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ABSTRACT

In multi-label learning, each training example is associated with

multiple class labels and the task is to learn a mapping from the

feature space to the power set of label space. It is generally demand-

ing and time-consuming to obtain labels for training examples,

especially for multi-label learning task where a number of class

labels need to be annotated for the instance. To circumvent this

difficulty, semi-supervised multi-label learning aims to exploit the

readily-available unlabeled data to help build multi-label predictive

model. Nonetheless, most semi-supervised solutions to multi-label

learning work under transductive setting, which only focus on mak-

ing predictions on existing unlabeled data and cannot generalize

to unseen instances. In this paper, a novel approach named Coins

is proposed to learning from labeled and unlabeled data by adapt-

ing the well-known co-training strategy which naturally works

under inductive setting. In each co-training round, a dichotomy

over the feature space is learned by maximizing the diversity be-

tween the two classifiers induced on either dichotomized feature

subset. After that, pairwise ranking predictions on unlabeled data

are communicated between either classifier for model refinement.

Extensive experiments on a number of benchmark data sets show

that Coins performs favorably against state-of-the-art multi-label

learning approaches.

CCS CONCEPTS

• Computing methodologies → Semi-supervised learning set-
tings; Machine learning approaches;

1 INTRODUCTION

Multi-label learning deals with the problem where each example is

represented by a single instance (feature vector) while associated

with multiple class labels simultaneously [12, 29]. Correspondingly,

the task is to learn a multi-label predictor which maps from the

input space of instances to the output space of label sets. Due to the
∗
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huge size of output space (exponential to the number of class labels),

significant number of labeled training examples are needed in order

to build multi-label predictor with good generalization performance.

Nonetheless, the process of obtaining labels for training examples

is generally demanding and time-consuming, especially for multi-

label data where more than one class label should be annotated.

Therefore, a natural remedy is to consider semi-supervised multi-

label learning which makes use of the readily-available unlabeled

data to help build the predictive model [7, 14, 15, 17, 21, 22, 26, 28].

Nonetheless, most attempts towards semi-supervised multi-label

learning work under the transductive setting, which only focus

on classifying given unlabeled data and thus cannot generalize to

unseen instances. Generally, graph-based semi-supervised tech-

niques are utilized to construct an affinity matrix over both labeled

and unlabeled data, where classifications on unlabeled data can be

obtained via label propagation [17, 21] or manifold regularization

[7, 15, 22, 28]. In many cases, however, it is obviously more desir-

able to endow learning system with the inductive ability of making

predictions on unseen instances other than existing labeled and

unlabeled data.

Different to graph-based semi-supervised learning techniques,

the well-known co-training strategy trains two classifiers over two

feature sets which are iteratively updated by communicating either

classifier’s predictions on unlabeled data to augment the labeled

training set of the other [4, 30, 31]. Co-training offers a natural way

to enable inductive semi-supervised learning where the outputs of

both classifiers on unseen instances can be combined to yield the

final predictions. To amend co-training for multi-label learning task,

the key adaptation lies in how to generate two classifiers based on

the original feature space and how to achieve effective supervision

information communication between the classifiers.

In light of the above analysis, a novel approach named Coins,

i.e. CO-training for INductive Semi-supervised multi-label learning,
is proposed in this paper. In each co-training round, the original

feature space is automatically dichotomized by maximizing the di-

versity between the two classifiers induced on either dichotomized

feature subset. After that, pairwise ranking predictions on unlabeled

data are communicated between the two classifiers for model re-

finement. Experiments on a number of benchmark data sets clearly

validate the effectiveness of conducting semi-supervised multi-label

learning with the co-training strategy.

The rest of this paper is organized as follows. Section 2 briefly

reviews related work on semi-supervised multi-label learning. Sec-

tion 3 presents the technical details of Coins. Section 4 reports
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experimental results of comparative studies. Finally, Section 5 con-

cludes.

2 RELATEDWORK

Let X = Rd denote the d-dimensional feature space and Y =

{λ1, λ2, . . . , λq } denote the label space consisting of q class labels.

The task of multi-label learning is to induce a multi-label predictive

model h : X 7→ 2
Y

from the training examples, which aims to

assign a set of relevant labels h(x ) ⊆ Y for an instance x ∈ X. In
the following, related work on semi-supervised multi-label learning

will be briefly reviewed while comprehensive introductions on

multi-label learning in the general setting can be found in [12, 29].

In semi-supervised learning setting, in addition to L labeled

training data L = {(x1,y1), . . . , (xL ,yL )}, a repository of U unla-

beled data U = {xL+1, . . . ,xL+U } are also available to the learn-

ing system. Here, xi ∈ X is a d-dimensional feature vector xi =
[xi1,xi2, . . . ,xid ]

⊤
and yi ∈ {+1,−1}q is a q-bits label vector

yi = (yi1,yi2, . . . ,yiq ) with yik = +1 (−1) indicating whether

λk is a relevant (irrelevant) label for xi . Generally, the number of

labeled data is much less than the number of unlabeled data, i.e.

L ≪ U .

To learn from both L andU , a common practice is to rely on

graph-based semi-supervised learning techniques [31]. Specifically,

an (L + U ) × (L + U ) affinity matrix M is built over all the la-

beled and unlabeled data, where M(i, j ) specifies the similarity

degree between instances xi and x j . Thereafter, the label vector yi
on unlabeled instance xi (L + 1 ≤ i ≤ L + U ) can be estimated

by conducting iterative label propagation based on M [17, 21],

where in the t-th iteration yi (t ) is updated with labeling infor-

mation propagated from other instances x j weighted byM(i, j ), e.g.

yi (t ) ∝
∑L+U
j=1 M(i, j ) ·yj (t−1). Alternatively,yi can be estimated by

enforcing manifold regularization based onM [7, 15, 22, 28], where

similar instances are assumed to have similar labeling vectors, e.g.

| |yi −yj | | ∝ | |xi − x j | |/M(i, j ).
Obviously, graph-based techniques are only capable of making

predictions on available unlabeled dataU while cannot generalize

to unseen instance. In [14], transductive semi-supervised learning

is performed by utilizing unlabeled data in another way, where a

low-dimensional subspace mapping for the original feature space

is learned from both L and U such that the predictive model is

induced from the mapped labeled training data. Semi-supervised

multi-label learning techniques have also been found useful in a

number of applications such as affective computing [18], image

processing [19, 25], dimensionality reduction [5, 27], etc.

