
Towards Enabling Binary Decomposition for Partial Label Learning
Xuan Wu1,2, Min-Ling Zhang1,2,3

1 School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
2 Key Laboratory of Computer Network and Information Integration (Southeast University),

Ministry of Education, China
3 Collaborative Innovation Center for Wireless Communications Technology, China

{wuxuan, zhangml}@seu.edu.cn

Abstract
The task of partial label (PL) learning is to learn a
multi-class classifier from training examples each
associated with a set of candidate labels, among
which only one corresponds to the ground-truth la-
bel. It is well known that for inducing multi-class
predictive model, the most straightforward solution
is binary decomposition which works by either one-
vs-rest or one-vs-one strategy. Nonetheless, the
ground-truth label for each PL training example is
concealed in its candidate label set and thus not ac-
cessible to the learning algorithm, binary decompo-
sition cannot be directly applied under partial label
learning scenario. In this paper, a novel approach
is proposed to solving partial label learning prob-
lem by adapting the popular one-vs-one decompo-
sition strategy. Specifically, one binary classifier
is derived for each pair of class labels, where PL
training examples with distinct relevancy to the la-
bel pair are used to generate the corresponding bi-
nary training set. After that, one binary classifier is
further derived for each class label by stacking over
predictions of existing binary classifiers to improve
generalization. Experimental studies on both artifi-
cial and real-world PL data sets clearly validate the
effectiveness of the proposed binary decomposition
approach w.r.t state-of-the-art partial label learning
techniques.

1 Introduction
In partial label (PL) learning, each training example is rep-
resented by a single instance while associated with a set of
candidate labels, among which only one label is valid [Cour
et al., 2011; Chen et al., 2014; Yu and Zhang, 2017]. Par-
tial label learning has manifested its capability in solving
real-world problems where only weakly-supervised informa-
tion can be acquired, such as web mining [Jie and Orabona,
2010], multimedia contents analysis [Zeng et al., 2013; Chen
et al., in press], ecoinformatics [Liu and Dietterich, 2012;
Tang and Zhang, 2017], etc.

Formally speaking, let X = Rd be the d-dimensional in-
stance space and Y = {λ1, λ2, . . . , λq} be the label space
with q class labels. Given a set of PL training examples

D = {(xi, Si)|1 ≤ i ≤ m}, partial label learning aim-
s to induce a multi-class classification model f : X 7→ Y
from D. Here, xi ∈ X is a d-dimensional feature vector
(xi1, xi2, . . . , xid)

T and Si ⊆ Y is the associated candidate
label set. Following the key assumption of partial label learn-
ing, the ground-truth label yi for xi is concealed in its candi-
date label set (i.e. yi ∈ Si) and therefore cannot be accessed
by the learning algorithm.

To accomplish the task of learning from partial label da-
ta, a number of approaches have been proposed by fit-
ting widely-used learning techniques to partial label data,
such as k-nearest neighbor [Hüllermeier and Beringer, 2006;
Zhang and Yu, 2015; Gong et al., 2018], maximum margin
[Nguyen and Caruana, 2008; Yu and Zhang, 2017], maximum
likelihood [Jin and Ghahramani, 2003; Liu and Dietterich,
2012], boosting [Tang and Zhang, 2017], etc. However, other
than fitting existing learning techniques to data, a natural pos-
tulation is that whether partial label learning problem can be
solved by fitting data to existing learning techniques. Specifi-
cally, considering that the ultimate goal of partial label learn-
ing is to induce a multi-class classifier, binary decomposition
should serve as the most straightforward solution for fulfill-
ing multi-class classification. Unfortunately, due to the fact
that ground-truth label is not accessible from the PL training
example, neither the one-vs-rest nor the one-vs-one binary
decomposition strategy can be directly employed under par-
tial label learning scenario.

In this paper, we aim to enable binary decomposition for
partial label learning by adapting the popular one-vs-one de-
composition strategy. Accordingly, a novel partial label learn-
ing algorithm named PALOC, i.e. PAtial Label learning via
One-vs-one deComposition, is proposed. During the training
phase, one binary classifier is derived for each pair of class
labels, where PL training examples which have distinct rel-
evancy to the label pair are utilized to instantiate the corre-
sponding binary training set. Furthermore, an auxiliary set
of binary classifiers (one per class label) are derived by stack-
ing over the predictive outputs of existing binary classifiers to
help improve generalization. During the test phase, classifica-
tion results yielded by all binary classifiers are synergized to
make prediction on unseen instance. Extensive experiments
on artificial as well as real-world PL data sets clearly show
that PALOC achieves highly competitive performance against
state-of-the-art partial label learning approaches.



