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Abstract:  In multi-dimensional classification (MDC), the semantics of objects are characterized by multiple class spaces 
from different dimensions. Most MDC approaches try to explicitly model the dependencies among class spaces in output 
space, while the recently proposed feature augmentation strategy which aims at manipulating feature space has also been 
shown as an effective solution for MDC. However, existing feature augmentation approaches only focus on designing holistic 
augmented features to be appended with the original features, while better generalization performance could be achieved by 
exploiting multiple kinds of augmented features. In this paper, we propose the selective feature augmentation strategy which 
focuses on how to synergize multiple kinds of augmented features. Specifically, by assuming that only part of the augmented 
features is pertinent and useful for each dimension's model induction, we derive a classification model which can fully utilize 
the original features while conduct feature selection for the augmented features. To validate the effectiveness of the proposed 
strategy, we generate three kinds of simple augmented features based on standard kNN, weighted kNN, and maximum margin 
techniques respectively. Comparative studies show that the proposed strategy achieves superior performance against both 
state-of-the-art MDC approaches and its degenerated versions with either kind of augmented features. 
 
Keywords: Machine learning, multi-dimensional classification, feature augmentation, feature selection, class dependencies. 

1  Introduction 
Traditional supervised learning tasks usually 

characterize the semantics of objects with one output 
variable, i.e., single-output learning, among which 
multi-class classification is one of the most important 
learning frameworks. However, in some real-world 
applications, it is better to use multiple output variables to 
characterize the rich semantics of objects, which results in 
the problem of multi-output learning[1]. Here, when the type 
of each output variable is restricted to discrete-valued, then 
the multi-dimensional classification (MDC) framework is 
obtained[2,3]. Under the MDC setting, each object is 
represented by a single instance while associated with 
multiple class variables, each of which corresponds to a 
specific class space characterizing the object's semantics 
along one specific dimension. Specifically, the MDC 
problem widely exists in many application scenarios, such 
as bioinformatics[4,5], text classification[6,7], computer vision 
[8-10], resource allocation[11], etc. Fig. 1 shows an illustrative 
example of MDC on vehicle classification. 

Formally speaking, let  be the d-dimensional 
feature space and  be the output 
space. Here,  corresponds to the Cartesian product of q 
class spaces  which 

consists of  possible classes respectively. Given a set of 
MDC training examples , 
where  is a d-dimensional 
feature vector and   is the 
q-dimensional class vector associated with  with each 
element , the MDC task aims to learn a predictive 

 

 
Fig. 1 An illustrative example of multi-dimensional classification: 

Vehicle classification. For a vehicle, it can be classified from the type 

dimension (with possible classes car, SUV, bus, truck, etc.), from the 

brand dimension (with possible classes Audi, Benz, YUTONG, JAC, 

etc.), and from the color dimension (with possible classes black, white, 

red, blue, etc.). Here, Fig.(a) is a red Audi car, Fig.(b) is a black Benz 

SUV, Fig.(c) is a red YUTONG bus, and Fig.(d) is a white JAC truck. 

 

model  from  which can return a proper 
class vector  for unseen instance . 

It is obvious that the MDC problem can be solved 
dimension by dimension, i.e., training a multi-class 
classifier for each class space. However, this independent 
decomposition strategy does not consider potential 
dependencies among class spaces which might impact the 
generalization performance of the resulting model. The 
MDC problem can also be solved by a single multi-class 
classifier, where each distinct class combination is regarded 
as a new class. However, this powerset-like strategy cannot 
consider class combinations not appearing in the training 
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set and usually suffers high computational complexity due 
to possible large number of classes. In fact, one of the key 
challenges for MDC studies is how to model dependencies 
among class spaces in appropriate ways. Existing works 
mainly focus on modeling class dependencies in output 
space, such as capturing pairwise class dependencies[12-14], 
specifying chaining order over class spaces[15, 16], learning a 
directed acyclic graph (DAG) structure for class 
spaces[17-19], and partitioning class spaces into groups[2], etc. 
Recently, feature augmentation strategy which aims at 
manipulating feature space has been shown as an effective 
solution for MDC. This strategy enriches the original 
feature space with a set of new features which are 
generated by making use of some well-established 
techniques, e.g., kNN[20] or deep learning[21]. Existing 
works only focus on how to design more informative 
augmented features while it might be beneficial to exploit 
multiple kinds of augmented features generated by making 
use of different techniques. In this paper, we propose the 
selective feature augmentation strategy which makes the 
first attempt towards how to synergize multiple kinds of 
augmented features. The strategy is abbreviated as SFAM, 
i.e., Selective Feature Augmentation for Multi-dimensional 
classification, in the following parts of this paper for 
brevity. Specifically, SFAM assumes only part of 
augmented features are pertinent and useful for each 
dimension's model induction. To validate the effectiveness 
of SFAM, three simple kinds of augmented features are 
generated by making use of standard kNN, weighted kNN, 
and maximum margin techniques respectively. After that, 
for each dimension, SFAM derives a classification model 
which can take full advantage of the original features via 

 regularization and conduct feature selection for the 
augmented features via  regularization (i.e., selective 
feature augmentation). Experimental results demonstrate 
that SFAM achieves superior performance against both 
state-of-the-art MDC approaches and its degenerated 
versions with either kind of augmented features.  