In [26], an inductive semi-supervised learning approach named

iMlcu is proposed by adapting the semi-supervised support vec-

tor machines (S3VM) [16, 31]. The resulting optimization problem

consists of empirical loss term on labeled data and regularization

term on unlabeled data, which is non-convex and optimized by the

concave convex procedure (CCCP) [6, 9]. Similar to S3VM, iMlcu

specifies the regularization term by treating unreliable predictions

on unlabeled data as pseudo labels to measure the loss on unlabeled

data.

In the next section, a novel semi-supervised multi-label learning

approach is presented which works inductively by adapting the

well-known co-training strategy.

3 THE PROPOSED APPROACH

To enable co-training for the task of learning from multi-label data,

two key adaptations need to be instantiated accordingly: 1) Gener-

ation of two classifiers from both L andU based on the original

feature space X; 2) Supervision information communication for

classifier update.

Standard co-training techniques apply to data with two views

which satisfy the sufficient and independent conditions, i.e. each
view contains sufficient information to induce a classifier with

strong generalization ability and is independent to each other given

the class label. Existing studies show that single-view co-training

can be also be successful [1, 8, 11, 13], and theoretical studies dis-

close that the key for co-training to succeed lies the existence

of large diversity between the two classifiers [23, 24]. In light of

the success of view splitting in designing single-view co-training

approaches, Coins employs similar strategies [8, 11] to generate

multi-label predictive model.

Let W = {wk | 1 ≤ k ≤ q} denote the multi-label (linear)

classification models to be learned from L
⋃
U , where wk =

[wk1,wk2, . . . ,wkd ]
⊤ ∈ Rd is the weight vector corresponding

to the k-th class label λk .
1
In this paper, Coins makes use of rank-

ing loss for classifier induction which has been widely-used to

develop effective multi-label learning approaches [12, 29]. Specif-

ically, ranking loss considers the ranking relationship between a

pair of class labels where the modeling output on relevant label

should be larger than that on irrelevant label. Let Ω = {(i,k, l ) | 1 ≤
i ≤ L + U , 1 ≤ k , l ≤ q} denote the set of indexing triplets

for all possible instances and label pairs. Given a chosen index set

I ⊆ Ω, the empirical ranking loss of classification modelW w.r.t.

I corresponds to:

RL(W,I) =
1

|I |
·
∑

(i,k,l )∈I

max(0, 1 − ⟨wk −wl ,xi ⟩) (1)

Here, ⟨·, ·⟩ represents the inner product between two feature vectors

and | · | returns the set cardinality. Furthermore, the loss to be

optimized for the classification model usually considers the balance

between empirical ranking loss and model complexity:

V (W,I) =
1

2

q∑
k=1

| |wk | |
2 +C · RL(W,I) (2)

Here, C represents the balancing parameter.

3.1 Generation of Classifiers

Coins aims to the learn two classification modelsW1
andW2

from

labeled and unlabeled data, where the corresponding index sets

I1 and I2 can be initialized based on the labeled training data

L = {(xi ,yi ) | 1 ≤ i ≤ L}:

I1 = I2 = {(i,k, l ) | 1 ≤ i ≤ L, yik = +1,yil = −1} (3)

To ensure good performance of both classification models, W1
and

W2
can be jointly trained by minimizing the following objective

function:

min

{W1,W2}
max

(
V (W1,I1),V (W2,I2)

)
(4)

1
WLOG, the bias value can be absorbed into wk as well by adding an extra feature

with constant value 1.



By replacing the non-differentiable max operator with its softmax

relaxation, Eq.(4) can be rewritten as:

min

{W1,W2}
log

(
eV (W

1,I1) + eV (W
2,I2)

)
(5)

Note that Eq.(5) needs to be optimized by considering that the di-

versity between W1
and W2

should be large to enable effective

supervision information communication between them. As dis-

cussed previously, Coins employs the view splitting strategy to

generate multi-label predictive model. A dichotomy over the origi-

nal feature space X can be specified equivalently by enforcing the

following constraint overW1
andW2

:

d∑
a=1

(w1

ka )
2

· (w2

ka )
2

= 0 (∀ 1 ≤ k ≤ q) (6)

The above constraint ensures that at each dimension eitherw1

k or

w2

k will have a zero weight value. Furthermore, the above constraint

is enforced w.r.t. each class label λk which offers the flexibility of

obtaining tailored dichotomy for different class label.

Along with the dichotomy over feature space, Coins adapts

the popular ϵ-expansion property of co-training to characterize

the diversity between two classification models [2, 8]. Roughly

speaking, let D be the underlying distribution from which labeled

examples are drawn and S1 (S2) be the event that an instance in

S ⊆ X is classified confidently by the first (second) classifier. Let

Pr(S1 ∧ S2), Pr(S1 ⊕ S2) and Pr(S1 ∧ S2) denote the probability that

both S1 and S2 hold, exactly one of S1 and S2 holds, and none of S1

and S2 hold respectively. Then, the ϵ-expansion property is said to

be satisfied for D if the following condition is met w.r.t. any S and

classifiers within the hypothesis class:

Pr(S1 ⊕ S2) ≥ ϵ ·min

[
Pr(S1 ∧ S2), Pr(S1 ∧ S2)

]
(7)

To make use of the ϵ-expansion property, Coins chooses to

indicate the confidence of multi-label classification by the model’s

predictive difference over a pair of class labels. Specifically, given a

pair of class labels (yk ,yl ) (k , l ), the confidence indicator function
of the classification modelW on an instance x is defined as:

ck,lW (x ) =
1

1 + exp
(
−γ · (pk,lW (x ) − τ )

) (8)

Here, pk,lW (x ) = (1 + exp(−⟨wk −wl ⟩,x ))
−1

gives the confidence

that on instance x the classification model W yields a higher rank

for yk than yl . Furthermore, the parameter τ in Eq.(8) controls how

significant the confidence should be in order to trigger the indicator

function. In this paper, τ is set to be 0.8 following [8]. Furthermore,

γ is set to be 50 to keep the sigmoid function Eq.(8) steep and thus

serve as a good approximation of the 0-1 indicator function.

