
h Swwh − 1) (8)

By setting ∂L(wh,λh )
∂wh

= 0, we can have the necessary condition for
the optimal solution of wh :

(
S−1

w Sb

)
wh = λhwh (9)

In other words, λh and wh should be an eigenvalue and its cor-
responding eigenvector of S−1

w Sb . Therefore, Delin chooses the
eigenvectors w.r.t. the top d ′ eigenvalues of S−1

w Sb to form the LDA
projection matrix W.

2.2 Candidate Label Disambiguation
Based on the LDAprojectionmatrix, the original partial label train-
ing examples can be mapped into the LDA-induced feature space
D′ = {(x ′

i , Si ) | x ′
i = W>xi , 1 ≤ i ≤ m}. Thereafter, the labeling

con�dence matrix will be updated to Y ′ = [Y ′
i j ]m×q by utilizing

kNN-based candidate label disambiguation.
For each instance x ′

i ∈ Rd ′
, its k nearest neighbors identi�ed in

D′ is denoted asN(x ′
i ). A weighted voting matrix Z = [Zi j ]m×q is

calculated by aggregating the labeling assignment of each neigh-
boring example in N(x ′

i ):

∀1 ≤ i ≤ m, 1 ≤ j ≤ q :

Zi j =
∑

(x ′
a,Sa )∈N(x ′

i )

Yaj ∙ [[lj ∈ Sa ]] ∙ ωa (10)

For any predicate π , [[π ]] returns 1 if π holds and 0 otherwise. Fur-
thermore, for the a-th nearest neighbor (1 ≤ a ≤ k), the voting



Table 1: The pseudo-code of Delin.

Inputs:

D: the partial label training set {(xi , Si ) | 1 ≤ i ≤ m} (X = Rd ,Y = {l1, l2, . . . , lq },xi ∈ X, Si ⊆ Y)

d ′: the number of retained features after dimensionality reduction

k : the number of nearest neighbors used for candidate label disambiguation

Outputs:

W: the d × d ′ projection matrix learned by the proposed approach

Process:
1: Initialize them × q labeling con�dence matrix Y according to Eq.(1);

2: Specify the global mean vector μ according to Eq.(3);

3: repeat

4: Specify the class-wise mean vector μ j (1 ≤ j ≤ q) according to Eq.(4);

5: Derive the total scatter matrix St and within-class scatter matrix Sw according to Eq.(5) and Eq.(6) respectively;

6: Derive the between-class scatter matrix Sb according to Eq.(7);

7: Form the LDA projection matrix W = [w1,w2, . . . ,wd ′ ] withwh (1 ≤ h ≤ q) set to be the eigenvector w.r.t. the top-h eigenvalue of

8: S−1
w Sb satisfying w>

h Swwh = 1;

9: Derive the partial label training set in LDA-induced feature space D′ = {(x ′
i , Si ) | x ′

i = W>xi , 1 ≤ i ≤ m};

10: for i=1 tom do

11: Identify the k-nearest neighbors of x ′
i in D′ as N(x ′

i );

12: end for

13: Calculate them × q weighted voting matrix Z via kNN aggregation according to Eq.(10);

14: Calculate them × q counting matrix V according to Eq.(11);

15: Specify the updated labeling con�dence matrix Y′ according to Eqs.(12)-(13);

16: Let Y = Y′;

17: until convergence

18: Return the learned partial label LDA projection matrix W.

weight is set as ωa = k − a + 1 [13, 35]. Meanwhile, a counting
matrix V = [Vi j ]m×q is speci�ed as:

∀1 ≤ i ≤ m, 1 ≤ j ≤ q :

Vi j =
∑

(x ′
a,Sa )∈N(x ′

i )

[[lj ∈ Sa ]] (11)

Here, Vi j stores the number of k nearest neighbors of x ′
i which

take lj as their candidate label.
Among the set of candidate labels Si for x ′

i , the one with largest
weighted voting is denoted as lj∗ :1

lj∗ = arg maxlj ∈Si Zi j (12)

Then, the updated labeling con�dence matrix Y′ will be set as:

∀ 1 ≤ i ≤ m, 1 ≤ j ≤ q :

Y ′
i j =






[[j = j∗]], if |Si | = 1
Vi j∗

k , if |Si | > 1 and j = j∗(
1 −

Vi j∗

k

)
/(|Si | − 1), if |Si | > 1 and j , j∗

(13)

1In case that there are more than one class label which have the same largest weighted
voting, one of them will be randomly selected to instantiate lj∗ .