The rest of this paper is organized as follows. Firstly, 
related works on multi-dimensional classification are 
briefly discussed. Secondly, technical details of SFAM are 
introduced. Thirdly, experimental results of comparative 
studies are reported. Finally, we conclude this paper. 

2  Related Work 
The most related learning framework to multi- 

dimensional classification is the widely studied multi-label 
classification (MLC)[22-24], which can be regarded as a 
special case of MDC when the type of class variable in 
each dimension is restricted to binary-valued. However, 
MDC usually assumes heterogeneous class spaces which 
are used to characterize the rich semantics of objects from 
different dimensions, while MLC usually assumes 
homogeneous class space in which multiple concepts are 
relevant to the polysemous objects. 

The MDC problem can be solved via independent 
decomposition strategy, where a total of q multi-class 
classifiers are learned independently, one per dimension. 

However, this intuitive strategy ignores possible 
dependencies among class spaces and the induced model 
would be suboptimal. An improved strategy is learning the 
q multi-class classifiers in a chaining order, where 
predictions of preceding classifiers are used as extra 
features by the subsequent ones[15,16]. However, the 
chaining order would largely affect the generalization 
performance while determining an optimal one is NP-hard. 
The MDC problem can also be solved via powerset 
transformation strategy where a single multi-class classifier 
is learned by regarding all distinct class combinations in 
training set as new classes. However, this intuitive strategy 
cannot consider class combinations not appearing in 
training set and usually suffers high computational 
complexity due to large number of new classes. An 
improved strategy is partitioning the class spaces into 
groups according to conditional dependencies[2]. However, 
the combinatorial nature still exists which leads to that the 
deficiencies cannot be fully addressed. A family of MDC 
models called multi-dimensional Bayesian network 
classifier[25] aim at learning different kinds of DAG 
structures over class spaces to explicitly model the class 
dependencies. However, determining DAG structures is 
computationally demanding and only nominal features can 
be tackled generally. The class dependencies can also be 
modeled in a two-level strategy[12-14], where pairwise 
dependencies are captured in the first level and then 
high-order dependencies are captured in the second-level 
based on the predictions from the first level. However, 
capturing pairwise dependencies needs  complexity 
which is very time-consuming. 

 The aforementioned strategies mainly focus on 
directly modeling class dependencies in the output space, 
while the KRAM approach[20] attempts to manipulate the 
feature space of MDC examples via feature augmentation 
by making use of kNN techniques. Helpful discriminative 
information is expected to be brought into feature space 
which would facilitate the subsequent MDC model 
induction. Based on deep learning techniques, the LEFA 
approach[21] further generates better augmented features 
which can depict the inter-class dependencies and the 
intra-class exclusiveness simultaneously. However, these 
approaches simply treat the original and augmented 
features equally which might be less reasonable due to 
different characteristics of different features. Moreover, it 
is usually easier to design multiple kinds of simple 
augmented features than a terrific one, and it might be 
beneficial to consider synergizing the discriminative 
information residing in different kinds of augmented 
features. Fig. 2 shows an intuitive comparison between 
existing feature augmentation techniques and the proposed 
one in this paper. Existing works usually employ general 
MDC algorithms to accomplish the training phase, while 
the proposed one designs a novel training algorithm which 
can accomplish the selective feature augmentation phase. 

3  Technical Details of SFAM 
This section presents how we implement the selective 
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feature augmentation strategy. In other words, the technical 
details in this section correspond to the part of Training 
Algorithm in Fig. 2(b). For any instance , let  be the 
concatenation of all the corresponding augmented features 
generated by the N augmentation models, and  
corresponds to the concatenation of  and , i.e., 

, in the following, we derive a regularized 
classification model which fully utilizes original features 

 while employs feature selection mechanism over  
augmented features  . 

Augmentation
Model

Augmented-features

Training Algorithm
Predictive 

Model  

(a) Existing feature augmentation 

 

(b) Selective feature augmentation 

Fig. 2 An intuitive comparison of the training phase between existing 

feature augmentation techniques and the proposed one in this paper. 

Here,  is the concatenation of  and . Specifically, existing 

feature augmentation techniques focus on designing better 

Augmentation Model to generate more informative augmented features, 

while this paper focuses on designing a novel Training Algorithm 

which aims at synergizing multiple kinds of augmented features. 