Correspondingly, the ϵ-expansion property can be empirically

realized based on the unlabeled data inU :∑
x ∈U

[
ck,lW1

(x ) · ck,lW2
(x ) + ck,lW1

(x ) · ck,lW2
(x )

]
≥

ϵ ·min



∑
x ∈U

ck,lW1
(x ) · ck,lW2

(x ),
∑
x ∈U

ck,lW1
(x ) · ck,lW2

(x )


(9)

Here, ck,lW (x ) = 1 − ck,lW (x ) indicates that the classification model

W is not confident on its ranking prediction on x . Conceptually
speaking, the LHS of Eq.(9) corresponds to cases where exactly

one of the two classification models W1 and W2 has confident

ranking prediction, while the two terms in the min operator of RHS
corresponds to cases where both classification models have or do

not have confident ranking prediction.

By combing Eqs.(5), (6) and (9), Coins generates classification

models by solving the following optimization problem:

min

{W1,W2}
log

(
eV (W

1,I1) + eV (W
2,I2)

)
s.t. :

d∑
a=1

(w1

ka )
2

· (w2

ka )
2

= 0 (∀ 1 ≤ k ≤ q)∑
x ∈U

[
ck,lW1

(x ) · ck,lW2
(x ) + ck,lW1

(x ) · ck,lW2
(x )

]
≥

ϵ ·min



∑
x ∈U

ck,lW1
(x ) · ck,lW2

(x ),
∑
x ∈U

ck,lW1
(x ) · ck,lW2

(x )


(∀ 1 ≤ k , l ≤ q) (10)

In this paper, the constrained optimization problem of Eq.(10) is

solved by applying the augmented Lagrangian method [3, 8].

3.2 Supervision Information Communication

Following the iterative refinement strategy of co-training, Coins

utilizes current classification models’ predictions on unlabeled data

to enrich the supervision information for classifier update. Other

than binary predictions on the class labels, Coins chooses to utilize

pairwise ranking predictions as the supervision information to be

communicated between the classification models.

Specifically, let J ⊆ {L + 1, . . . ,L + U } denote the index set

of unlabeled data available at current co-training round. For each

unlabeled data x j (j ∈ J ), the empirical ranking loss of W1
on x j ,

i.e. RL(W1,I1j ), is measured according to index set I1j :

I1j =

{(j,k, l ) | ⟨w1

k ,x j ⟩ > 0, ⟨w1

l ,x j ⟩ < 0, 1 ≤ k , l ≤ q} (11)

To obtain the enriching supervision information for updating the

other classification model W2
, Coins forms a ranking index set ∆1

by identifying n unlabeled data which have least empirical ranking

loss RL(W1,I1j ). For each of the identified unlabeled data, one ele-

ment from I1j is randomly picked up and added to ∆1
. Thereafter,

the supervision information conveyed by ∆1
is communicated to

W2
for model update.

2
Equivalently, the same procedure can be in-

voked to obtain the enriching supervision information for updating

W1
.

Table 1 summarizes the pseudo-code of Coins.
3
Firstly, Coins

initializes the ranking index sets from the labeled data set L (Step

1) and replenishes the pool of unlabeled data with unlabeled data

2
Other than picking up all elements from I1j to form ∆1

, only one element is randomly

picked up by Coins to avoid overfitting in supervision information communication.

3
Code package for Coins is publicly-available at: http://cse.seu.

edu.cn/PersonalPage/zhangml/Resources.htm#kdd17



Table 1: The pseudo-code of Coins.

Inputs:

L: the set of L labeled data {(xi ,yi ) | 1 ≤ i ≤ L}

U : the set ofU unlabeled data {xi | L + 1 ≤ i ≤ L +U }

C: the balancing parameter

ϵ : the ϵ-expansion parameter

Outputs:

W1,W2
: the classification models

Process:

1: Initialize I1 and I2 according to Eq.(3);

2: Initialize J = {L + 1, . . . ,L +U };
3: repeat

4: Optimize Eq.(10) with augmented Lagrangian method to

obtain W1
andW2

;

5: for z ∈ {1, 2} do
6: Compute the empirical ranking loss RL(Wz ,Izj ) (j ∈ J );

7: Identify n unlabeled data with least empirical ranking loss

RL(Wz ,Izj );

8: Form ranking index set ∆z by randomly picking up one

element from Izj ;

9: end for

10: Communicate ∆1
toW2

by updating I2 = I2
⋃

∆1
;

11: Communicate ∆2
toW1

by updating I1 = I1
⋃

∆2
;

12: for (j,k, l ) ∈ ∆1
⋃

∆2
do

13: U = U \ {x j };
14: J = J \ {j};
15: end for

16: until convergence

17: Return W1
andW2

.

setU (Step 2). Then, in each co-training round Coins alternates be-

tween two phases until convergence: a) Generate two classification

models based on current ranking index sets and pool of unlabeled

data (Step 4); b) Communicate supervision information between

two classification models by updating ranking index sets and pool

of unlabeled data (Steps 5-15). Finally, two classification models are

returned whose modeling outputs are averaged to make prediction

for unseen instance.
4

4 EXPERIMENTS

4.1 Experimental Setup

4.1.1 Data Sets. To thoroughly evaluate the performance of the

proposed approach, a total of ten benchmark multi-label data sets

have been employed for experimental studies. Given the multi-label

data set D = {(xi ,yi ) | 1 ≤ i ≤ N }, we use |D|, dim(D), CL(D)
to represent its number of examples, features, class labels and F (D)

4
In this paper, the number of unlabeled data identified in Step 7 (i.e. n) is set to be

max

(
1

10
· L, 5

)
. Furthermore, the iterative co-training procedure terminates when

the pool of unlabeled data is empty or the number of co-training rounds reaches 30.

to represent its feature type. Furthermore, several other properties

of multi-label data sets are denoted as [29]:

• Label cardinality: LCard (D) = 1

N
∑N
i=1
∑q
k=1 I(yik = +1)

which counts the average number of relevant labels per ex-

ample;

• Label density: LDen(D) =
LCard (D)
CL(D) which normalizes label

cardinality by the number of class labels;

• Distinct label sets: DL(D) = |{y | ∃x : (x ,y) ∈ D}| which
counts the number of distinct label vectors (relevant label

set) existing in D;

• Proportion of distinct label sets: PDL(D) =
DL(D)
|D |

which

normalizes DL(D) by the number of examples.

