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Abstract

Multi-view multi-label learning serves an impor-
tant framework to learn from objects with di-
verse representations and rich semantics. Exist-
ing multi-view multi-label learning techniques fo-
cus on exploiting shared subspace for fusing multi-
view representations, where helpful view-specific
information for discriminative modeling is usu-
ally ignored. In this paper, a novel multi-view
multi-label learning approach named SIMM is pro-
posed which leverages shared subspace exploita-
tion and view-specific information extraction. For
shared subspace exploitation, SIMM jointly min-
imizes confusion adversarial loss and multi-label
loss to utilize shared information from all views.
For view-specific information extraction, SIMM en-
forces an orthogonal constraint w.r.t. the shared
subspace to utilize view-specific discriminative in-
formation. Extensive experiments on real-world
data sets clearly show the favorable performance
of SIMM against other state-of-the-art multi-view
multi-label learning approaches.

1 Introduction
In many real-world applications, objects are with diverse rep-
resentations and rich semantics simultaneously. For example,
in image analysis, a natural scene image can often be repre-
sented by its visual features such HSV color histogram, globe
feature (Gist) and scale invariant feature transform (SIFT),
while it may be annotated with labels {sky, water, cloud}. In
video annotation, the representations of a film e.g. Avenger-
s: Infinity War are usually from multiple channels of infor-
mation such as text description, audio, cover picture, frame
extraction, meanwhile it can be annotated with action movie
(type), America (country) and Anthony Russot and Joseph
Russo (directors). The main challenge of such problems is
how to integrate the multiple types of heterogeneities in an
efficient and general way. Multi-view multi-label learning
serves an important framework to solve the above problem.

Formally speaking, let X = Rd1×Rd2 · · ·×Rdk be the fea-
ture space of k views representations, where dv(1 ≤ v ≤ k)
is the feature dimension of v-th view. Let Y = {yj}qj=1 be
the label space with q class labels. Given the training set
D = {(xi,Yi)|1 ≤ i ≤ m}, where xi ∈ X is the feature
vector [x1

i ,x
2
i , · · · ,xk

i ] and Yi ⊆ Y is the set of relevant la-
bels associated with xi. The task of multi-view multi-label
learning is to learn a predictive model h : X → 2Y from
D which can assign a set of proper labels for the unseen in-
stance.

There have been some attempts for multi-view multi-label
problem. In [Xing et al., 2018], the authors introduce a pre-
dictive reliability measure to select samples which are used
to share label information with other views in the co-training
manner. [Zhu et al., 2016; Liu et al., 2015; Luo et al.,
2013] focus on the issue of multi-view image classification
and map each view into a shared space to eliminate noise
and redundancy while maintaining sparse, low-rank and man-
ifold structure of image data respectively. [Zhu et al., 2018;
Zhang et al., 2018] aims to further remain consensus on
multi-view latent spaces by using Hilbert–Schmidt indepen-
dence criterion during the mapping procedure.

Nonetheless, the above methods suffer from the following
two different issues. Firstly, when trying to find shared infor-
mation among all views to eliminate noise and redundancy, a
common practice is to map each view into a shared subspace.
However, this procedure is always done in an independent
way, i.e. there is no communication among various views. It
is hard to ensure that common semantic information is fully
tapped. Secondly, the underlying fact that each view contains
their own specific contribution to the multi-label prediction,
is ignored. For example, a picture of pink rose may be tagged
with two labels {pink, flower}, while its representation can
be described by HSV and Gist. We can easily find the corre-
spondence between them, i.e. pink is described by HSV view
feature, while flower is described by Gist view feature. How-
ever, existing methods only try to find the shared information
between HSV (color) and Gist (texture), while it is more rea-
sonable to consider extracting their own specific information.

To deal with the above two issues, we present a novel
multi-view multi-label neural network framework, which we



!"

#

!$

+

%
&
'
$

%
(
)
*

%
)
*

+"

+$

…

#"

#$

…

!"

#

!$

…
…

,"

,$

-"

-$

.