Table 1 summarizes the complete procedure of Delin. Firstly,
the labeling con�dence matrix is initialized based on the candidate
label assignment (Step 1) and the global mean vector is speci�ed
by averaging all training examples (Step 2). After that, an itera-
tive procedure alternating between LDA dimensionality reduction
(Steps 4-8) and candidate label disambiguation (Steps 9-16) is con-
ducted. Finally, the resulting LDA projection matrix W is returned
(Step 18). Here, the iterative procedure terminates if W does not
change or the maximum number of iterations is reached.2

3 EXPERIMENTS

3.1 Experimental Setup
To evaluate the e�ectiveness of the proposed partial label dimen-
sionality reduction approach, Delin is coupled with state-of-the-
art partial label learning algorithms for performance evaluation.
Given the partial label learning algorithm A, its coupling version
with Delin is denoted as A-Delin which learns from partial label
training examples in the LDA-induced feature space. Accordingly,

2In this paper, the maximum number of iterations is set to be 75 which su�ces to
yield stable performance for the proposed approach.



Table 2: Characteristics of the synthetic experimental data sets.

Data Set # Examples # Features # Class Labels # False Positive Labels (r ) Task Domain
mediamill 2,854 120 10 r = 1, 2, 3 video semantic detection [26]
tmc2007 8,670 981 18 r = 1, 2, 3 text anomaly detection [28]
slashdot 3,142 1,079 19 r = 1, 2, 3 text classi�cation [18]
amazon 1,500 1,326 50 r = 1, 2, 3 authorship identi�cation [8]

DeliciousMIL 1,409 1,389 20 r = 1, 2, 3 sentence labeling [27]
bookmark 2,500 1,413 57 r = 1, 2, 3 automatic tag suggestion [17]
sports 9,120 1,738 19 r = 1, 2, 3 human activity recognition [1]
sector 6,412 6,104 105 r = 1, 2, 3 text classi�cation [25]

Table 3: Classi�cation accuracy (mean±std) of each comparing algorithm on controlled synthetic data sets (with one false
positive candidate label [r = 1] ). For partial label learning algorithm A ∈ {Pl-knn,Pl-svm,Pl-ecoc, Ipal}, the performance
of A-Delin is compared against that of A where the better performance is shown in boldface.

Data Set
Comparing Algorithm

Pl-knn Pl-knn-Delin Pl-svm Pl-svm-Delin Pl-ecoc Pl-ecoc-Delin Ipal Ipal-Delin
mediamill 0.637±0.034 0.688±0.027 0.495±0.042 0.600±0.035 0.592±0.037 0.666±0.037 0.642±0.020 0.640±0.037
tmc2007 0.402±0.012 0.654±0.013 0.645±0.021 0.666±0.013 0.635±0.016 0.669±0.013 0.598±0.019 0.610±0.019
slashdot 0.163±0.022 0.698±0.033 0.595±0.018 0.717±0.029 0.528±0.033 0.719±0.027 0.417±0.023 0.694±0.027
amazon 0.025±0.014 0.609±0.048 0.120±0.026 0.558±0.038 0.065±0.021 0.608±0.046 0.105±0.023 0.610±0.048

DeliciousMIL 0.033±0.039 0.464±0.043 0.036±0.017 0.354±0.043 0.072±0.038 0.464±0.042 0.062±0.017 0.463±0.044
bookmark 0.170±0.026 0.536±0.036 0.279±0.029 0.543±0.037 0.325±0.039 0.550±0.033 0.309±0.030 0.550±0.027
sports 0.288±0.015 0.865±0.014 0.677±0.019 0.709±0.013 0.697±0.031 0.851±0.013 0.905±0.009 0.880±0.011
sector 0.014±0.005 0.530±0.034 0.070±0.012 0.496±0.035 0.058±0.012 0.527±0.033 0.144±0.015 0.531±0.034

the performance ofA-Delin is compared against that ofA to ver-
ify whether the proposed dimensionality reduction techniques do
help improve generalization ability of the learning system.

In this paper, the following state-of-the-art partial label learning
algorithms are utilized to instantiate A with parameter con�gura-
tion suggested in respective literatures:

• Pl-knn [13]: an instance-based partial label learning ap-
proach which makes prediction for unseen instance by em-
ploying the kNN rule with weighted voting [suggested con-
�guration: k=10].