Table 2 summarizes the detailed characteristics of the experi-

mental data sets.
5
As shown in Table 2, the experimental data sets

have diversified multi-label properties which serve as a solid basis

for comprehensive comparative studies. To the best of our knowl-

edge, in most cases existing works on semi-supervised multi-label

learning [7, 14, 15, 17, 21, 22, 28] only employed data sets with less

than 5000 examples in their experimental studies.

4.1.2 Comparing Algorithms. In this paper, the performance of

Coins is compared against four state-of-the-art algorithms, includ-

ing one fully supervised, two transductive semi-supervised, and one

inductive semi-supervised multi-label learning approaches:

• Ecc [20]: Ecc works in a fully supervised manner by trans-

forming the multi-label learning problem into a chain of

binary classification problems, where predictions of preced-

ing classifiers are used as extra features to learn subsequent

classifiers in the chain. For Ecc, ensemble learning is em-

ployed to exploit the randomness of chaining order and is

shown to achieve highly competitive performance in learn-

ing from multi-label data [12, 29];

• Smse [7]: Smseworks in a transductive semi-supervised man-

ner by enforcing manifold regularization on the labeled and

unlabeled data, where the resulting optimization problem

is equivalent to solve a Sylvester equation. For Smse, the

affinity matrix used to enable manifold regularization is in-

stantiated based on a fully-connected and symmetric graph

over labeled and unlabeled data;

• Tram [17]: Tram works in a transductive semi-supervised

manner by conducting label propagation on the labeled and

unlabeled data, where the resulting optimization problem is

equivalent to solve a system of linear equations with closed-

form solution. For Tram, the affinity matrix used to enable

label propagation is instantiated based on a sparse and asym-

metric kNN graph over labeled and unlabeled data;

• iMlcu [26]: iMlcu works in an inductive semi-supervised

manner by imposing large margin criterion on the labeled

and unlabeled data, where the resulting optimization prob-

lem is non-convex and admits an iterative CCCP solution.

For iMlcu, empirical ranking loss and pseudo hinge loss

are used to instantiate the objective terms on labeled and

unlabeled data respectively.

5
Publicly available at http://mulan.sourceforge.net/datasets.html and http://meka.

sourceforge.net/#datasets

http://mulan.sourceforge.net/datasets.html
http://meka.sourceforge.net/#datasets
http://meka.sourceforge.net/#datasets


Table 2: Characteristics of the benchmark multi-label data sets.

Data set |D| dim(D) CL(D) F (D) LCard (D) LDen(D) DL(D) PDL(D) Domain

enron 1702 1001 16 nominal 2.854 0.178 356 0.209 text

image 2000 294 5 numeric 1.236 0.247 20 0.010 images

scene 2407 294 6 numeric 1.074 0.179 15 0.006 images

yeast 2417 103 14 numeric 4.237 0.303 198 0.082 biology

slashdot 3782 1079 14 nominal 1.135 0.081 120 0.032 text

corel5k 5000 499 38 nominal 2.090 0.055 894 0.179 images

rcv1-subset1 6000 472 30 numeric 2.171 0.072 379 0.063 text

arts1 7484 231 17 numeric 1.585 0.093 478 0.064 text

eurlex-dc 19348 100 41 numeric 0.703 0.017 182 0.009 text

eurlex-sm 19348 100 20 numeric 1.337 0.067 352 0.018 text

4.1.3 Evaluation Protocol. For each data set in Table 2, we ran-

domly sample α ×100% examples to form the labeled data set L. For

the remaining examples, 40% of them are randomly sampled to form

the unlabeled data setU and 10% of them are randomly sampled to

form the test data set T . In the following experiments, the training

and testing procedures are conducted for the comparing algorithms

as follows:

• For fully supervised learning algorithm Ecc, it is trained on

the labeled data set L and evaluated on the test data set T ;

• For inductive semi-supervised learning algorithms Coins

and iMlcu, both of them are trained onL
⋃
U and evaluated

on T ;

• For transductive semi-supervised learning algorithms Smse

and Tram, both of them can only make predictions on unla-

beled data which have been used in the training phase. To en-

sure that all comparing algorithms are evaluated on the same

test data set, Smse and Tram are trained on L
⋃
U
⋃
T and

evaluated in T . Therefore, Smse and Tram have access to

more unlabeled data (i.e.U
⋃
T ) during the training phase

than Coins and iMlcu (i.e.U ).

In this paper, we vary the sampling rate α for labeled data from

1% to 5% with a step-size of 1%. Under each sampling rate, ten

times of random sampling are performed on each data set, where

the mean performance as well as standard deviation out of ten

runs of experiments are recorded for the comparing algorithms.

Accordingly, six widely-used multi-label metrics are employed for

performance evaluation including hamming loss, one-error, coverage,
ranking loss, average precision, and macro-averaging AUC. These
metrics evaluate the performance of multi-label predictive models

from various aspects, whose detailed definitions can be found in

[29]. For hamming loss, one-error, coverage and ranking loss, the
smaller the metric values the better the performance. For average
precision and macro-averaging AUC, the greater the metric values

the better the performance.

As shown in Table 1, the balancing parameter C for Coins is

set via cross-validation and the ϵ-expansion parameter is set to

be 10 across all data sets. In addition, parameter configurations

suggested in respective literatures are used for the other comparing

algorithms [7, 17, 20, 26].

4.2 Experimental Results

Tables 3, 4 and 5 report the detailed experimental results of each

comparing algorithm on all data sets in terms of hamming loss,
ranking loss and macro-averaging AUC respectively.

6
By fixing the

sampling rate α for labeled data as well as the evaluation metric,

performance comparisons are carried out among multiple algo-

rithms over a number of data sets. Consequently, the favorable

Friedman test [10] is utilized in this paper to systematically analyze

the relative performance among the comparing algorithms.