/

0(

0

12

345

34

%
(
6
7
8
9:
98

%
(
6
7
8
9:
98

Figure 1: The general flowchart of the proposed SIMM method. Firstly, SIMM jointly minimizes confusion adversarial loss Ladv and multi-
label loss Lsml to utilize shared information from all views. Secondly, SIMM enforces an orthogonal constraint Lsml to utilize view-specific
discriminative information. Finally, shared and specific information are synergized to characterize semantics.

call SIMM (view-Specific Information extraction for Multi-
view Multi-label learning), to leverage shared subspace ex-
ploitation and view-specific information extraction. First-
ly, SIMM jointly minimizes confusion adversarial loss and
multi-label loss to utilize shared information from all views.
Secondly, SIMM enforces an orthogonal constraint w.r.t. the
shared subspace to utilize view-specific discriminative infor-
mation. Finally, the shared and view-specific information are
synergized to learn the semantics. Extensive experiments on
real-world multi-view multi-label data sets clearly show that
SIMM achieves highly competitive performance.

The rest of this paper is organized as follows. Section 2
presents technical details of the proposed approach. Section
3 discusses existing works related to SIMM. Section 4 reports
detailed results of comparative experiments. Finally, Section
5 concludes.

2 The Proposed Method
The goal of multi-view multi-label learning is to fully inte-
grate various representations of a single object and assign the
proper rich semantics to it. As mentioned above, information
from different views usually contains the shared and specif-
ic parts. Thus, two key steps of SIMM are shared subspace
exploitation and view-specific information extraction.

SIMM implements those two key points by using a neu-
ral network framework. Considering the network, the overall
loss function naturally turns out to be the following form:

L = Lml + αLshared + βLspecific (1)
where α and β are trade-off factors that control the interaction
of the loss terms. Final multi-label classification loss Lml

controls the model to predict the output labels. Let yji denote
the ground-truth label of xi on the j-th label. yji = 1 if j-th
label is the relevance label, yji = 0 otherwise. Let ŷji denote
the prediction output. The Lml can be calculated as follows:

Lml = −
∑m

i=1

∑q

j=1
yji log ŷ

j
i +(1−yji ) log(1− ŷji ) (2)

2.1 Shared Subspace Exploitation
In traditional multi-view learning, the shared subspace ex-
ploitation is often implemented in an independent way. Thus,
the communication among all views is neglected. Inspired by
[Liu et al., 2017], SIMM implements the mapping in a confu-
sion way by minimizing the adversarial loss Ladv. In partic-
ular, SIMM aims to confuse the discriminator that the coming
shared subspace representation belongs to which view.

Let cv be the l dimension shared subspace representation
of original v-th view feature xv. It is extracted by a shared
subspace extraction layer H , i.e. cv = H(Mv(xv)), where
Mv(·) is used to map each v dimension original feature vec-
tor into the same l dimension. Let zi be the k dimension view
label vector of cvi , where only zvi equals to 1 while others e-
qual to 0. This indicates that cvi comes from the v-th view. A
training set Dadv = {(cvi , zi)|1 ≤ v ≤ k, 1 ≤ i ≤ m} can
be constructed for discriminator D. Let ẑ be the prediction
output by D, i.e. ẑi = D(cvi ), Ladv can be formed as:

Ladv = F(−
m∑
i=1

k∑
v=1

zvi log ẑ
v
i ) (3)

where F(·) should be a monotonically decreasing function1.
In this way, we confuse the discriminator so as not to recog-
nize the true view of the coming shared subspace represen-
tation, which indicates that there is no special information in
it. In other words, the incorporated representation cv only
contains the shared information of xv .

However, it might be problematic if only Dadv is used as
noise can also confuse the discriminator easily. Therefore,
we use Lsml (Shared subspace Multi-Label Loss) to guaran-
tee that cv contains certain semantics. In particular, a training
set Dsml = {(cvi ,yi)|1 ≤ v ≤ k, 1 ≤ i ≤ m} can be con-
structed for shared subspace representation prediction layer

1In this paper, F(x) = e−x



Table 1: Characteristic of the real-world multi-view multi-label data sets.