• Pl-svm [21]: a maximum-margin partial label learning ap-
proach which learns the predictive model by maximizing
the classi�cation margin over candidate and non-candidate
class labels [suggested con�guration: regularization param-
eter pool with {10−3, . . . , 103}].

• Pl-ecoc [36]: a transformation-based partial label learning
approach which learns the predictive model by decompos-
ing the original partial label learning problem into a num-
ber of binary learning problems via error-correcting out-
put codes (ECOC) [suggested con�guration: ECOC coding
length d10 ∙ log2(q)e].

• Ipal [32]: another instance-based partial label learning ap-
proach which makes prediction for unseen instance by em-
ploying graph-based disambiguationwith label propagation
[suggested con�guration: balancing parameter α = 0.95].

As shown in Table 1, the parameters d ′ and k for Delin are set to
be dthr ∙ min(q,d)e with thr = 0.6 and k = 8 respectively.

Furthermore, comparative studies are conducted on both syn-
thetic and real-world data sets in this paper. On each data set, ten-
fold cross-validation is performed and the mean predictive accu-
racy as well as standard deviation are recorded.

3.2 Synthetic Data Sets
Following the widely-used experimental protocol in partial label
learning [4, 5, 7, 10, 19, 32, 36], synthetic partial label data set can
be generated from multi-class data set with controlling parameter
r . Here, r speci�es the number of false positive labels in the can-
didate label set (i.e. |Si | = r + 1). Speci�cally, for any multi-class
example (xi ,yi ), a partial label training example (xi , Si ) is gener-
ated by randomly adding r class labels from Y into Si .

Table 2 summarizes characteristics of the synthetic data sets
used for experimental studies with r ∈ {1, 2, 3}, which are roughly
ordered according to the dimensionality of each data set.3 Accord-
ingly, Tables 3 to 5 report the detailed experimental results of each
comparing algorithm with r = 1, 2, 3 respectively. Given partial la-
bel learning algorithm A ∈ {Pl-knn, Pl-svm, Pl-ecoc, Ipal}, A-
Delin is compared against A where the better predictive perfor-
mance is shown in boldface.

3Most data sets in Table 2 are derived from multi-label benchmark data sets [41] by
retaining examples with only one relevant label.



Table 4: Classi�cation accuracy (mean±std) of each comparing algorithm on controlled synthetic data sets (with two false
positive candidate label [r = 2] ). For partial label learning algorithm A ∈ {Pl-knn,Pl-svm,Pl-ecoc, Ipal}, the performance
of A-Delin is compared against that of A where the better performance is shown in boldface.

Data Set
Comparing Algorithm

Pl-knn Pl-knn-Delin Pl-svm Pl-svm-Delin Pl-ecoc Pl-ecoc-Delin Ipal Ipal-Delin
mediamill 0.623±0.023 0.665±0.036 0.490±0.041 0.608±0.016 0.514±0.036 0.598±0.039 0.592±0.023 0.597±0.030
tmc2007 0.379±0.016 0.650±0.013 0.631±0.039 0.668±0.016 0.584±0.027 0.653±0.017 0.583±0.009 0.606±0.018
slashdot 0.160±0.020 0.668±0.018 0.575±0.029 0.687±0.024 0.428±0.035 0.688±0.023 0.402±0.025 0.664±0.023
amazon 0.021±0.009 0.466±0.021 0.073±0.021 0.438±0.023 0.040±0.016 0.466±0.022 0.088±0.020 0.468±0.021

DeliciousMIL 0.027±0.014 0.258±0.042 0.035±0.019 0.220±0.038 0.063±0.034 0.253±0.039 0.052±0.011 0.258±0.042
bookmark 0.162±0.012 0.486±0.033 0.261±0.019 0.504±0.030 0.284±0.035 0.495±0.033 0.304±0.018 0.499±0.038
sports 0.290±0.015 0.842±0.018 0.640±0.015 0.686±0.015 0.601±0.037 0.818±0.013 0.901±0.008 0.863±0.013
sector 0.015±0.007 0.392±0.022 0.054±0.011 0.373±0.022 0.036±0.009 0.390±0.022 0.136±0.009 0.392±0.022

Table 5: Classi�cation accuracy (mean±std) of each comparing algorithm on controlled synthetic data sets (with three false
positive candidate label [r = 3] ). For partial label learning algorithm A ∈ {Pl-knn,Pl-svm,Pl-ecoc, Ipal}, the performance
of A-Delin is compared against that of A where the better performance is shown in boldface.