Table 6 summarizes the Friedman statistics FF and the corre-

sponding critical value across each sampling rate α and evaluation

metric. As shown in Table 6 (inductive setting), at 0.05 significance

level, the null hypothesis of indistinguishable performance among

the comparing algorithms should be rejected under each config-

uration. Thereafter, the Bonferroni-Dunn test [10] is employed as

the post-hoc test to elicit the relative performance, where Coins is

treated as the control algorithm in the statistical test. The average

rank over all data sets is recorded for each algorithm, where the dif-

ference between Coins and one comparing algorithm is calibrated

with the critical difference (CD). Here, the performance difference

is deemed to be significant if their average ranks differ by at least

one CD (CD=1.7664 in this paper; # comparing algorithms k=5, #
data sets N=10).

To visually manifest the relative performance among the com-

paring algorithms, Figure 1 illustrates the CD diagram [10] on each

sampling rate α for labeled data in terms of hamming loss, ranking
loss and macro-averaging AUC. Similarly, CD diagrams in terms of

the other evaluation metrics have also been made available at the

aforementioned link in footnote 6. In each CD diagram, the average

rank of comparing algorithms is marked along the axis with lower

ranks to the right. Furthermore, any comparing algorithm with

average rank within one CD to that of Coins is interconnected to

each other with a thick line. Otherwise, its performance is deemed

to be significantly different to Coins.

Accordingly, the following observations can be made based on

the experimental results:

6
Due to page limit, detailed experimental results in terms of the other evaluation

metrics have been made available at: http://cse.seu.edu.cn/PersonalPage/zhangml/

files/Coins_FullResults.pdf

http://cse.seu.edu.cn/PersonalPage/zhangml/files/Coins_FullResults.pdf
http://cse.seu.edu.cn/PersonalPage/zhangml/files/Coins_FullResults.pdf


Table 3: Inductive performance of each comparing algorithm (mean ± std. deviation) in terms of hamming Loss, where the

sampling rate α for labeled data varies from 1% to 5% with step-size of 1%.

Comparing α = 1%

algorithm enron image scene yeast slashdot corel5k rcv1-subset1 arts1 eurlex-dc eurlex-sm

Coins 0.178±0.014 0.273±0.022 0.172±0.019 0.245±0.013 0.081±0.002 0.055±0.002 0.073±0.003 0.094±0.002 0.018±0.001 0.066±0.001

Ecc 0.183±0.011 0.288±0.016 0.164±0.018 0.254±0.014 0.090±0.007 0.071±0.004 0.095±0.004 0.131±0.019 0.022±0.001 0.070±0.002

Smse 0.430±0.036 0.309±0.052 0.281±0.012 0.239±0.018 0.160±0.067 0.122±0.071 0.072±0.001 0.092±0.001 0.017±0.000 0.066±0.001

Tram 0.205±0.022 0.313±0.019 0.182±0.025 0.257±0.010 0.110±0.016 0.090±0.009 0.107±0.007 0.138±0.010 0.018±0.003 0.068±0.005

iMlcu 0.161±0.010 0.285±0.020 0.271±0.035 0.255±0.014 0.080±0.003 0.058±0.002 0.073±0.003 0.092±0.001 0.017±0.000 0.066±0.001

Comparing α = 2%

algorithm enron image scene yeast slashdot corel5k rcv1-subset1 arts1 eurlex-dc eurlex-sm

Coins 0.164±0.012 0.229±0.009 0.149±0.008 0.236±0.016 0.079±0.003 0.055±0.001 0.071±0.001 0.094±0.002 0.018±0.000 0.067±0.001

Ecc 0.170±0.010 0.249±0.015 0.146±0.012 0.237±0.010 0.089±0.005 0.083±0.003 0.088±0.003 0.141±0.003 0.020±0.001 0.065±0.002

Smse 0.458±0.038 0.254±0.022 0.186±0.006 0.236±0.013 0.152±0.063 0.196±0.059 0.072±0.001 0.093±0.001 0.017±0.000 0.067±0.001

Tram 0.193±0.011 0.254±0.026 0.150±0.015 0.240±0.014 0.111±0.003 0.086±0.006 0.100±0.003 0.137±0.005 0.021±0.005 0.065±0.002

iMlcu 0.157±0.009 0.257±0.011 0.207±0.011 0.237±0.016 0.077±0.003 0.061±0.002 0.073±0.002 0.093±0.001 0.017±0.000 0.067±0.001

Comparing α = 3%

algorithm enron image scene yeast slashdot corel5k rcv1-subset1 arts1 eurlex-dc eurlex-sm

Coins 0.152±0.007 0.228±0.015 0.133±0.009 0.239±0.010 0.078±0.005 0.056±0.001 0.071±0.001 0.093±0.002 0.018±0.000 0.067±0.001

Ecc 0.164±0.016 0.228±0.019 0.134±0.016 0.234±0.013 0.094±0.003 0.086±0.002 0.086±0.002 0.141±0.003 0.019±0.000 0.062±0.002

Smse 0.411±0.079 0.250±0.017 0.236±0.045 0.237±0.012 0.120±0.064 0.180±0.112 0.073±0.001 0.093±0.002 0.017±0.000 0.067±0.001

Tram 0.181±0.014 0.248±0.019 0.122±0.010 0.231±0.006 0.106±0.005 0.086±0.003 0.095±0.002 0.136±0.007 0.017±0.003 0.065±0.004

iMlcu 0.157±0.013 0.235±0.019 0.180±0.022 0.237±0.014 0.089±0.015 0.064±0.002 0.076±0.002 0.092±0.002 0.017±0.000 0.067±0.001

Comparing α = 4%

algorithm enron image scene yeast slashdot corel5k rcv1-subset1 arts1 eurlex-dc eurlex-sm

Coins 0.148±0.015 0.220±0.013 0.136±0.007 0.231±0.011 0.074±0.002 0.057±0.001 0.070±0.001 0.092±0.002 0.017±0.001 0.067±0.001

Ecc 0.159±0.012 0.224±0.018 0.128±0.006 0.229±0.011 0.097±0.003 0.086±0.002 0.085±0.002 0.141±0.007 0.019±0.001 0.060±0.001