The rest of this paper is organized as follows. Section 2
presents technical details of the proposed PALOC approach.
Section 3 discusses existing works related to PALOC. Section
4 reports detailed results of comparative experiments. Finally,
Section 5 concludes.

2 The PALOC Approach
Following the notations given in Section 1, partial label learn-
ing aims to induce a multi-class classifier f : X 7→ Y fromD
which maps from the instance space to the label space. Gen-
erally, binary decomposition serves as an intuitive solution
which transforms multi-class learning problem into a number
of binary learning problems. The main difficulty of applying
binary decomposition techniques to partial label learning lies
in that the ground-truth label yi of each PL training example
(xi, Si) is concealed in its candidate label set Si. Thereafter,
for the one-vs-rest binary decomposition strategy, it is unclear
whether (xi, Si) should be regarded as a positive or negative
example w.r.t. one specific class label. For the one-vs-one
binary decomposition strategy, it is unclear which class label
should (xi, Si) belong to w.r.t. a pair of class labels.

PALOC enables binary decomposition for partial label
learning by fitting PL data to the one-vs-one (OVO) decom-
position strategy. Specifically, for each pair of class label-
s (λj , λk), the relevancy of (xi, Si) to λj and λk is deter-
mined via their assignment to the candidate label set instead
of their equivalence to the (unknown) ground-truth label. Let
S̄i = Y \ Si denote the complementary label set of Si in Y ,
a binary training set is constructed w.r.t. each pair of class
labels (λj , λk) as follows:

Djk =

{(xi, ψ(Si, λj , λk)) | ϕ(Si, λj) ̸= ϕ(Si, λk), 1 ≤ i ≤ m},

where ϕ(Si, λ) =

{
+ 1, if λ ∈ Si

− 1, otherwise
, and

ψ(Si, λj , λk) =

{
+ 1, if λj ∈ Si and λk ∈ S̄i

− 1, if λj ∈ S̄i and λk ∈ Si.
(1)

In other words, only PL training example (xi, Si) where λj
and λk have distinct assignment to Si is utilized to instantiate
the binary training set Djk. Accordingly, a binary classifier
gjk : X 7→ R is derived by invoking some binary training al-
gorithm B onDjk, i.e. gjk ← [ B(Djk). Without loss of gener-
ality, a total of

(
q
2

)
can be derived from the above one-vs-one

binary decomposition procedure (by assuming j < k). Fur-
thermore, each PL training example (xi, Si) will contribute
to the learning procedure of |Si||S̄i| binary classifiers.

Given the set of
(
q
2

)
binary classifiers, the class label for

any instance x can be predicted by counting the votes yielded
by all classifiers:

y = arg max
λj∈Y

Vovo(x, λj) (2)

= arg max
λj∈Y

j−1∑
h=1

I(ghj(x) < 0) +

q∑
k=j+1

I(gjk(x) > 0)

Although it is feasible to make final prediction based on
Eq.(2), PALOC employs stacking strategy [Zhou, 2012] to fur-
ther improve generalization performance. For each PL train-
ing example (xi, Si), its candidate label set Si can be refined
to Ŝi as follows:

Ŝi =

{ {ŷi}, if ŷi ∈ Si

Si , if ŷi /∈ Si
(3)

Here, ŷi = argmaxλj∈Y Vovo(xi, λj) corresponds to the dis-
ambiguation prediction for xi based on Eq.(2). Therefore, the
candidate label set is refined to be {ŷi} if the disambiguation
prediction falls into Si. Otherwise, the candidate label set
remains unchanged.

Given the set of
(
q
2

)
binary classifiers gjk (1 ≤ j < k ≤ q),

an auxiliary set of q binary classifiers (one per class label)
are further derived via stacked generalization. For each class
label λj (1 ≤ j ≤ q), a corresponding binary training set is
constructed as follows:

Dj = {(x̂i, φ(Ŝi, λj)) | 1 ≤ i ≤ m},
where x̂i = [xi, g12(xi), g13(xi), · · · , g(q−1)q(xi)],

and φ(Ŝi, λj) =

{
+ 1, if λj ∈ Ŝi

− 1, if λj /∈ Ŝi.
(4)

In other words, for each binary training example in Dj , x̂i

is formed by augmenting the original feature vector xi with
the predictive outputs of all

(
q
2

)
classifiers. Furthermore, the

binary label φ(Ŝi, λj) is determined by the assignment of λj
w.r.t. the refined candidate label set Ŝi. Accordingly, a binary
classifier gj : X 7→ R is further derived by invoking some
binary training algorithm B on Dj , i.e. gj ←[ B(Dj).