Data Set
Comparing Algorithm

Pl-knn Pl-knn-Delin Pl-svm Pl-svm-Delin Pl-ecoc Pl-ecoc-Delin Ipal Ipal-Delin
mediamill 0.598±0.017 0.656±0.022 0.471±0.039 0.602±0.031 0.101±0.024 0.231±0.113 0.525±0.024 0.564±0.026
tmc2007 0.364±0.011 0.627±0.013 0.619±0.035 0.659±0.018 0.568±0.021 0.576±0.033 0.557±0.016 0.593±0.013
slashdot 0.165±0.030 0.642±0.033 0.562±0.038 0.667±0.035 0.373±0.039 0.645±0.035 0.373±0.030 0.639±0.038
amazon 0.021±0.008 0.347±0.027 0.055±0.019 0.309±0.030 0.031±0.017 0.346±0.026 0.084±0.024 0.349±0.027

DeliciousMIL 0.043±0.022 0.198±0.035 0.038±0.020 0.158±0.032 0.063±0.036 0.188±0.032 0.044±0.015 0.197±0.036
bookmark 0.140±0.012 0.437±0.037 0.247±0.028 0.452±0.040 0.203±0.043 0.443±0.036 0.293±0.042 0.447±0.032
sports 0.292±0.021 0.824±0.012 0.603±0.019 0.641±0.021 0.492±0.043 0.762±0.022 0.892±0.009 0.840±0.019
sector 0.017±0.005 0.295±0.018 0.047±0.008 0.273±0.019 0.020±0.007 0.293±0.017 0.133±0.013 0.294±0.017

Table 6: Win/tie/loss counts (pairwise t-test at 0.05 signi�-
cance level) between A-Delin and A in terms of di�erent
number of false positive labels (r = 1, 2, 3).

A-Delin against A
A=Pl-knn A=Pl-svm A=Pl-ecoc A=Ipal

r = 1 8/0/0 8/0/0 8/0/0 6/1/1
r = 2 8/0/0 8/0/0 8/0/0 6/1/1
r = 3 8/0/0 8/0/0 8/0/0 7/0/1

In Total 24/0/0 24/0/0 24/0/0 19/2/3

Pairwise t-test at 0.05 signi�cance level is further conducted
to show whether the performance di�erence between A and A-
Delin is signi�cant, where the resulting win/tie/loss counts are
reported in Table 6. Based on these results, it is impressive to ob-
serve that:

• For Pl-knn, the performance improvement of Pl-knn-Delin
against Pl-knn ismoderate on mediamillwhich corresponds
to the synthetic data set with smallest number of features.

On the rest seven data sets in Table 2 with larger number
of features, the predictive performance of Pl-knn has been
greatly improved by incorporating the proposed dimension-
ality reduction techniques. Speci�cally, for tmc2007 onwhich
Pl-knn has the highest predictive accuracy, the classi�ca-
tion accuracy has been improvedwithDelin by 25.2%, 27.1%
and 26.3% for r = 1, 2 and 3 respectively. For sector on
which Pl-knn has the lowest predictive accuracy, the per-
formance improvementwithDelin is evenmore pronounced
by an increase of 51.6%, 37.7% and 27.8% for r = 1, 2 and 3
respectively.

• For Pl-svm and Pl-ecoc, the performance of both algorithms
have been signi�cantly improved on all the eight synthetic
data sets. On the �ve data sets with more than 1,300 fea-
tures (i.e. amazon, DeliciousMIL, bookmark, sports and
sector), out of the 30 statistical comparisons (2 algorithms
x 5 data sets x 3 con�gurations of r ), the classi�cation accu-
racy has been improved with Delin by more than 20.0% in
22 cases. These results indicate that the bene�ts brought by
Delin would be more signi�cant when the dimensionality
of the feature space is high.



Table 7: Characteristics of the real-world experimental data sets.

Data Set # Examples # Features # Class Labels average # Candidate Labels Task Domain
Lost 1,122 108 16 2.23 automatic face naming [7]

Yahoo! News 22,991 163 219 1.91 automatic face naming [11]
FG-NET 1,002 262 78 7.48 facial age estimation [22]

Soccer Player 17,472 279 171 2.09 automatic face naming [34]
Mir�ickr 2,780 1,536 14 2.76 web image classi�cation [12]

Table 8: Win/tie/loss statistic (pairwise t-test at 0.05 signif-
icance level) between A-Delin and A on each real-world
partial label data set.