 
For simplicity, we employ the one-vs-rest decomposition 

strategy for each dimension where a classification model 
with both  and  regularization is derived to solve the 
decomposed binary classification problems. Specifically, 
for the ath decomposed binary classification problem in the 
jth dimension, we determine the optimal model  
as follows:  

   (1) 

where  is a trade-off parameter. The first term 
 denotes the empirical loss function. In this 

paper, we simply employ the cross-entropy loss which is 
defined as follows: 

 

Here, , the predicate  returns 1 if  

holds and 0 otherwise, and  is the logistic 

function which is defined as follows:  

 

where  returns the inner product of two vectors. The 
second term  denotes the regularization term 
which is defined as follows: 

 

where  and  denote the first d elements and the 
last remaining elements of  respectively, i.e., 

. It is worth noting that the  
regularization corresponds to the original features while the 

 regularization corresponds to the augmented features. 
By doing this, we employ feature selection mechanism over 
the augmented features to synergize multiple kinds of 
augmented features in a better way, while the original 
features are still fully utilized. In other words, the selective 
feature augmentation strategy is implemented here. 

To optimize the problem (1), we solve one of the three 
sets of parameters and  alternatingly, 
while the remaining parameters are fixed. 

 
(a) Optimizing w.r.t.  when  and  

are fixed: When  and  are fixed, the 
optimization problem (1) can be equivalently reformulated 
as follows:  

          (2) 

where  

 

and 

 

Here,  is a constant which is not 
dependent on variables . In this paper, we use gradient 
descent to solve the optimization problem (2). Specifically, 
let  be the objective function, the gradient is given 
as follows:  

 

 

(b) Optimizing w.r.t.  when  and  
are fixed: When  and  are fixed, the 
optimization problem (1) can be equivalently reformulated 
as follows:  

          (3) 

where 
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and 

 

Here,  is a constant which is not 
dependent on variables . In this paper, we use 
accelerated proximal gradient method[26] to solve it. 
 
Theorem 1. For the derivable function , 

 is Lipschitz continuous and the Lipschitz 
constant is:  

              (4) 

where  denotes the differential operator. 
Proof. For , it can be calculated as:  

 

Given any  and , we have: 

 

Here, the second “ ” is due to the truth that the Lipschitz 

constant of logistic function equals . Then, it is easy to 

know: 

 

which completes the proof.                       □ 

According to Theorem 1, given any initial value  of 

, let , the following inequation 

always holds: 

 

Then, the quadratic approximation of  around 

 can be given as follows: 

where  is a 

constant which is not dependent on variables , and 

           (5) 

According to the descent lemma[27], the approximation is 
an upper bound of the original function, i.e., 

 always holds. Therefore, we can 
minimize the original function by iteratively minimizing 
the approximation. Plugging the above approximation into 
the optimization problem (3), we can obtain the following 
iterative equation: 

   (6) 

Here,  is the (element-wise) soft-thresholding 
function which is defined as follows: 

 

In [28], it is shown that the convergence rate of iterative 

equation in (6) can be improved to  from  

if we replace  in (5) with the following : 

      (7) 

where  and when . 

 
(c) Optimizing w.r.t.  when  and   

are fixed: When  and  are fixed, the 
optimization problem (1) can be equivalently reformulated 
as follows:  

               (8) 

where 

 

and 

 

Here,  is a constant which is not 
dependent on variable . In this paper, we use gradient 
descent to solve it. Specifically, the gradient of the 
objective function (i.e., ) is given as follows: 



B.-B. Jia et al. / Multi-dimensional Classification via Selective Feature Augmentation 

 

 

Algorithm 1 The proposed SFAM approach. 

Input:  : MDC training set  

: trade-off parameter in (1) 

: augmentation model n ( ) 

: unseen instance 

Output: : predicted class vector for  

1: ; 

2:   

3:   

4:   Generate the nth augmented features  
for the ith training example  via ; 

5:   

6:   where ,  is 

the concatenation of ; 

7:  

8:  

9:   

10:   Initialize ; 

11:    

12:    Update  by solving the optimization 

problem (2) via gradient descent; 

13:    Initialize ,  

, ; 

14:     

15:     Obtain  according to (7); 

16:     Compute ; 

17:     Obtain  according to (6); 

18:     
Compute ; 

19:     ; 

20:     

21:    Update  with  

22:    Update  by solving the optimization 

problem (8) via gradient descent; 

23:    

24:   

25:  

26: Obtain  augmented features  

27:  

28:  Determine the class  according to (9); 

29:  

30: Return ; 

As the above three alternating optimizing steps converge, 
we can obtain the optimal values of  and . For 
unseen instance , let  be its augmented features, then 
its class label in the jth dimension can be determined based 
on the augmented instance  as follows:  

   (9) 

The complete procedure of the proposed SFAM 
approach is summarized in Algorithm 1. Firstly, SFAM 
transforms the original MDC training set  into  by 
augmenting each instance's feature space (steps 1-7). After 
that, the predictive model is induced via a classification 
model with both  and  regularization (steps 8-25), 
where  regularization and the bias term are updated via 
gradient descent and  regularization is updated via 
accelerated proximal gradient method. Finally, the class 
vector of unseen instance is predicted based on the 
augmented features as well (steps 26-30). As shown in 
Algorithm 1, it is worth noting that SFAM should be 
regarded as a general framework and can be coupled with 
any kind of augmented-features, while this paper only aims 
at investigating the feasibility of synergizing the different 
kinds of augmented features. 