During the testing phase, the unseen instance x∗ is firstly
fed to the

(
q
2

)
classifiers to generate the augmented feature

vector:

x̂∗ = [x∗, g12(x
∗), g13(x

∗), · · · , g(q−1)q(x
∗)]. (5)

After that, the set of
(
q
2

)
classifiers gjk (1 ≤ j < k ≤ q) and

the other set of q classifiers gj (1 ≤ j ≤ q) are synergized to
make prediction on x∗:

y∗ = f(x∗) (6)
= arg max

λj∈Y
Vovo(x

∗, λj) + µ · Vstack(x̂∗, λj)

= arg max
λj∈Y

j−1∑
h=1

I(ghj(x∗) < 0) +

q∑
k=j+1

I(gjk(x∗) > 0)

+µ · I(gj(x̂∗) > 0)

Here, µ is the balance parameter which controls the relative
importance of Vovo(x∗, λj), i.e. the votes yielded by one-
vs-one binary classifiers, and Vstack(x∗, λj), i.e. the votes
yielded by stacking binary classifiers.

Table 1 summarizes the complete procedure of the pro-
posed PALOC approach. Given the partial label training set,
binary training sets are constructed by adapting one-vs-one
decomposition strategy and then utilized to induce

(
q
2

)
binary

classifiers (Steps 1-6). After that, the derived binary classi-
fiers are employed to augment the feature vector and refine



Table 1: The pseudo-code of PALOC.

Inputs:
D: the partial label training set {(xi, Si) | 1 ≤ i ≤ m}

(xi ∈ X , Si ⊆ Y,X = Rd,Y = {λ1, λ2, . . . , λq})
B: binary training algorithm
µ: the balance parameter
x∗: the unseen instance

Outputs:
y∗: the predicted class label for x∗

Process:
1: for j = 1 to q − 1 do
2: for k = j + 1 to q do
3: Construct the one-vs-one binary training setDjk ac-

cording to Eq.(1);
4: gjk ← [ B(Djk);
5: end for
6: end for
7: for i = 1 to m do
8: Obtain the disambiguation prediction ŷi for xi accord-

ing to Eq.(2);
9: Identify the refined candidate label set Ŝi for xi ac-

cording to Eq.(3);
10: end for
11: for j = 1 to q do
12: Construct the stacking binary training setDj according

to Eq.(4);
13: gj ← B(Dj);
14: end for
15: Generate the augmented feature vector x̂∗ for x∗ accord-

ing to Eq.(5);
16: Return y∗ = f(x∗) according to Eq.(6).

the candidate label set of PL training examples (Steps 7-10).
Accordingly, a set of q binary classifiers are further construct-
ed based on the stacking strategy (Steps 11-14). Finally, the
unseen instance is classified by referring to the predictive out-
puts of all the binary classifiers (Steps 15-16).

3 Related Work
Partial label learning deals with weak supervision informa-
tion where the labeling information of each PL training ex-
ample is implicit and not accessible to the learning algorith-
m. Generally, partial label learning is related to several well-
established weakly-supervised learning frameworks such as
semi-supervised learning, multi-instance learning and multi-
label learning. Nonetheless, different weak supervision sce-
narios are considered by those learning frameworks [Zhou, in
press].

Semi-supervised learning [Zhu and Goldberg, 2009] aim-
s to induce a classifier f : X 7→ Y from both labeled and
unlabeled examples, where the ground-truth label assumes
the whole label space for unlabeled example while assumes
the candidate label set for PL example. Multi-instance learn-
ing [Amores, 2013] aims to induce a classifier f : 2X 7→ Y

from examples each represented as a labeled bag of instances,
where a single label is assigned to a set of instances for multi-
instance example while a set of labels are assigned to a single
instance for PL example. Multi-label learning [Zhang and
Zhou, 2014] aims to induce a classifier f : X 7→ 2Y from
training examples each associated with multiple labels, where
the associated labels are all valid ones for multi-label exam-
ple while the associated labels are only candidate ones for PL
example.