A-Delin against A
A=Pl-knn A=Pl-svm A=Pl-ecoc A=Ipal

Lost win win win win
Yahoo! News win tie win win

FG-NET win win win win
Soccer Player tie win win win
Mir�ickr win win win win
In Total 4/1/0 4/1/0 5/0/0 5/0/0

• For Ipal, the predictive performance of Ipal-Delin is out-
performed by Ipal on sportswhich corresponds to the syn-
thetic data setwith largest number of examples. On the other
hand, on the two data sets with smallest number of exam-
ples (i.e. amazon, DeliciousMIL), the classi�cation accuracy
has been signi�cantly improved with Delin by more than
40.0%, 20.0% and 15.0% for r = 1, 2 and 3 respectively. These
results indicate that the bene�ts brought by Delin would
be more signi�cant when the number of available training
examples is insu�cient.

3.3 Real-World Data Sets
Table 7 summarizes characteristics of the real-world partial label
data sets from di�erent task domains, including FG-NET [22] for
facial age estimation, Lost [7], Soccer Player [34] and Yahoo!
News [11] for automatic face naming from images or videos, and
Mirflickr [12] for web image classi�cation.4 For facial age esti-
mation, human faces with landmarks are represented as instances
while ages annotated by crowdsourced labelers are regarded as
candidate labels. For automatic face naming, faces cropped from
an image or video frame are represented as instances while names
extracted from the associated captions or subtitles are regarded as
candidate labels. For web image classi�cation, web images are rep-
resented as instances while annotations extracted from the web
environment are regarded as candidate labels.

4Data sets available at: http://palm.seu.edu.cn/zhangml/Resources.htm#partial_data

Figure 1 illustrates the predictive accuracy of each partial label
training algorithm before and after employing the proposed di-
mensionality reduction techniques. Furthermore, Table 8 reports
the win/tie/loss statistics based on pairwise t-test at 0.05 signif-
icance level on each real-world experimental data set. From the
above results, it is also impressive to observe that:

• Out of the 20 statistical comparisons (4 algorithms x 5 data
sets), the predictive performance has been signi�cantly im-
proved by employing Delin in 18 cases. There are only two
ties on data sets Soccer Player (Pl-knn-Delin against
Pl-knn) and Yahoo! News (Pl-svm-Delin against Pl-svm)
which have the largest number of class labels among the
real-world partial label data sets.

• As shown in Fig. 1(c), the relative performance improve-
ment is rather pronounced on FG-NET which is most dif-
�cult to learn with smallest number of examples but largest
average number of candidate labels. Speci�cally, the clas-
si�cation accuracy of each partial label learning algorithm
has at least been doubled on FG-NET. These results indicate
that the bene�ts brought by Delin would be more signi�-
cant under di�cult learning scenarios.

3.4 Sensitivity Analysis
As shown in Table 1, the number of retained features after dimen-
sionality reduction (i.e. d ′) serves as the key parameter for Delin.
Following the common practice of applying LDA for multi-class
classi�cation [9, 20], we set d ′ = dthr ∙ min(q,d)e with thr ∈ (0, 1)
which is less than the number of class labels.

Table 9 reports the predictive accuracy of applyingDelin to par-
tial label learning algorithm on all real-world data sets with vary-
ing number of retained features. Here, thr increases from 0.5 to 0.9
with an interval of 0.1 and the best performance across di�erent
values of thr is shown in boldface. As shown in Table 9, the per-
formance of each partial label learning algorithm �uctuates mod-
erately by incorporating Delin for dimensionality reduction as the
value of thr changes. Furthermore, there is no single con�guration
of thr which can yield best performance in most cases. Therefore,
the value of thr is �xed to be 0.6 in this paper while Delinmay lead
to further performance improvement by �ne-tuning parameter thr
on the training set.