Data Set |D| V (D) V Dim(D) CL(D) LCard(D) LDen(D) DL(D) PDL(D) Domain
Emotions 593 2 8 / 64 6 1.869 0.311 27 0.046 music

Yeast 2,417 2 24 / 79 14 4.237 0.303 198 0.082 biology
Corel5k 4,999 4 100 / 512 / 1,000 / 4,096 260 3.397 0.013 2,992 0.599 image

EspGame 20,770 4 100 / 512 / 1,000 / 4,096 268 4.686 0.018 18,158 0.874 image
Pascal 9,963 5 100 / 512 / 1,000 / 4,096 / 804 20 1.465 0.073 271 0.027 image

Mirflickr 25,000 5 100 / 512 / 1,000 / 4,096 / 457 38 4.716 0.142 4,464 0.179 image
Youku3w 29,617 4 64 / 128 / 2,048 / 2,048 114 1.188 0.010 1,044 0.035 video
Youku15w 148,089 4 64 / 128 / 2,048 / 2,048 114 1.188 0.010 2,074 0.014 video

Gs. Let ŷ′ be the prediction output by Gs, i.e. ŷ′v
i = Gs(c

v
i ).

Lsml can be formed as:

Lsml =

−
m∑
i=1

k∑
v=1

q∑
j=1

yji log ŷ
′j,v
i + (1− yji ) log(1− ŷ′j,vi ) (4)

The shared subspace exploitation by SIMM is no longer
conducted in an independent way as H and D meet the infor-
mation from all views with Gs maintaining semantics. Com-
bining the above losses together, Lshared can be written as:

Lshared = Ladv + Lsml (5)

2.2 View-Specific Information Extraction
In SIMM, helpful view-specific information is further consid-
ered. Actually, it is difficult to define what is the specific
information of a particular view. However, we can extract it
from original information by eliminating shared information.
This can be implemented by enforcing an orthogonal con-
straint. Let sv be the l dimension feature vector extracted by
specific information extraction layer Ev, i.e. sv = Ev(xv).
Let c be the l dimension feature vector containing shared in-
formation among all views. c is performed by element-wise
addition on each individual cv, i.e. c =

∑k
v=1 c

v. The
Lspecific encourages orthogonality between sv and c:

Lspecific =
∥∥∥svTc∥∥∥2

2
(6)

where ∥·∥22 is the squared L2-norm. Lspecific encourages sv
extracted from the original v-th view feature vector xv to be
as different from c as possible.

2.3 The Whole Framework
The whole framework of SIMM is shown in Figure 1. The
goal of training is to minimize the whole loss function (1)
with respect to parameters Θ = {θE ,θM ,θH ,θD,θGs ,θG}.
Each unit is a neural network framework and we use popular
optimization algorithm Adam [Kingma and Ba, 2015] to do
the back propagation to update Θ simultaneously in the train-
ing phase. In the testing phase, given an unseen instance x∗,
its prediction output ŷ∗ can be obtained as:

ŷ∗ = G([E1(x∗1), · · · , Ev(x∗v), · · · , Ek(x∗k), c]) (7)

where c =
∑k

v=1 H(Mv(x∗v))

3 Related Work
In the past years, multi-label learning has been widely used
in many kinds of applications, such as text categorization[Ue-
da and Saito, 2003], bioinformatics [Zhang and Zhou, 2006],
web mining[Tang et al., 2009], etc. Following [Zhang and
Zhou, 2014], existing multi-label methods can be catego-
rized into two groups, i.e, problem transformation method-
s and algorithm adaptation methods. Problem transforma-
tion methods aim to tackle multi-label learning problem by
transforming it into other well-established learning scenarios,
such as Binary Relevance [Boutell et al., 2004] transforms the
task of multi-label learning into the task of binary classifica-
tion while Calibrated Label Ranking [Fürnkranz et al., 2008]
transforms the task of multi-label learning into the task of la-
bel ranking. Algorithm adaptation methods tackle multi-label
learning problem by adapting popular learning techniques to
deal with multi-label data directly, such as ML-kNN [Zhang
and Zhou, 2007] adapts lazy learning technique while ML-
DT [Clare and King, 2001] adapts decision tree technique.

In multi-view learning, the information in some views can
help handle the weakness of other views. Furthermore, multi-
view learning can be embedded into multi-label learning tasks
naturally to further improve the classification performance.
The most important part in multi-view multi-label learning
is how to utilize and communicate heterogeneous informa-
tion among all views under the multi-label framework. [Xing
et al., 2018] focuses on selecting reliable samples from one
view and passing them to other views. However, the com-
munication among views is only on the label level. [Zhu et
al., 2016] introduces a block-row regularizer to reduce the
noise and redundancy. The method in [Liu et al., 2015] seeks
a low-dimensional common representation of all views and
constructs the classifier based on matrix completion. [Lu-
o et al., 2013] integrates multiple features under multi-view
vector-valued manifold regularization. [Zhu et al., 2018;
Zhang et al., 2018] try to remain latent semantic when study-
ing the low-dimensional common representation.