Most existing algorithms learn from PL examples by fit-
ting widely-used learning techniques to partial label data.
For maximum likelihood techniques, the likelihood of ob-
serving each PL training example is defined over its can-
didate label set instead of the unknown ground-truth la-
bel [Jin and Ghahramani, 2003; Liu and Dietterich, 2012].
For k-nearest neighbor techniques, the candidate label set-
s of neighboring instances are merged via weighted vot-
ing for making prediction [Hüllermeier and Beringer, 2006;
Zhang and Yu, 2015]. For maximum margin techniques, the
classification margin over each PL training example is de-
fined by discriminating modeling outputs from candidate la-
bels and non-candidate labels [Nguyen and Caruana, 2008;
Yu and Zhang, 2017]. For boosting techniques, the weight
over each PL training example and the confidence of each
candidate label being the ground-truth label are updated in
each boosting round [Tang and Zhang, 2017].

Other than fitting existing learning techniques to PL data,
there are few works which work by fitting PL data to existing
learning techniques. The CLPL approach [Cour et al., 2011]
maps a d-dimensional instance in X into a d× q-dimensional
feature vector for each class label in Y . For each PL train-
ing example (xi, Si), one positive example is generated by
averaging mapped feature vectors w.r.t. candidate labels in
Si and q − |Si| negative examples are generated by taking
the mapped feature vector w.r.t. each non-candidate label in
Y \ Si. The PL-ECOC approach [Zhang et al., 2017] trans-
forms each instance into a binary example based on the uti-
lization of ECOC coding matrix [Dietterich and Bakiri, 1995;
Zhou, 2012]. For each PL training example (xi, Si), it is
regarded as a positive or negative example if its candidate
label set Si entirely falls into the column dichotomy of the
coding matrix. Although both CLPL and PL-ECOC work by
transforming the partial label learning problem into binary
learning problem, PALOC enables binary decomposition for
PL data in a more concise manner without relying on extra
manipulations such as feature mapping or coding matrix.

4 Experiments
4.1 Comparing Algorithms
To evaluation the performance of PALOC, five state-of-the-art
partial label learning approaches with suggested parameter
configurations have been employed for comparative studies:
• CLPL [Cour et al., 2011] which transforms partial label

learning problem to binary learning problem via feature
mapping with convex loss optimization [suggested con-
figuration: SVM with squared hinge loss];

• PL-KNN [Hüllermeier and Beringer, 2006] which adapts
k-nearest neighbor technique to learn from PL data via
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Figure 1: Classification accuracy of each comparing algorithm changes as p (proportion of partially labeled examples) increases from 0.1 to
0.7 (with one false positive candidate label [r = 1]).

weighted voting [suggested configuration: k = 10];
• PL-SVM [Nguyen and Caruana, 2008] which adapts

maximum margin technique to learn from PL data vi-
a l2 regularization [suggested configuration: regulariza-
tion parameter pool with {10−3, . . . , 103}];

• LSB-CMM [Liu and Dietterich, 2012] which adapts max-
imum likelihood to learn from PL data via mixture mod-
els [suggested configuration: 5q mixture components];

• PL-ECOC [Zhang et al., 2017] which transforms partial
label learning problem to binary learning problem via E-
COC coding matrix [suggested configuration: codeword
length L = ⌈10 log2(q)⌉].

As shown in Table 1, the only parameter to be set for
PALOC is µ, which controls relative importance of the gener-
ated one-vs-one classifiers and stacking classifiers. In the rest
of this paper, µ is fixed to be 10 for performance evaluation.
Furthermore, similar to CLPL and PL-ECOC, SVM [Chang
and Lin, 2011] is utilized to instantiate the binary base learn-
er B for PALOC.

Next, two series of experiments are conducted on con-
trolled UCI data sets as well as real-world partial label data
sets. For each data set, ten-fold cross-validation is performed
where the mean predictive accuracies and standard deviations
are recorded for all comparing approaches.

4.2 Controlled UCI Data Sets
Table 2 summarizes the characteristics of six controlled UCI
data sets [Bache and Lichman, 2013]. Concretely, following

Table 2: Characteristics of the controlled UCI data sets.