4  Experiments 
This section conducts comparative studies and the 

obtained experimental results clearly validate the 
superiority and effectiveness of SFAM. Firstly, Subsection 
4.1 introduces the experimental setup including the 
employed benchmark data sets, the evaluation metrics and 
the compared approaches. Then, Subsection 4.2 reports the 
detailed experimental results with statistical tests. Finally, 
Subsection 4.3 further investigates SFAM's algorithmic 
design and parameter sensitivity. 

 

Table 1  Characteristics of benchmark data sets.  

Data Set #Exam. #Dim. #Labels/Dim. #Features 

Flare1 323 3 3,4,2 10x 

Enb 768 2 2,4 6n 

WQplants 1060 7 4 16n 

WQanimals 1060 7 4 16n 

WaterQuality 1060 14 4 16n 

BeLaE 1930 5 5 1n, 44x 

Voice 3136 2 4,2 19n 

TIC2000 9822 3 6,4,2 83x 

Adult 18419 4 7,7,5,2 5n, 5x 

Default 28779 4 2,7,4,2 14n, 6x 

 

4.1  Experimental Setup 

1)  Benchmark Data Sets 

In this paper, a total of ten benchmark data sets are 
collected for comparative studies. Table 1 summarizes the 
detailed characteristics of all benchmark data sets, 
including number of examples (#Exam.), number of 
dimensions (#Dim.), number of class labels per dimension 
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(#Labels/Dim.), and number of features (#Features). Here, 
for the #Labels/Dim. column, if all dimensions contain the 
same number of class labels, then only this number is 
recorded, otherwise, the number of class labels per 
dimension is recorded in turn; for the #Features column, n 
and x denote numeric and nominal features respectively. 

2)  Evaluation Metrics 

In this paper, a total of three widely-used evaluation 
metrics are employed for performance evaluation, 
including Hamming Score (HS), Exact Match (EM) and 
Sub-Exact Match (SEM) [2, 13, 14, 20, 29]. Specifically, given 
the test set , for the MDC 
model  to be evaluated, let  

 be the predicted class vector for  
while the ground-truth one is , 
then the number of correctly predicted dimensions 
corresponds to . The detailed 
definitions of the metrics are given as follows:  

 

For the three metrics, it is easy to know that the larger 
the values, the better the performance. Ten-fold cross 
validation is conducted over each benchmark data set, 
where both the mean metric value as well as standard 
deviation are recorded for comparative studies. 

3)  Compared Approaches 

In this paper, a total of six state-of-the-art MDC 
approaches are employed as compared approaches, 
including BR, CP, ECC[16], ESC[2], gMML[29] and SEEM 
[13]: 
 BR solves the MDC problem via training a number of 

multi-class classifiers independently, one per 
dimension. BR serves as the baseline when all 
possible class dependencies are ignored. 

 CP transforms the MDC problem into a single 
multi-class classification problem by treating the 
whole output space as a compound one, where each 
distinct class combination in training set is regarded 
as a new class. CP serves as the baseline when all 
possible class dependencies in training set are 
considered, but overfitting might occur because CP 
cannot return class combinations not appearing in 
training set. 

 ECC solves the MDC problem via training a chain of 
multi-class classifiers, one per dimension, where 
predictions of preceding classifiers on the chain are 
used as extra features by the subsequent ones. 

 ESC preprocesses the MDC problem via partitioning 
the class variables into super-class, where each 

super-class is used as a compound class variable. 
 gMML works by learning a regression model for each 

class label as well as a Mahalanobis metric which can 
shorten the distance between the regression outputs 
and ground-truth label vector. 

 SEEM models the class dependency via a two-level 
strategy, where the pairwise and high-order class 
dependencies are modeled in the first and second 
level respectively. 

For BR, CP, ECC, ESC and SEEM, the multi-class base 
learner is implemented via LIBLINEAR[30] with the 
parameter setting “L2-regularized logistic regression 
(primal)” for fair comparison. Following [2], for ensemble 
approaches ECC and ESC, a total of 10 base models are 
trained over 67% examples randomly selected from 
training set, and the predictive results are combined via 
majority voting. For gMML and SEEM, the recommended 
parameters are used according to respective literatures.  