However, for most existing methods the mapping from o-
riginal views to the shared subspace is conducted in an in-
dependent way where there is only limited communication
among each view. Furthermore, the specific characteristics of
individual view is ignored. SIMM serves as the first attempt
towards jointly enhancing communication during shared sub-
space exploitation and remaining view-specific information.



Table 2: Predictive performance of each comparing algorithm (mean ± std. deviation) on the multi-view multi-label data sets.

Comparing Hamming Loss ↓
Methods Emotions Yeast Corel5k EspGame Pascal Mirflickr Youku3w Youku15w
SIMM 0.178±0.020 0.191±0.010 0.011±0.000 0.017±0.000 0.044±0.001 0.079±0.001 0.008±0.000 0.008±0.000
Benchmark 0.189±0.018 0.194±0.011 0.011±0.000 0.017±0.000 0.049±0.002 0.083±0.001 0.009±0.000 0.008±0.000
COMMON 0.189±0.006 0.200±0.007 0.013±0.000 0.017±0.000 0.066±0.001 0.104±0.002 0.010±0.000 0.010±0.000
ML-KNN (C) 0.193±0.012 0.195±0.009 0.012±0.000 0.017±0.000 0.064±0.002 0.110±0.001 0.009±0.001 0.009±0.000
ML-KNN (B) 0.200±0.016 0.208±0.008 0.012±0.000 0.017±0.000 0.055±0.001 0.109±0.001 0.008±0.000 0.008±0.000
LSAMML 0.284±0.019 0.298±0.005 0.013±0.000 0.017±0.000 0.064±0.001 0.107±0.001 0.009±0.000 0.009±0.000
F2L21F 0.225±0.024 0.315±0.012 0.017±0.000 0.025±0.000 0.091±0.004 0.129±0.003 0.015±0.000 0.015±0.000
Comparing Average Precision ↑
Methods Emotions Yeast Corel5k EspGame Pascal Mirflickr Youku3w Youku15w
SIMM 0.831±0.036 0.773±0.011 0.549±0.011 0.396±0.005 0.793±0.008 0.774±0.006 0.687±0.008 0.728±0.002
Benchmark 0.822±0.029 0.774±0.012 0.559±0.008 0.395±0.005 0.763±0.009 0.754±0.005 0.608±0.005 0.682±0.003
COMMON 0.825±0.029 0.757±0.014 0.382±0.017 0.305±0.005 0.580±0.027 0.677±0.005 0.520±0.037 0.639±0.004
ML-KNN (C) 0.799±0.032 0.764±0.012 0.441±0.010 0.288±0.004 0.571±0.009 0.607±0.004 0.410±0.007 0.460±0.003
ML-KNN (B) 0.795±0.020 0.753±0.009 0.416±0.009 0.270±0.004 0.658±0.011 0.608±0.004 0.634±0.006 0.672±0.003
LSAMML 0.779±0.040 0.611±0.013 0.475±0.014 0.346±0.005 0.690±0.012 0.674±0.004 0.637±0.006 0.656±0.003
F2L21F 0.798±0.030 0.607±0.016 0.314±0.013 0.316±0.007 0.644±0.019 0.625±0.014 0.630±0.006 0.661±0.002
Comparing One Error ↓
Methods Emotions Yeast Corel5k EspGame Pascal Mirflickr Youku3w Youku15w
SIMM 0.224±0.057 0.221±0.020 0.349±0.014 0.452±0.011 0.251±0.013 0.173±0.009 0.423±0.008 0.374±0.003
Benchmark 0.241±0.042 0.215±0.020 0.349±0.007 0.463±0.011 0.288±0.014 0.195±0.010 0.516±0.008 0.430±0.005
COMMON 0.233±0.046 0.241±0.021 0.519±0.036 0.544±0.012 0.528±0.027 0.236±0.013 0.608±0.036 0.477±0.005
ML-KNN (C) 0.270±0.058 0.228±0.025 0.477±0.025 0.601±0.010 0.499±0.016 0.355±0.007 0.679±0.008 0.630±0.004