In addition to d ′, Figure 2 illustrates how the predictive perfor-
mance of each algorithm changes w.r.t. the other parameter k , i.e.
the number of nearest neighbors used for candidate label disam-
biguation. Here, k increases from 3 to 10 with an interval of 1. As



PL-KNN PL-SVM PL-ECOC IPAL
comparison algorithm

0.3

0.4

0.5

0.6

0.7

0.8

0.9

cl
as

si
fi

ca
tio

n 
ac

cu
ra

cy

B e f ore  D ELIN
Af te r D ELIN

(a) Lost

PL-KNN PL-SVM PL-ECOC IPAL
comparison algorithm

0.4

0.45

0.5

0.55

0.6

0.65

0.7

cl
as

si
fi

ca
tio

n 
ac

cu
ra

cy

B e f ore  D ELIN
Af te r D ELIN

(b) Yahoo! News

PL-KNN PL-SVM PL-ECOC IPAL
comparison algorithm

0.01

0.033

0.056

0.079

0.102

0.125

0.148

cl
as

si
fi

ca
tio

n 
ac

cu
ra

cy

B e f ore  D ELIN
Af te r D ELIN

(c) FG-NET

PL-KNN PL-SVM PL-ECOC IPAL
comparison algorithm

0.1

0.18

0.26

0.34

0.42

0.5

0.58

cl
as

si
fi

ca
tio

n 
ac

cu
ra

cy

B e f ore  D ELIN
Af te r D ELIN

(d) Soccer Player

PL-KNN PL-SVM PL-ECOC IPAL
comparison algorithm

0.4

0.45

0.5

0.55

0.6

0.65

0.7

cl
as

si
fi

ca
tio

n 
ac

cu
ra

cy

B e f ore  D ELIN
Af te r D ELIN

(e) Mir�ickr

Figure 1: Comparison of the classi�cation accuracy of each partial label learning algorithm on real-world data sets before (blue
bar) and after (yellow bar) employing Delin.

(a) slashdot (r=2) (b) Lost

Figure 2: Predictive accuracy of A-Delin (A ∈{Pl-knn, Pl-svm, Pl-ecoc, Ipal}) changes as the number of nearest neighbors
used for candidate label disambiguation (i.e. k) increases from 3 to 10 with an interval of 1. Left: synthetic data set slashdot
with r = 2; Right: real-world data set Lost.

shown in Figure 2, on either the synthetic data set slashdot (r = 2)
or the real-world data set Lost, the performance of each partial la-
bel learning algorithm by incorporating Delin is relatively stable
as the value of k changes. Therefore, the value of k is �xed to be 8
in this paper.

4 RELATEDWORKS
As aweakly-supervised learning framework [40], partial label learn-
ing deals with implicit supervision information where the ground-
truth label is concealed in the candidate label set of each training

example. Partial label learning is related to other well-established
weakly-supervised learning frameworks including semi-supervised
learning, multi-instance learning and multi-label learning. The dif-
ferences between partial label learning and other related learning
frameworks lie in the form of weak supervision information to be
dealt with. Speci�cally, semi-supervised learning deals with un-
labeled examples with blind supervision information [42], multi-
instance learning deals with bag-of-instances examples with am-
biguous supervision information [2], andmulti-label learning deals
with multi-label examples with non-unique supervision informa-
tion [41].



Table 9: Predictive accuracy of A-Delin (A ∈{Pl-knn, Pl-svm, Pl-ecoc, Ipal}) changes as the number of retained features
(d ′ = dthr ∙ min(q,d)e) varies with thr increases from 0.5 to 0.9 with an interval of 0.1. On each data set, the best performance
across di�erent values of thr is shown in boldface. Furthermore, the predictive accuracy of A on the original feature space is
also shown in the lower part of the table for reference purpose (after the dashed line).

Data Set thr # Retained Features Pl-knn-Delin Pl-svm-Delin Pl-ecoc-Delin Ipal-Delin

Lost

0.5 8 0.790±0.050 0.790±0.051 0.794±0.046 0.792±0.049
0.6 10 0.784±0.031 0.787±0.035 0.814±0.046 0.812±0.046
0.7 12 0.808±0.046 0.813±0.046 0.842±0.050 0.833±0.051
0.8 13 0.823±0.045 0.822±0.044 0.845±0.043 0.858±0.051
0.9 15 0.790±0.027 0.790±0.032 0.819±0.039 0.823±0.039

Yahoo! News

0.5 82 0.475±0.006 0.509±0.008 0.639±0.007 0.671±0.005
0.6 98 0.455±0.009 0.515±0.010 0.635±0.007 0.672±0.006
0.7 115 0.437±0.007 0.517±0.011 0.628±0.007 0.671±0.004
0.8 131 0.424±0.004 0.518±0.009 0.621±0.008 0.667±0.007
0.9 147 0.413±0.005 0.518±0.009 0.615±0.009 0.666±0.005