To validate the effectiveness of the selective feature 
augmentation strategy, for the proposed SFAM approach, a 
total of three simple kinds of augmented features are 
generated, where two of them are generated by making use 
of standard and weighted kNN techniques respectively, and 
the remaining one are generated by making use of 
maximum margin techniques. Specifically, the two kinds of 
kNN-based augmented features are generated by KRAM[20]. 
To be more specific, for each instance , let  

 be the set of indices for the  nearest 
neighbors of  identified in training set , we can define 
an indicating vector   

 which is defined as follows:  
 

Here, .  
corresponds to the class vector of the neighboring MDC 
example  for . Based on , the following discrete 
version of statistics  can be 

defined w.r.t. the jth class space: 
 

where  is a column vector of all ones with length k. By 
concatenating all the  counting statistics vectors, the first 
kNN-augmented feature vector  based on standard 
kNN techniques for  can be obtained: 

          (9) 

Moreover, let , a bias vector 
 is defined as follows: 

 

Here,  and  are two hyper-parameters and set  

as 0.5 and 0 respectively, and ,  

 where  and  

 denotes the rth element of weight vector . Then, 
the second kNN-augmented feature vector  based 
on weighted kNN techniques for  can be obtained: 

    (10) 

For the maximum margin-augmented features, SFAM 
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employs the real-valued predictions which are returned by 
the multi-class support vector machine to generate the 
maximum margin-augmented features. Specifically, SFAM 
solves the following maximum margin formulation[31] for 
the jth dimension ( ): 

 

where  is the weight 
matrix to be determined, and  

 is the slack variable vector. Suppose , 
then  if  (i.e., ) and 0 otherwise. 
Furthermore,  is a trade-off parameter. Let  

, the maximum margin-augmented feature 

vector  for each instance  can be defined as 
follows: 

              (11) 

Then, the MDC training set  can be transformed into: 
 

where  denotes the 
augmented features of . Here, we reiterate that we make 
use of standard kNN, weighted kNN, and maximum margin 
techniques to generate the augmented feature only for the 
purpose of simplicity. The experiments in this paper mainly 
aims at validating the effectiveness of the selective feature 
augmentation strategy. In the future, it is interesting to 
further investigate synergizing multiple kinds of augmented 
features which are generated by making use of more 
advanced techniques such as deep learning[21]. 

 

Table 2  Experimental results (mean±std. deviation) of each MDC approach. In addition, the performance rank on each data set is also shown in the 

parentheses. 

Data Hamming Score 

Set SFAM BR CP ECC ESC gMML SEEM 

Flare1 .925±.035(2) .925±.034(2) .923±.033(7) .926±.034(1) .925±.035(2) .925±.034(2) .925±.032(2) 

Enb .865±.036(1) .774±.023(3) .764±.031(5) .773±.034(4) .754±.029(6) .742±.027(7) .777±.031(2) 

WQplants .666±.016(1) .658±.014(3) .649±.016(7) .654±.016(5) .653±.016(6) .655±.015(4) .661±.023(2) 

WQanimals .641±.012(1) .631±.013(3) .628±.013(7) .629±.013(6) .631±.014(3) .630±.015(5) .635±.015(2) 

WQ .653±.012(1) .644±.011(3) .625±.011(7) .642±.012(5) .642±.014(5) .643±.013(4) .646±.014(2) 

BeLaE .441±.013(1) .427±.017(2) .383±.023(7) .424±.021(3) .420±.022(4) .417±.020(5) .416±.020(6) 

Voice .947±.009(1) .900±.012(3) .898±.011(4) .896±.012(6) .897±.011(5) .842±.009(7) .910±.011(2) 

TIC2000 .946±.003(1) .915±.006(3) .905±.006(6) .915±.006(3) .915±.006(3) .895±.007(7) .917±.005(2) 

Adult .724±.005(1) .721±.004(2) .709±.004(6) .720±.003(4) .710±.005(5) .705±.004(7) .721±.004(2) 

Default .671±.003(3) .669±.003(5) .669±.004(5) .670±.003(4) .672±.004(1) .666±.004(7) .672±.003(1) 

Data Exact Match 

Set SFAM BR CP ECC ESC gMML SEEM 

Flare1 .824±.073(1) .821±.075(4) .817±.068(7) .824±.073(1) .824±.073(1) .821±.075(4) .818±.075(6) 

Enb .729±.071(1) .548±.045(3) .529±.063(5) .546±.069(4) .508±.057(6) .483±.053(7) .554±.063(2) 

WQplants .100±.037(1) .092±.033(5) .093±.031(3) .092±.034(5) .093±.036(3) .092±.035(5) .096±.034(2) 

WQanimals .058±.013(5) .058±.017(5) .065±.018(1) .059±.017(4) .064±.019(2) .062±.023(3) .049±.022(7) 