ML-KNN (B) 0.282±0.029 0.233±0.022 0.506±0.017 0.652±0.009 0.367±0.014 0.360±0.009 0.456±0.008 0.413±0.004
LSAMML 0.316±0.064 0.363±0.030 0.418±0.019 0.496±0.011 0.358±0.014 0.236±0.007 0.469±0.008 0.454±0.005
F2L21F 0.277±0.058 0.361±0.039 0.598±0.016 0.543±0.011 0.401±0.019 0.301±0.013 0.470±0.007 0.446±0.004
Comparing Ranking Loss ↓
Methods Emotions Yeast Corel5k EspGame Pascal Mirflickr Youku3w Youku15w
SIMM 0.134±0.031 0.160±0.007 0.053±0.004 0.109±0.003 0.061±0.003 0.065±0.002 0.020±0.001 0.015±0.000
Benchmark 0.140±0.026 0.161±0.008 0.054±0.004 0.109±0.002 0.074±0.004 0.072±0.002 0.031±0.001 0.020±0.001
COMMON 0.139±0.024 0.169±0.012 0.117±0.012 0.158±0.002 0.139±0.015 0.100±0.002 0.045±0.009 0.025±0.001
ML-KNN (C) 0.167±0.027 0.168±0.008 0.105±0.006 0.170±0.002 0.179±0.007 0.136±0.002 0.161±0.005 0.137±0.002
ML-KNN (B) 0.171±0.020 0.173±0.008 0.112±0.007 0.170±0.002 0.165±0.007 0.133±0.003 0.063±0.003 0.054±0.001
LSAMML 0.185±0.040 0.345±0.012 0.133±0.006 0.208±0.005 0.139±0.009 0.174±0.003 0.041±0.002 0.031±0.001
F2L21F 0.165±0.024 0.350±0.013 0.275±0.013 0.250±0.013 0.178±0.018 0.206±0.016 0.050±0.002 0.033±0.001
Comparing Coverage ↓
Methods Emotions Yeast Corel5k EspGame Pascal Mirflickr Youku3w Youku15w
SIMM 0.272±0.027 0.442±0.011 0.133±0.008 0.285±0.005 0.099±0.003 0.230±0.004 0.024±0.002 0.019±0.000
Benchmark 0.277±0.028 0.444±0.012 0.135±0.006 0.285±0.004 0.115±0.005 0.243±0.004 0.035±0.001 0.024±0.001
COMMON 0.276±0.025 0.445±0.012 0.281±0.027 0.390±0.005 0.186±0.017 0.298±0.004 0.051±0.010 0.030±0.001
ML-KNN (C) 0.299±0.021 0.450±0.012 0.249±0.013 0.419±0.005 0.233±0.008 0.346±0.004 0.178±0.006 0.152±0.002
ML-KNN (B) 0.303±0.021 0.455±0.008 0.262±0.014 0.415±0.004 0.222±0.006 0.340±0.006 0.074±0.003 0.063±0.001
LSAMML 0.315±0.030 0.623±0.011 0.327±0.013 0.523±0.009 0.202±0.010 0.428±0.006 0.049±0.002 0.037±0.001
F2L21F 0.301±0.024 0.627±0.011 0.559±0.020 0.578±0.020 0.240±0.022 0.459±0.022 0.060±0.002 0.040±0.001
Comparing Micro-F1 ↑
Methods Emotions Yeast Corel5k EspGame Pascal Mirflickr Youku3w Youku15w
SIMM 0.694±0.043 0.655±0.019 0.419±0.014 0.236±0.009 0.632±0.011 0.629±0.005 0.471±0.010 0.529±0.005
Benchmark 0.681±0.036 0.649±0.019 0.444±0.012 0.255±0.007 0.609±0.012 0.615±0.006 0.380±0.010 0.495±0.006
COMMON 0.665±0.016 0.616±0.014 0.024±0.009 0.022±0.003 0.235±0.025 0.323±0.019 0.101±0.030 0.180±0.009
ML-KNN (C) 0.668±0.026 0.639±0.016 0.259±0.011 0.084±0.006 0.327±0.019 0.367±0.008 0.242±0.008 0.290±0.005
ML-KNN (B) 0.652±0.030 0.608±0.013 0.226±0.013 0.069±0.003 0.447±0.019 0.379±0.015 0.472±0.006 0.524±0.004
LSAMML 0.185±0.067 0.035±0.008 0.146±0.014 0.072±0.005 0.259±0.013 0.268±0.005 0.239±0.008 0.236±0.005
F2L21F 0.651±0.038 0.465±0.020 0.278±0.014 0.291±0.006 0.471±0.017 0.493±0.009 0.448±0.006 0.471±0.002