Data Set #Examples #Features #Class Labels
glass 214 10 5
ecoli 336 7 8

vehicle 846 18 4
abalone 4,177 7 29

usps 9,298 256 10
letter 20,000 16 26

Configurations
(I) r = 1, p ∈ {0.1, 0.2, . . . , 0.7}
(II) r = 2, p ∈ {0.1, 0.2, . . . , 0.7}
(III) r = 3, p ∈ {0.1, 0.2, . . . , 0.7}
(IV) p = 1, r = 1, ϵ ∈ {0.1, 0.2, . . . , 0.7}

the widely-used controlling protocol, an artificial partial label
data set is generated from one multi-class UCI data set under
specified configuration of three controlling parameters p, r
and ϵ [Cour et al., 2011; Liu and Dietterich, 2012; Chen et
al., 2014; Zhang et al., 2017]. Here, p controls the proportion
of examples which are partially labeled (i.e. |Si| > 1), r
controls the number of false positive labels in the candidate
label set (i.e. |Si| = r + 1), and ϵ controls the co-occurring
probability between one extra candidate label and the ground-
truth label. As shown in Table 2, a total of 28 (4x7) parameter
configurations are considered for each controlled UCI data
set.

Figure 1 illustrates the classification accuracy of each com-
paring algorithm as p increases from 0.1 to 0.7 with step-size
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Figure 2: Classification accuracy of each comparing algorithm changes as ϵ (co-occurring probability of the coupling label) increases from
0.1 to 0.7 (with 100% partially labeled examples [p = 1] and one false positive candidate label [r = 1]).

Table 3: Win/tie/loss counts (pairwise t-test at 0.05 significance level) on the classification performance of PALOC against each comparing
approach.

PALOC against
CLPL PL-KNN PL-SVM LSB-CMM PL-ECOC

varying p [r=1] 35/7/0 28/14/0 34/8/0 25/16/1 7/30/5
varying p [r=2] 30/12/0 29/13/0 32/10/0 22/20/0 7/30/5
varying p [r=3] 35/7/0 31/11/0 37/5/0 21/21/0 9/29/4

varying ϵ [p, r=1] 22/15/5 30/9/3 29/13/0 22/18/2 10/26/6
In Total 122/41/5 118/47/3 132/36/0 90/75/3 33/115/20

0.1 (r = 1). Along with the ground-truth label, one class
label in Y will be randomly picked up to constitute the can-
didate label set. Due to page limit, figures for the cases of
r = 2 and r = 3 are not illustrated here while similar re-
sults to Figure 1 can be observed as well. Figure 2 illustrates
the classification accuracy of each comparing algorithm as ϵ
increases from 0.1 to 0.7 with step-size 0.1 (p = 1, r = 1).
Given any label λ ∈ Y , one extra label λ′ ∈ Y is designated
as the coupling label which co-occurs with λ in the candidate
label set with probability ϵ. Otherwise, any other class label
would be randomly chosen to co-occur with λ.

As illustrated in Figures 1 and 2, the performance of
PALOC is highly competitive to other comparing algorithm-
s in most cases. Furthermore, pairwise t-test at 0.05 sig-
nificance level is conducted based on the results of ten-fold
cross-validation. Table 3 reports the win/tie/loss counts be-

tween PALOC and each comparing approach. Specifically,
out of the 168 statistical tests (28 configurations x 6 UCI
data sets), it is shown that: 1) PALOC achieves superior or
at least comparable performance against PL-SVM in all cas-
es; 2) PALOC achieves superior performance against PL-KNN
and LSB-CMM in 70.2% and 53.6% cases while has been out-
performed by either of them in only 1.8% cases; 3) PALOC
achieves superior performance against CLPL and PL-ECOC
in 72.6% and 19.6% cases while has been outperformed by
them in only 3.0% and 11.9% cases respectively.

4.3 Real-World Data Sets
Table 4 summarizes the characteristics of real-world partial
label data sets, which are collected from several application
domains including FG-NET [Panis and Lanitis, 2015] for
facial age estimation, Lost [Cour et al., 2011], Soccer
Player [Zeng et al., 2013] and Yahoo!News [Guillau-



Table 4: Characteristic of the real-world partial label data sets.