WQ .009±.006(1) .005±.008(4) .000±.000(7) .005±.008(4) .005±.008(4) .006±.008(3) .009±.006(1) 

BeLaE .028±.011(1) .021±.008(7) .026±.014(3) .023±.010(5) .027±.009(2) .022±.009(6) .026±.011(3) 

Voice .897±.018(1) .809±.023(3) .807±.021(4) .802±.022(6) .803±.019(5) .699±.017(7) .831±.020(2) 

TIC2000 .846±.009(1) .762±.017(3) .739±.017(6) .762±.017(3) .762±.016(3) .706±.018(7) .770±.015(2) 

Adult .284±.010(5) .275±.008(6) .317±.010(1) .287±.007(4) .312±.011(2) .230±.009(7) .289±.010(3) 

Default .185±.006(4) .181±.007(6) .194±.008(1) .185±.006(4) .187±.007(3) .177±.007(7) .190±.009(2) 

Data Sub-Exact Match 

Set SFAM BR CP ECC ESC gMML SEEM 

Flare1 .954±.039(5) .957±.039(2) .954±.039(5) .957±.039(2) .954±.039(5) .957±.039(2) .960±.033(1) 

Enb 1.00±.000(1) 1.00±.000(1) 1.00±.000(1) 1.00±.000(1) 1.00±.000(1) 1.00±.000(1) 1.00±.000(1) 

WQplants .292±.035(1) .286±.044(3) .285±.052(5) .285±.053(5) .282±.049(7) .286±.053(3) .287±.042(2) 

WQanimals .246±.034(1) .229±.030(5) .232±.032(3) .226±.026(7) .231±.029(4) .227±.033(6) .241±.029(2) 

WQ .061±.022(1) .047±.019(6) .034±.017(7) .048±.022(4) .048±.019(4) .049±.024(3) .050±.025(2) 

BeLaE .137±.024(1) .134±.025(2) .117±.019(7) .130±.025(3) .128±.024(5) .130±.020(3) .125±.022(6) 

Voice .998±.003(1) .991±.006(2) .989±.006(5) .989±.008(5) .991±.007(2) .985±.011(7) .990±.006(4) 

TIC2000 .993±.002(1) .983±.003(4) .978±.002(6) .984±.003(2) .984±.003(2) .978±.003(6) .982±.003(5) 

Adult .690±.007(1) .685±.009(2) .637±.007(7) .679±.008(4) .644±.007(6) .669±.008(5) .680±.006(3) 

Default .604±.007(1) .601±.006(4) .594±.008(6) .600±.007(5) .604±.008(1) .593±.008(7) .604±.007(1) 
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4.2  Experimental Results 

Table 2 reports the detailed experimental results with the 
performance rank shown in the parentheses. Moreover, 
Wilcoxon signed-ranks test[32] (at 0.05 significance level) 
serves as the statistical tool to show whether SFAM 
achieves better performance against the compared 
approaches over the whole benchmark data sets, and the 
corresponding test results are summarized in Table 3. 

According to the reported experimental results, we can 
make the following observations: 
  Among all the 30 cases (10 data sets×3 evaluation 

metrics), SFAM ranks first in 24 cases, ranks second 
in 1 cases, ranks third in 1 cases, ranks fourth in 1 
cases, ranks fifth in 5 cases, and never ranks last. 

 BR solves the MDC problem by dealing with each 
dimension independently, where potential class 
dependencies are fully ignored. Although SFAM also 
induces classification models for each dimension 
independently, the class dependencies can be 
considered by the augmented features[20]. It is shown 
that SFAM achieves superior performance against BR 
in terms of each metrics, which reveals that 
considering class dependencies is important for 
learning MDC models. 

 Both ECC and gMML explicitly consider the class 
dependencies, where a chaining order over class 
spaces or a Mahalanobis metric is employed to 
accomplish this task. It is shown that SFAM also 
achieves superior performance against ECC and 
gMML in terms of each metrics, which validates the 
superiority of SFAM's selective feature augmentation 
strategy. 

  CP solves the MDC problem by dealing with all 
dimensions jointly via powerset transformation, 
which can be viewed as optimizing Exact Match. ESC 
and SEEM can be regarded as two improved versions 
of CP, where class spaces are grouped into 
super-classes according to conditional dependencies 
or each pair of class spaces are considered in the first 
level learning. It is shown that SFAM still achieves 
comparable performance against CP, ESC and SEEM 
in terms of Exact Match, and superior performance 
against CP, ESC and SEEM in terms of Hamming 
Score and Sub-Exact Match. 

 
Table 3  Wilcoxon signed-ranks test for SFAM against each compared 

approach where the p-values at 0.05 significance level are also shown 

in the brackets. 