4 Experiment
4.1 Experimental Setting
Data Sets
A total of eight multi-view multi-label data sets are employed
for performance evaluation including six benchmark data set-
s2 and two real-world video annotation data sets.
Emotions has two feature views: 8 rhythmic attributes

and 64 timbre attributes. Yeast also has two views includ-
ing the concatenation of the genetic expression (79 attributes)
and the phylogenetic profile of a gene (24 attributes). For
Corel5k [Duygulu et al., 2002] and EspGame [Von Ah-
n and Dabbish, 2004], we choose four representative feature
views: DenseHue, Gist, DenseSift, HSV, whose dimensions
are 100, 512, 1000 and 4096 respectively. For Pascal [Ev-
eringham et al., 2010] and Mirflickr [Huiskes and Lew,
2008], Tag view is further utilized as the textual view besides

2Publicly available at http://mulan.sourceforge.net and
http://lear.inrialpes.fr/people/guillaumin/data.php

Table 3: Friedman statistics FF in terms of each evaluation metric
and the critical value at 0.05 significance level (# comparing algo-
rithms k = 7, # data sets N = 8).

Evaluation metric FF critical value
Hamming Loss 20.2930

2.3240

Average Precision 9.1649
One error 7.8626

Ranking Loss 21.1260
Coverage 24.2040
Micro-F1 15.0070

the above four views [Guillaumin et al., 2010], whose dimen-
sions are 804 and 457.
Youku data set consists 148,089 videos in 114 classes col-

lected from the Video Application YOUKU. Each object has
four views: textual description in the video title, the audio
information, cover picture and video frame extraction. The
dimensions are 100, 128, 2048, 2048 respectively. For tex-
tual view, we extract the weights of each word in the title.
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Figure 2: Comparison of SIMM (control algorithm) against other comparing algorithms with the Bonferroni-Dunn test. Algorithms not
connected with SIMM in the CD diagram are considered to have significantly different performance from the control algorithm (CD=3.1853
at 0.05 significance level).

Using the pre-trained word embedding, title embedding vec-
tor can be obtained by weighting the word embedding. For
audio view, we follow [Gemmeke et al., 2017] and reduce
dimension by using Principle Component Analysis (PCA).
For image view, we use Inception-v3 proposed in [Szegedy
et al., 2016]. For video view, we extract video frames ev-
ery two seconds and use the same procedure as image view
to obtain frame-level features. Then, these frame-level fea-
tures are aggregated into video-level by mean-pooling and
L2-normalization. Label information is obtained by manual
labeling, from which we choose the most frequent 114 ones.

Given the data set D, we use |D|, V (D), V Dim(D),
CL(D) to represent its number of samples, number of views,
dimension of each view, class labels. Moreover, several other
properties of multi-label data sets are denoted as [Zhang and
Zhou, 2014]:

Label cardinality: LCard(D) = 1
N

∑N
i=1

∑q
j=1 I(yij =

+1) which counts the average number of relevant labels per
example;

Label density: LDen(D) = LCard(D)
CL(D) which normalizes

label cardinality by the number of class labels;
Distinct label sets: DL(D) = |{y|∃x : (x,y) ∈ D}|

which counts the number of distinct label vectors (relevant
label set) existing in D;

Proportion of distinct label sets: PDL(D) = DL(D)
|D|

which normalizes DL(D) by the number of examples.
Table 1 summarizes detailed characteristics of the experi-

mental data sets.

Comparing Algorithms
The performance of SIMM is compared against six algorithm-
s, including two baselines related to SIMM, a multi-label al-
gorithm ML-KNN with two types of feature inputs and two
multi-view multi-label algorithms.

Benchmark: A multi-layer perceptron where the number
of parameters is no less than SIMM. The input is the concate-
nation of all view features.