Smse 0.448±0.036 0.234±0.006 0.272±0.023 0.227±0.007 0.120±0.062 0.135±0.057 0.073±0.001 0.092±0.002 0.017±0.000 0.067±0.001

Tram 0.175±0.016 0.235±0.013 0.120±0.010 0.225±0.009 0.101±0.003 0.086±0.004 0.087±0.003 0.135±0.007 0.018±0.003 0.062±0.003

iMlcu 0.152±0.011 0.220±0.016 0.185±0.014 0.226±0.008 0.081±0.004 0.070±0.002 0.079±0.003 0.092±0.002 0.017±0.000 0.066±0.001

Comparing α = 5%

algorithm enron image scene yeast slashdot corel5k rcv1-subset1 arts1 eurlex-dc eurlex-sm

Coins 0.143±0.010 0.216±0.007 0.133±0.008 0.221±0.008 0.072±0.003 0.057±0.002 0.070±0.002 0.092±0.002 0.017±0.000 0.066±0.001

Ecc 0.155±0.006 0.228±0.010 0.122±0.008 0.223±0.010 0.097±0.005 0.086±0.002 0.082±0.003 0.137±0.005 0.018±0.001 0.059±0.002

Smse 0.453±0.033 0.244±0.016 0.229±0.049 0.224±0.007 0.185±0.056 0.167±0.092 0.072±0.002 0.092±0.002 0.017±0.001 0.066±0.001

Tram 0.167±0.008 0.233±0.017 0.122±0.015 0.223±0.008 0.099±0.005 0.085±0.003 0.082±0.003 0.134±0.004 0.017±0.002 0.063±0.003

iMlcu 0.147±0.007 0.221±0.011 0.184±0.015 0.222±0.015 0.081±0.011 0.073±0.005 0.075±0.005 0.091±0.001 0.017±0.000 0.066±0.001

• Across all sampling rate α and evaluation metrics, it is im-

pressive that Coins achieves optimal (lowest) average rank

in 70% cases and the second best average rank in 26.7% cases.

No algorithm has achieved significantly better performance

than Coins in all cases.

• As shown in Table 1 (steps 5-9), empirical ranking loss has

been utilized by Coins for controlling supervision infor-

mation communication during each co-training round. Ac-

cordingly, Coins achieves optimal average rank in terms of

ranking loss and significantly outperforms Ecc and Smse on

all sampling rate α .
• Comparing to fully supervised and transductive semi-supervised

multi-label algorithms, Coins achieves better average rank

than Ecc, Smse, and Tram in 83.3%, 100%, and 96.7% cases

respectively.

• Comparing to another inductive semi-supervised multi-label

learning algorithm, Coins achieves better average rank than

iMlcu in 76.7% cases and is more computationally efficient

with less training time at an order of magnitude.

In addition to the inductive performance, transductive perfor-

mance of comparing algorithm can also be evaluated by their pre-

dictive performance on the unlabeled data set U . As shown in

Table 6 (transductive setting), at 0.05 significance level, the null

hypothesis of indistinguishable performance among the comparing

algorithms should be rejected under each configuration.

Accordingly, Figure 2 illustrates the CD diagram in terms of

hamming loss, ranking loss and macro-averaging AUC under the

transductive setting. The following observations can be made on

the transductive experimental results:

• Across all sampling rate α and evaluation metrics, Coins

achieves optimal average rank in 66.7% cases and the second



Table 4: Inductive performance of each comparing algorithm (mean ± std. deviation) in terms of ranking loss, where the

sampling rate α for labeled data varies from 1% to 5% with step-size of 1%.

Comparing α = 1%

algorithm enron image scene yeast slashdot corel5k rcv1-subset1 arts1 eurlex-dc eurlex-sm

Coins 0.233±0.017 0.336±0.037 0.201±0.042 0.226±0.012 0.315±0.018 0.335±0.020 0.211±0.021 0.260±0.009 0.284±0.012 0.295±0.017

Ecc 0.373±0.054 0.342±0.026 0.246±0.036 0.247±0.011 0.794±0.054 0.892±0.032 0.616±0.035 0.707±0.167 0.564±0.024 0.429±0.024

Smse 0.496±0.024 0.461±0.044 0.376±0.038 0.230±0.026 0.519±0.031 0.546±0.068 0.466±0.052 0.266±0.010 0.318±0.012 0.340±0.008

Tram 0.267±0.036 0.374±0.024 0.229±0.048 0.217±0.009 0.483±0.027 0.342±0.021 0.290±0.024 0.264±0.011 0.833±0.233 0.681±0.324

iMlcu 0.208±0.018 0.328±0.033 0.193±0.033 0.263±0.019 0.294±0.020 0.359±0.015 0.305±0.065 0.376±0.019 0.222±0.024 0.215±0.022

Comparing α = 2%

algorithm enron image scene yeast slashdot corel5k rcv1-subset1 arts1 eurlex-dc eurlex-sm

Coins 0.197±0.028 0.277±0.035 0.141±0.012 0.211±0.015 0.271±0.026 0.317±0.016 0.169±0.011 0.237±0.005 0.266±0.008 0.290±0.012

Ecc 0.359±0.053 0.291±0.032 0.190±0.025 0.226±0.020 0.726±0.026 0.816±0.031 0.476±0.025 0.586±0.056 0.520±0.015 0.404±0.024

Smse 0.491±0.031 0.414±0.061 0.337±0.049 0.222±0.021 0.542±0.026 0.503±0.054 0.407±0.049 0.259±0.006 0.301±0.005 0.340±0.006

Tram 0.219±0.014 0.295±0.039 0.160±0.044 0.202±0.013 0.293±0.015 0.299±0.015 0.224±0.011 0.247±0.006 0.588±0.381 0.865±0.102

iMlcu 0.187±0.008 0.284±0.027 0.151±0.017 0.234±0.020 0.264±0.017 0.361±0.015 0.247±0.017 0.338±0.027 0.195±0.014 0.200±0.008

Comparing α = 3%

algorithm enron image scene yeast slashdot corel5k rcv1-subset1 arts1 eurlex-dc eurlex-sm

Coins 0.185±0.019 0.250±0.029 0.120±0.013 0.215±0.011 0.239±0.024 0.304±0.018 0.148±0.008 0.229±0.005 0.261±0.012 0.295±0.008