SFAM Evaluation Metric 

against HS EM SEM 

BR win[3.91e-03] win[3.91e-03] win[7.81e-03] 

CP win[1.95e-03] tie[2.75e-01] win[7.81e-03] 

ECC win[3.91e-03] win[3.91e-02] win[7.81e-03] 

ESC win[7.81e-03] tie[2.62e-01] win[1.56e-02] 

gMML win[3.91e-03] win[9.77e-03] win[7.81e-03] 

SEEM win[9.77e-03] tie[7.42e-02] win[3.91e-02] 

4.3  Further Analysis 

1)  Effectiveness of Algorithmic Design 

In this paper, SFAM generates three kinds of augmented 
features according to (9), (10) and (11) respectively. To 
further investigate the effectiveness of SFAM's algorithmic 
design, we also compare SFAM with its three degenerated 
versions which generate either kind of augmented features. 
The one with discrete version of kNN-augmented features 
in (9) is denoted as DeV1, which is also known as the 
KRAMd approach[20], the one with continuous version of 
kNN-augmented features in (10) is denoted as DeV2, which 
is also known as the KRAMc approach[20], and the another 
one with maximum margin-augmented features in (11) is 
denoted as DeV3. It is worth noting that the baseline BR 
actually serves as another degenerated version without any 
kind of augmented features, whose experimental results 
have been reported and analyzed in Subsection 4.2. 
Table 4  Experimental results (mean±std. deviation) of SFAM and its 

two degenerated versions. In addition, the performance rank on each 

data set is also shown in the parentheses. 

Data Hamming Score 

Set SFAM DeV1 DeV2 DeV3 

Flare1 .925±.035(1) .924±.036(4) .925±.035(1) .925±.035(1) 

Enb .865±.036(1) .852±.036(2) .848±.043(3) .807±.029(4) 

WQpla. .666±.016(1) .664±.016(2) .664±.016(2) .659±.015(4) 

WQani. .641±.012(1) .641±.015(1) .641±.015(1) .632±.013(4) 

WQ .653±.012(1) .650±.011(3) .652±.010(2) .645±.012(4) 

BeLaE .441±.013(1) .436±.008(2) .434±.011(4) .435±.019(3) 

Voice .947±.009(1) .945±.010(3) .946±.010(2) .913±.010(4) 

TIC2000 .946±.003(2) .946±.003(2) .947±.003(1) .914±.006(4) 

Adult .724±.005(1) .724±.004(1) .724±.005(1) .721±.004(4) 

Default .671±.003(1) .671±.003(1) .671±.003(1) .669±.003(4) 

Data Exact Match 

Set SFAM DeV1 DeV2 DeV3 

Flare1 .824±.073(1) .821±.079(4) .824±.073(1) .824±.073(1) 

Enb .729±.071(1) .705±.072(2) .696±.086(3) .613±.058(4) 

WQpla. .100±.037(1) .097±.038(2) .097±.037(2) .095±.034(4) 

WQani. .058±.013(3) .058±.011(3) .061±.016(1) .059±.018(2) 

WQ .009±.006(1) .008±.005(2) .008±.005(2) .005±.008(4) 

BeLaE .028±.011(1) .025±.007(2) .024±.007(3) .024±.008(3) 

Voice .897±.018(1) .893±.020(3) .894±.021(2) .834±.018(4) 

TIC2000 .846±.009(3) .847±.008(2) .849±.008(1) .760±.018(4) 

Adult .284±.010(1) .284±.009(1) .284±.010(1) .274±.008(4) 

Default .185±.006(2) .185±.006(2) .186±.006(1) .181±.006(4) 

Data Sub-Exact Match 

Set SFAM DeV1 DeV2 DeV3 

Flare1 .954±.039(1) .954±.039(1) .954±.039(1) .954±.039(1) 

Enb 1.00±.000(1) 1.00±.000(1) 1.00±.000(1) 1.00±.000(1) 

WQpla. .292±.035(3) .294±.037(1) .294±.036(1) .289±.042(4) 

WQani. .246±.034(1) .244±.031(2) .243±.035(3) .231±.032(4) 

WQ .061±.022(1) .059±.019(2) .058±.020(3) .048±.020(4) 

BeLaE .137±.024(1) .133±.021(4) .134±.022(2) .134±.023(2) 

Voice .998±.003(1) .998±.003(1) .998±.003(1) .993±.006(4) 

TIC2000 .993±.002(1) .992±.002(3) .993±.002(1) .983±.003(4) 

Adult .690±.007(1) .690±.007(1) .689±.007(3) .685±.008(4) 

Default .604±.007(1) .604±.007(1) .604±.006(1) .601±.007(4) 
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Table 5  Wilcoxon signed-ranks test for SFAM against its two variants 

where the p-values at 0.05 significance level are also shown in the 

brackets. 