COMMON: The prediction results are only obtained by
shared information. i.e. ŷ∗′ = 1

k

∑k
v=1 ŷ

∗′v

ML-KNN(C) & ML-KNN(B) [Zhang and Zhou, 2007]: A
lazy multi-label algorithm with two types feature inputs. (C)
stands for the concatenation of all views. (B) stands for the
best performance obtained from the best single view. [config-
uration: k = 10]

F2L21F [Zhu et al., 2016]: A multi-view multi-label al-
gorithm using block-row regularizer to reduce the overlap,
noise, and redundancy in multiple views. [configuration:
λ1 = 10, λ2 = 10]

LSAMML [Zhang et al., 2018]: A multi-view multi-
label algorithm using Hilbert-Schmidt Independence Cri-
terion to enhance the dependence between different pairs
of views. [configuration: r ∈ {2, 3, 4, 5}, β and γ ∈
{0.01, 0.1, 1, 10, 100}]

For SIMM, in order to make the model more elegant and
lightweight, we set each module to be only a fully connect-
ed layer without hidden layer. l is fixed to 64. In light of
comparison to COMMON, α is fixed to 1. β is selected from
{0.1, 0.01, 0.001, 0.0001}.

Experimental Protocol

In this paper, six widely-used multi-label metrics are em-
ployed for performance evaluation, including Hamming Loss,
Average Precision, One Error, Ranking Loss, Coverage and
Micro-F1, which consider the performance of multi-label pre-
dictor from various aspects. Concrete metric definitions can
be found in [Zhang and Zhou, 2014], and Coverage metric is
normalized by the number of class labels (i.e. q). For Aver-
age Precision and Micro-F1, the larger the values the better
the performance. For the other four metrics, the smaller the
values the better the performance.

For each data set, ten-fold cross-validation is performed
where the mean metrics results and standard deviations are
recorded for all comparing approaches.
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Figure 3: Comparison of SIMM against no constraints version on Pascal and Youku15w.

4.2 Experimental Results
Detailed experimental results are reported in Table 2, where
the best performance on each data set is shown in boldface.
To analyze the relative performance among the comparing ap-
proaches in a systematic manner, Friedman test is employed
as the statistical test for performance comparison.

Table 3 reports Friedman statistics FF and the correspond-
ing critical values in terms of each evaluation metric. It is ob-
vious that the null hypothesis of equal performance is rejected
at 0.05 significance level. Accordingly, post-hoc Boferroni-
Dunn test is performed to compare the relative performance
among the comparing approaches. The CD diagrams are pre-
sented in Figure 2, where the average rank of each approach
is marked along the axis (the smaller the better).

Based on the reported experimental results, the following
observations can be made: (a) Among the 48 configurations
(8 data sets × 6 evaluation metrics), SIMM ranks 1st and 2nd
in 87.5% and 10.4% cases respectively. (b) It is remarkable
that SIMM achieves best performance in all cases on Ham-
ming Loss, Ranking Loss and Coverage. (c) It is notice-
able that SIMM outperforms all the comparing algorithms on
Emotions, Pascal, Mirflickr and Youku15w on al-
l metrics while outperforms all the comparing algorithms on
Espgame and Youku3w on all metrics except on Micro-F1.

4.3 Further Analysis
In order to examine the effectiveness of Lshared and
Lspecific, we remain the basic structure of our model and re-
move these two constraints by setting α and β to zero. Figure
3 shows the comparison results on Pascal and Youku15w

data sets. The curves show the change of the metric results
with the number of epoch. It is clearly shown that the model
performed worse without Lshared and Lspecific (SIMM-NL).
In other words, it is not enough to fuse the information from
different views directly. SIMM is a good help to separate the
shared and specific information.

5 Conclusion
In this paper, a novel neural network based approach is pro-
posed to solve the multi-view multi-label problem. Specifi-
cally, we enhance the communication among views while re-
main individual specific characteristics through two steps, i.e.
shared subspace exploitation and view-specific information
extraction. Effectiveness of the proposed approach is validat-
ed via comprehensive experiments on real-world multi-view
multi-label data sets. In the future, it is interesting to extend
the structure of each neural network module. Meanwhile,
note that sv and c are fixed with the same dimension due
to the orthogonality constraint and therefore a more general
way of specific information extraction can be explored.
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