Data Set #Examples #Features #Class Labels avg. #CLs Task Domain
FG-NET 1,002 262 78 7.48 facial age estimation [Panis and Lanitis, 2015]

Lost 1,122 108 16 2.23 automatic face naming [Cour et al., 2011]
MSRCv2 1,758 48 23 3.16 object classification [Liu and Dietterich, 2012]
BirdSong 4,998 38 13 2.18 bird song classification [Briggs et al., 2012]

Soccer Player 17,472 279 171 2.09 automatic face naming [Zeng et al., 2013]
Yahoo! News 22,991 163 219 1.91 automatic face naming [Guillaumin et al., 2010]

Table 5: Classification accuracy (mean±std) of each comparing algorithm on the real-world partial label data sets. In addition, •/◦ indicates
whether PALOC is statistically superior/inferior to the comparing algorithm on each data set (pairwise t-test at 0.05 significance level).

FG-NET Lost MSRCv2 BirdSong Soccer Player Yahoo! News
PALOC 0.065±0.019 0.629±0.056 0.479±0.042 0.711±0.016 0.537±0.015 0.625±0.005
CLPL 0.063±0.027 0.742±0.038◦ 0.413±0.041• 0.632±0.019• 0.368±0.010• 0.462±0.009•
PL-KNN 0.038±0.025• 0.424±0.036• 0.448±0.037• 0.614±0.021• 0.497±0.015• 0.457±0.004•
PL-SVM 0.063±0.029 0.729±0.042◦ 0.461±0.046 0.660±0.037• 0.464±0.011• 0.629±0.010
LSB-CMM 0.059±0.025 0.693±0.035◦ 0.473±0.037 0.672±0.056 0.498±0.017• 0.645±0.005◦
PL-ECOC 0.040±0.018• 0.653±0.053 0.440±0.039 0.731±0.013◦ 0.494±0.015• 0.610±0.009•

min et al., 2010] for automatic face naming from images or
videos, MSRCv2 [Liu and Dietterich, 2012] for object classi-
fication, and BirdSong [Briggs et al., 2012] for bird song
classification. The average number of candidate labels (avg.
#CLs) for each real-world partial label data set is also record-
ed in Table 4.

Table 5 reports the mean classification accuracy as well as
standard deviation of each comparing algorithm. Pairwise
t-test at 0.05 significance level is conducted based on the
ten-fold cross-validation, where the test outcomes between
PALOC and the comparing approaches are also recorded.

As shown in Table 5, it is impressive to observe that:
1) On all data sets, PALOC significantly outperforms PL-
KNN; 2) PALOC achieves superior performance or at least
comparable performance to CLPL and PL-SVM on all data
sets except Lost; 3) PALOC significantly outperforms PL-
ECOC on FG-NET, Soccer Player and Yahoo!News,
and achieves comparable performance to PL-ECOC on Lost
and MSRCv2; 4) PALOC achieves superior performance or
at least comparable performance to LSB-CMM on FG-NET,
MSRCv2, BirdSong and Soccer Player.

4.4 Sensitivity Analysis
As shown in Eq.(6), PALOC employs parameter µ to balance
the voting predictions from one-vs-one classifiers and stack-
ing classifiers respectively. To investigate the performance
sensitivity of PALOC w.r.t. µ, Figure 3 shows how the classi-
fication accuracy of PALOC changes as µ varies from 0 to 10
with step-size 1. Here, three real-world PL data sets Lost,
MSRCv2 and BirdSong are employed for illustrative pur-
pose. As shown in Figure 3, it is obvious that the performance
of PALOC improves as µ increases from 0 and becomes rela-
tively stable as µ reaches 4. Note that µ = 0 corresponds to
the case where only one-vs-one classifiers contribute to the fi-
nal prediction, and these observations indicate that the stack-
ing classifiers do help improve the performance of PALOC.
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Figure 3: Parameter sensitivity analysis for PALOC on the Lost,
MSRCv2 and BirdSong data sets. Classification accuracy of
PALOC changes as the balance parameter µ increases from 0 to 10
with step-size 1.

5 Conclusion
In this paper, the problem of partial label learning is stud-
ied where a novel approach based on binary decomposition
is proposed. Specifically, one-vs-one decomposition strategy
is enabled to deal with partial label learning problem by con-
sidering the relevancy of each label pair w.r.t. the candidate
label set of PL training examples. Effectiveness of the pro-
posed approach is validated via comprehensive experiments
on both controlled UCI data sets and real-world PL data sets.

As shown in Eq.(1), not all PL training examples will con-
tribute to the construction of binary training set w.r.t. each la-
bel pair. Therefore, it is interesting to explore possible ways
to make full use of the excluded PL training examples to fur-
ther enhance the proposed binary decomposition approach.
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