SFAM Evaluation Metric 

against HS EM SEM 

DeV1 win[3.13e-02] win[4.69e-02] tie[3.13e-01] 

DeV2 tie [1.25e-01] tie [3.52e-01] tie [1.88e-01] 

DeV3 win[3.91e-03] win[7.81e-03] win[7.81e-03] 

 
Detailed experimental results are shown in Table 4. 

Table 5 summarizes the test results of Wilcoxon signed- 
ranks test (at 0.05 significance level). It is shown that 
SFAM achieves superior performance against DeV1 in 
terms of Hamming Score and Exact Match, and DeV3 in 

terms of all metrics. For DeV2, although SFAM achieves 
comparable performance against it in terms of all metrics, 
as shown in Table 4, among the 19 cases where the 
performance of SFAM is different with DeV2, there are 14 
cases where the performance of SFAM is better than DeV2. 
These results clearly validate that SFAM can identify the 
pertinent and useful features from the three kinds of 
augmented features. Besides, it is shown that both DeV1 
and DeV2 achieve similar results compared to SFAM, 
possible reason is that the two kinds of kNN-augmented 
features contain more useful discriminative information 
than maximum margin-augmented features. Nonetheless, 
SFAM is able to utilize all the available information in 
hand to achieve better generalization performance. 

 

    

(a) Voice                                                  (b) TIC2000 

    

(c) Adult                                                  (d) Default 

Fig. 3 The weight matrix (absolute value) of the learned model w.r.t. the  regularization 

 
Furthermore, Fig.3 shows the weight matrix (absolute 

value) of the learned model w.r.t. the  regularization. 
Specifically, following the notations in Section III, Fig.3 
shows the absolute value of weight matrix  

for data set Voice, TIC2000, 
Adult, and Default. For each figure, each row corresponds 
to the binary classification model of one class label, and the 
first third of all columns correspond to the discrete version 
of kNN-augmented features in (9), the middle third of all 
columns to the continuous version of kNN-augmented 

features in (10), and the last third of all columns to the 
maximum margin-augmented features in (11). It is shown 
that, for each third of all columns, the diagonal element 
usually takes the largest value in its corresponding row. 
Note that each element in all the three kinds of augmented 
features (i.e., each column in Fig.3) corresponds to one 
class label, and each binary classification model (i.e., each 
row in Fig.3) also corresponds to one class label. In other 
words, the largest value corresponds to the augmented 
feature w.r.t. its own class label. It is also shown that each 
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binary classification model is only related to part of 
augmented features, where the model weights w.r.t. the two 
kinds of kNN-augmented features are usually larger than 
the model weights w.r.t. the maximum margin-augmented 
features. This observation further supports the afore- 
mentioned conjecture that the two kinds of kNN- 
augmented features contain more useful discriminative 
information than maximum margin-augmented features. 
Besides, we can also observe that the model weights w.r.t. 
the  regularization for some binary classification models 
are almost all zero, which means that not all binary 
classification models rely on augmented features.  

2)  Parameter Sensitivity Analysis 

The regularized classification model (1) has one 
trade-off parameter . In this subsection, we investigate 
how the performance of SFAM changes with different 
values of . Fig.4 illustrates SFAM's performance 
fluctuation when  ranges in {0.01, 0.1, 1, 10, 100} over 
data sets Flare1, WQplants, WQanimals and BeLaE. It is 
shown that the performance of SFAM degenerates with 
either small or large value of  generally, and  is 
usually a better choice. Therefore, we fix  as 1 in all the 
previous comparative studies. 

 

 

(a) Flare1                                                (b) WQplants 

 

(c) WQanimals                                               (d) BeLaE 

Fig. 4 Performance SFAM changes as λ ranges in {0.01, 0.1, 1, 10, 100} 

 
5 Conclusions 

Feature augmentation has been shown as an effective 
strategy for solving the MDC problem. Existing works only 
focus on how to generate better augmented features, while 
it might be beneficial to exploit multiple kinds of 
augmented features generated by making use of different 
techniques. This paper makes a first attempt towards how 
to synergize the discriminative information residing in 
multiple kinds of augmented features. Accordingly, a novel 
strategy named selective feature augmentation is proposed 
which assumes that only part of the augmented features is 
pertinent and useful for each dimension's model induction. 

Comparative studies clearly validate the effectiveness of 
the proposed strategy. 

Current feature augmentation works simply concatenate 
the original and augmented features, though the proposed 
SFAM has treated them differently via different 
regularization terms. In fact, the original and augmented 
features (even different kinds of augmented features) can 
be regarded as features from different views[33]. In the 
future, other ensemble strategies borrowing from 
multi-view learning can also be used instead of merely 
using the concatenation operation. Besides, this paper only 
generates two simple kinds of augmented features to 
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validate the proposed selective feature augmentation 
strategy, it is also deserved to investigate generating more 
kinds of augmented features. 
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