Ecc 0.347±0.028 0.258±0.029 0.163±0.023 0.229±0.012 0.646±0.038 0.717±0.022 0.381±0.032 0.505±0.050 0.487±0.026 0.404±0.013

Smse 0.447±0.163 0.384±0.041 0.308±0.024 0.220±0.010 0.535±0.016 0.525±0.044 0.391±0.033 0.254±0.007 0.299±0.011 0.341±0.012

Tram 0.214±0.015 0.272±0.031 0.115±0.010 0.197±0.009 0.279±0.015 0.277±0.012 0.182±0.008 0.240±0.006 0.730±0.291 0.649±0.303

iMlcu 0.200±0.021 0.255±0.029 0.134±0.016 0.236±0.011 0.264±0.029 0.393±0.015 0.194±0.019 0.332±0.013 0.178±0.012 0.184±0.010

Comparing α = 4%

algorithm enron image scene yeast slashdot corel5k rcv1-subset1 arts1 eurlex-dc eurlex-sm

Coins 0.170±0.025 0.247±0.030 0.118±0.011 0.205±0.015 0.221±0.008 0.296±0.016 0.138±0.006 0.223±0.007 0.256±0.010 0.293±0.010

Ecc 0.322±0.031 0.250±0.025 0.149±0.019 0.219±0.016 0.583±0.033 0.671±0.015 0.338±0.015 0.512±0.053 0.476±0.014 0.388±0.014

Smse 0.501±0.021 0.340±0.030 0.303±0.031 0.212±0.012 0.524±0.030 0.528±0.061 0.367±0.036 0.250±0.007 0.296±0.011 0.339±0.005

Tram 0.198±0.014 0.254±0.026 0.112±0.009 0.193±0.012 0.252±0.013 0.265±0.015 0.147±0.003 0.237±0.011 0.669±0.313 0.767±0.119

iMlcu 0.187±0.017 0.254±0.027 0.127±0.011 0.228±0.016 0.244±0.010 0.379±0.014 0.171±0.011 0.325±0.014 0.167±0.015 0.173±0.008

Comparing α = 5%

algorithm enron image scene yeast slashdot corel5k rcv1-subset1 arts1 eurlex-dc eurlex-sm

Coins 0.158±0.011 0.242±0.016 0.119±0.019 0.195±0.012 0.214±0.014 0.295±0.010 0.129±0.010 0.217±0.013 0.255±0.010 0.291±0.011

Ecc 0.313±0.022 0.253±0.017 0.148±0.019 0.216±0.014 0.550±0.024 0.622±0.024 0.295±0.022 0.423±0.066 0.460±0.021 0.390±0.014

Smse 0.474±0.034 0.333±0.040 0.294±0.018 0.208±0.012 0.502±0.029 0.530±0.043 0.355±0.044 0.247±0.007 0.291±0.010 0.340±0.007

Tram 0.178±0.011 0.251±0.017 0.111±0.013 0.189±0.009 0.251±0.018 0.252±0.013 0.124±0.008 0.227±0.006 0.735±0.258 0.843±0.098

iMlcu 0.181±0.013 0.259±0.021 0.136±0.019 0.223±0.017 0.241±0.030 0.370±0.013 0.168±0.010 0.316±0.011 0.156±0.014 0.173±0.010

best average rank in 26.7% cases. No algorithm has achieved

significantly better performance than Coins in all cases.

• Coins achieves optimal average rank in terms of ranking loss

and significantly outperforms Ecc and Smse on all sampling

rate α . Furthermore, the average rank of Coins is lower than

Ecc, Smse, Tram, and iMlcu in 83.3%, 100%, 96.7%, and 80.0%

cases respectively.

To summarize, Coins performs favorably against the state-of-

the-art comparing algorithms across diverse data sets, sampling

rate of labeled data and evaluation metrics. These results clearly

validate the effectiveness of employing co-training to facilitate semi-

supervised multi-label learning with strong inductive as well as

transductive predictive performance.

5 CONCLUSION

In this paper, the problem of inductive semi-supervised multi-label

learning is addressed where a novel approach named Coins is pro-

posed by adapting the well-known co-training strategy. To enable

co-training for handling multi-label data, two classification models

are generated by dichotomizing the feature space with diversity

maximization, and then pairwise ranking predictions on unlabeled

data is iteratively communicated for model refinement. Compre-

hensive experimental studies have been conducted to show the

effectiveness of the proposed co-training based semi-supervised

multi-label learning approach.
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Table 5: Inductive performance of each comparing algorithm (mean ± std. deviation) in terms ofmacro-averaging AUC, where

the sampling rate α for labeled data varies from 1% to 5% with step-size of 1%.

Comparing α = 1%

algorithm enron image scene yeast slashdot corel5k rcv1-subset1 arts1 eurlex-dc eurlex-sm

Coins 0.549±0.040 0.669±0.027 0.825±0.027 0.562±0.039 0.622±0.038 0.568±0.014 0.734±0.029 0.559±0.015 0.686±0.024 0.697±0.015

Ecc 0.574±0.019 0.687±0.035 0.809±0.026 0.570±0.040 0.542±0.009 0.512±0.007 0.592±0.016 0.506±0.005 0.591±0.011 0.686±0.011

Smse 0.546±0.018 0.610±0.033 0.518±0.021 0.580±0.038 0.519±0.018 0.504±0.016 0.538±0.018 0.555±0.015 0.692±0.025 0.697±0.018

Tram 0.614±0.031 0.664±0.035 0.873±0.014 0.573±0.045 0.617±0.066 0.599±0.022 0.793±0.022 0.534±0.015 0.531±0.075 0.580±0.105

iMlcu 0.641±0.026 0.666±0.037 0.715±0.063 0.555±0.039 0.671±0.013 0.574±0.015 0.585±0.115 0.566±0.018 0.742±0.019 0.754±0.014

Comparing α = 2%

algorithm enron image scene yeast slashdot corel5k rcv1-subset1 arts1 eurlex-dc eurlex-sm

Coins 0.609±0.024 0.722±0.023 0.861±0.013 0.582±0.026 0.684±0.022 0.591±0.020 0.777±0.018 0.578±0.017 0.712±0.015 0.719±0.014