FG-NET

0.5 39 0.128±0.032 0.115±0.030 0.076±0.028 0.143±0.036
0.6 47 0.120±0.011 0.119±0.027 0.082±0.035 0.144±0.037
0.7 55 0.090±0.031 0.116±0.036 0.067±0.029 0.114±0.040
0.8 63 0.090±0.023 0.122±0.031 0.079±0.032 0.128±0.016
0.9 71 0.074±0.025 0.119±0.031 0.066±0.029 0.132±0.019

Soccer Player

0.5 86 0.497±0.013 0.445±0.027 0.323±0.062 0.556±0.015
0.6 103 0.497±0.012 0.448±0.033 0.360±0.054 0.555±0.012
0.7 120 0.494±0.014 0.449±0.043 0.288±0.072 0.554±0.013
0.8 137 0.493±0.013 0.450±0.039 0.297±0.065 0.554±0.013
0.9 154 0.494±0.014 0.435±0.049 0.287±0.074 0.552±0.013

Mir�ickr

0.5 7 0.579±0.077 0.504±0.159 0.507±0.132 0.538±0.099
0.6 9 0.593±0.011 0.533±0.134 0.583±0.118 0.601±0.115
0.7 10 0.523±0.117 0.543±0.100 0.526±0.113 0.534±0.105
0.8 12 0.501±0.120 0.554±0.097 0.512±0.126 0.513±0.122
0.9 13 0.499±0.106 0.555±0.085 0.523±0.101 0.513±0.106

# Original Features Pl-knn Pl-svm Pl-ecoc Ipal
Lost - 108 0.358±0.029 0.734±0.004 0.638±0.051 0.726±0.041

Yahoo! News - 163 0.411±0.005 0.515±0.001 0.610±0.009 0.667±0.005
FG-NET - 262 0.030±0.019 0.055±0.024 0.013±0.015 0.059±0.019

Soccer Player - 279 0.492±0.014 0.408±0.043 0.186±0.064 0.548±0.014
Mir�ickr - 1,536 0.496±0.127 0.515±0.127 0.561±0.013 0.541±0.129

To learn from partial label examples, themajor strategy is trying
to disambiguate the candidate label set so as to recover the ground-
truth labeling information. One way towards disambiguation is to
treat the ground-truth label as latent variable whose value is esti-
mated via iterative optimization procedure such as EM. The objec-
tive function can be instantiated based on the maximum likelihood
criterion where the likelihood is de�ned as the probability of ob-
serving each partial label training example over its candidate label
set [16, 19], or the maximummargin criterion where the classi�ca-
tion margin is de�ned over the predictive di�erence between can-
didate labels and non-candidate labels of each partial label training
example [21, 32].

Another way towards disambiguation is to treat all candidate
labels in an equal manner and make �nal prediction by averaging
their modeling outputs. For discriminative models, the averaged
output from all candidate labels is distinguished from the outputs

from non-candidate labels [7, 30]. For instance-based models, the
predicted class label for unseen instance is determined by the vot-
ing among candidate labels of its neighboring examples [10, 13, 35].
Note that for the proposed Delin approach, kNN techniques have
also been utilized to help disambiguate the candidate label set by
further exploiting the estimated labeling con�dences over candi-
date labels.

The task of dimensionality reduction for data associated with
multiple valid class labels have been well studied [14, 23, 24, 29,
31, 33, 38], while to the best of our knowledge the same task for
data associated with multiple candidate labels has not been well
investigated. Other than performing transformation in the feature
space with dimensionality reduction, there have been some works
which perform transformation in the label space by decomposing
the partial label learning problem into binary classi�cation [7, 36],
multi-class classi�cation [5], or regression [37] problems.



5 CONCLUSION
In this paper, the problem of dimensionality reduction for partial
label learning is investigated. Accordingly, a novel partial label di-
mensionality reduction approach is proposed which works in an
iterative manner by alternating between LDA dimensionality re-
duction and candidate label disambiguation. Comparative experi-
ments over a number of synthetic and real-world data sets show
that state-of-the-art partial label learning algorithms can signif-
icantly bene�t from the proposed dimensionality reduction ap-
proach in improving their generalization performance.
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