Ecc 0.604±0.018 0.735±0.024 0.855±0.010 0.590±0.016 0.560±0.005 0.521±0.009 0.642±0.018 0.515±0.009 0.613±0.009 0.701±0.009

Smse 0.548±0.012 0.670±0.032 0.547±0.014 0.601±0.015 0.544±0.014 0.506±0.011 0.554±0.012 0.573±0.013 0.726±0.010 0.713±0.014

Tram 0.636±0.015 0.725±0.029 0.884±0.016 0.603±0.030 0.677±0.024 0.630±0.017 0.842±0.012 0.556±0.015 0.636±0.141 0.530±0.029

iMlcu 0.684±0.018 0.698±0.018 0.810±0.021 0.581±0.019 0.703±0.016 0.588±0.018 0.634±0.026 0.583±0.012 0.783±0.012 0.772±0.009

Comparing α = 3%

algorithm enron image scene yeast slashdot corel5k rcv1-subset1 arts1 eurlex-dc eurlex-sm

Coins 0.646±0.024 0.746±0.026 0.878±0.012 0.588±0.024 0.722±0.022 0.614±0.014 0.807±0.010 0.592±0.016 0.723±0.010 0.724±0.016

Ecc 0.613±0.020 0.763±0.023 0.866±0.017 0.583±0.027 0.598±0.009 0.536±0.009 0.693±0.019 0.519±0.004 0.630±0.011 0.711±0.009

Smse 0.486±0.172 0.665±0.041 0.538±0.027 0.594±0.021 0.534±0.014 0.501±0.015 0.559±0.017 0.591±0.016 0.742±0.011 0.730±0.011

Tram 0.648±0.028 0.736±0.030 0.906±0.010 0.601±0.015 0.710±0.018 0.641±0.019 0.868±0.013 0.575±0.011 0.577±0.105 0.614±0.115

iMlcu 0.684±0.024 0.731±0.032 0.843±0.021 0.586±0.030 0.614±0.061 0.522±0.023 0.749±0.047 0.604±0.012 0.805±0.006 0.796±0.012

Comparing α = 4%

algorithm enron image scene yeast slashdot corel5k rcv1-subset1 arts1 eurlex-dc eurlex-sm

Coins 0.679±0.040 0.752±0.028 0.882±0.013 0.605±0.021 0.731±0.021 0.622±0.017 0.812±0.009 0.597±0.007 0.738±0.012 0.731±0.009

Ecc 0.626±0.018 0.769±0.023 0.878±0.020 0.602±0.020 0.618±0.010 0.548±0.011 0.714±0.014 0.523±0.009 0.640±0.010 0.718±0.006

Smse 0.530±0.022 0.700±0.024 0.551±0.016 0.626±0.027 0.550±0.019 0.505±0.013 0.558±0.009 0.592±0.009 0.763±0.009 0.733±0.008

Tram 0.671±0.029 0.751±0.029 0.907±0.012 0.618±0.020 0.719±0.017 0.659±0.025 0.876±0.007 0.579±0.012 0.602±0.129 0.588±0.053

iMlcu 0.693±0.026 0.749±0.026 0.848±0.021 0.602±0.022 0.636±0.055 0.564±0.018 0.787±0.027 0.608±0.013 0.820±0.007 0.806±0.013

Comparing α = 5%

algorithm enron image scene yeast slashdot corel5k rcv1-subset1 arts1 eurlex-dc eurlex-sm

Coins 0.692±0.026 0.751±0.016 0.885±0.014 0.612±0.012 0.739±0.022 0.628±0.011 0.823±0.012 0.603±0.009 0.744±0.015 0.737±0.015

Ecc 0.635±0.020 0.768±0.016 0.883±0.013 0.611±0.011 0.630±0.008 0.560±0.007 0.743±0.016 0.534±0.010 0.650±0.009 0.721±0.005

Smse 0.546±0.017 0.711±0.030 0.539±0.016 0.630±0.020 0.547±0.016 0.503±0.012 0.559±0.012 0.598±0.010 0.769±0.015 0.738±0.010

Tram 0.685±0.033 0.754±0.014 0.907±0.011 0.625±0.019 0.739±0.011 0.676±0.016 0.887±0.007 0.590±0.012 0.583±0.110 0.563±0.041

iMlcu 0.701±0.025 0.742±0.022 0.842±0.024 0.605±0.012 0.655±0.040 0.607±0.019 0.807±0.010 0.617±0.013 0.827±0.008 0.810±0.009

Table 6: Summary of the Friedman statistics FF and the critical value (at 0.05 significance level) across each sampling rate α
and evaluation metric (# comparing algorithms k = 5, # data sets N = 10).

Evaluation metric

FF
critical valueinductive setting transductive setting

α = 1% α = 2% α = 3% α = 4% α = 5% α = 1% α = 2% α = 3% α = 4% α = 5%

hamming loss 14.8000 7.6000 6.3200 7.2000 13.0400 12.9600 10.2400 7.0400 7.6000 11.1200

2.6335

one-error 17.3600 16.3200 15.7600 15.7600 19.2000 16.4000 15.9200 15.7600 16.0800 16.8000

coverage 11.2000 10.5600 12.4800 11.6000 11.8400 10.5600 10.9600 12.6400 11.4400 12.8000

ranking loss 20.0000 19.8400 19.7600 18.6400 19.6000 20.9600 19.8400 18.6400 18.5600 17.8400

average precision 11.8400 15.2800 16.4000 15.4400 16.7200 16.2400 14.9600 16.9600 18.4800 15.7600

macro-averaging AUC 6.1400 11.2000 10.9600 8.5400 7.6000 7.4400 7.7600 8.6400 6.3200 6.8800
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Figure 1: Comparison of Coins (control algorithm) against other comparing algorithms with the Bonferroni-Dunn test (induc-
tive setting). Algorithms not connected with Coins in the CD diagram are considered to have significantly different perfor-

mance from the control algorithm (CD=1.7664 at 0.05 significance level). Left column: hamming loss; Middle column: ranking
loss; Right column:macro-averaging AUC.
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Figure 2: Comparison of Coins (control algorithm) against other comparing algorithms with the Bonferroni-Dunn test (trans-
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