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Abstract—Multi-dimensional classification (MDC) deals with x; = [2;1,%42,...,74] € X is a d-dimensional feature
the problem where each instance is associated with multiple yector andy; = [yil;yi27~--7yiq]T € ) is the class vector
class variables, each of which corresponds to a specific classassociated withe;, where each componept; is one possible

(2] -]

space. One of the mainstream solutions for MDC is to adapt . . . -
traditional machine learning techniques to deal with MDC data. class label inC;, i.e.,y;; € C;. The task of multi-dimensional

In this paper, a first attempt towards adapting instance-based classification is to learn a mapping functign &' +— ) from
techniques for MDC is investigated, and a new approach named D which can predict a class vectgi(x,) € ) for unseen
MD-KNN is proposed. Specifically, M>-KNN identifies unseen jnstancez..

instance’s k nearest neighbors and obtains its corresponding To solve the MDC problem, one main strategy is to adapt

kNN counting statistics for each class space, based on which . . . i
maximum a posteriori (MAP) inference is made for each pair of popular learning techniques to directly deal with MDC data.

class spaces. After that, the class label w.rt. each class space i# [13], [14], [15], [16], [17], Bayesian network is adapted for
determined by synergizing predictions from the learned classifiers MDC where three subgraphs are learned specifically to model

via consulting empirical kNN accuracy. Comparative studies over the dependencies among feature variables, class variables, and
ten benchmark data sets clearly validate M>-KNN’s effectiveness. a5t re-class variables. In [11], a metric learning approach is
designed for MDC where a Mahalanobis distance metric is
learned which can make the distance between linear regression
outputs of one example and its ground-truth class label vector
In traditional multi-class classification, each example is reptoser. In [18], maximum margin technique is adapted for
resented by a single instance and associated with a single clIEXC where not only classification margins on individual class
variable. However, there are many learning tasks where tgriable are maximized, but also dependencies among class
simplifying assumption does not fit well as real-world objectgariables are considered.
usually have rich semantics and should be classified alongexisting approaches focus on adapting parametric learn-
different dimensions [1], [2], [3], [4], [S], [6], [7], [8], [9]. For ing techniques to deal with MDC problem, while instance-
example, in news categorization, we should simultaneousigsed techniques have been shown as effective solutions to
classify a news document from thepic  dimension (with |earn from objects with rich semantics [19], [20], [21], [22],
possible classeSci& Tech social politics, sports etc.), from [23], [24]. In this paper, we make a first attempt to adapt
themood dimension (with possible classgeod newsneutral  instance-based techniques for multi-dimensional classification,
news bad new} and from thezone dimension (with possible and propose a novel approach namea-kNN, i.e., Multi-
classesdomestic intra-/inter-continental etc.), etc. To deal Dimensional k-Nearest NeighhoFirstly, MD-KNN identifies
with this kind of problems, one natural solution is to associatthseen instance’® nearest neighbors in training set, and
multiple class variables with the object to explicitly expressbtains itskNN counting statistics w.r.t. each class space.
its semantics, which yields the multi-dimensional classificatiorhen, for each pair of class spaces, maximum a posteriori
framework [10], [11], [12]. Compared to multi-class classifi{MAP) inference is made based on the obtaikisiN counting
cation, each MDC example is also represented by a singl@itistics w.r.t. both class spaces. Finally, the class label w.r.t.
instance while associated with multiple class variables. Heggach class space is determined by synergizing predictions from
each class variable corresponds to one specific class spegesponding pairwise class spaces via consulting empirical
characterizing the object's semantics from one dimension. kNN accuracy. Experimental results over ten benchmark data
Formally speaking, denote the input (feature) space lgts show that M-KNN achieves superior performance against
X = R?, and the output space By = C; x Cy x --- x C,. other state-of-the-art MDC approaches.
Here, the output space corresponds to the Cartesian product dfhe rest of this paper is organized as follows. Firstly, related
q class spaces and each class spéggl < j < q) consists works on MDC are briefly discussed. Secondly, technical
of K; possible class labels, i.eG; = {c{,cg,...,chj}. details of the proposed approach are introduced. Thirdly, ex-
Given the MDC training seD = {(z;,y;) | 1 < i < m} perimental results of comparative studies are reported. Finally,
with m training examples, for each example;,y;) € D, we conclude this paper.

|. INTRODUCTION



Il. RELATED WORK IIl. THE MD-KNN APPROACH

The most related learning framework to multi-dimensiona]!1 For any ipstgnce:, let Ni(x) = {i¢ | 1 <t s .k} dgrjote.
the set of indices fore’s k nearest neighbors identified in

classification is multi-label classification (MLC) [25], [26],. " ! . .
[27], and both of them can be regarded as one possi faining setD. Here, Euclidean distance is used to measure the

instantiation of multi-output learning [28] where each obje&imila_rities bt.atv_v%ea? _twgwinziances.émT hen, thg f(()jlloyvknélj\l
is associated with multiple output variables. Intuitively, th ouhtlng statisticd? = [5%, 0%, .. . jK.‘i] can be defined for
e j-th class space:

difference between MLC and MDC lies in the type of outp

variables, which are binary-valued for.MLC.: while discrete- 5% = Z I(yincd) (1<a<K;1<j<q) (1)

valued for MDC. However, the essential difference between ~’

MLC and MDC lies in whether the class spacehismoge-

neousor heterogenousMLC usually assumes homogeneouslere, y;, = [vi,1,%i,2,---,Yi,q) | COrresponds to the class

class space where each label represents the relevancy of \wtor of the neighboring MDC example;, of «. I(7,m2)

concept, while MDC assumes heterogenous class space wheterns 1 ifr; is identical withm, and O otherwise. Therefore,

each class variable corresponds to one specific class spéferecords the number at’s neighboring MDC examples

which characterizes the object’'s semantics along one specificich has class labef, in the j-th class space. According to

dimension [10], [12], [29]. Eq.(2), it is easy to verify thaEf;l 6%, = k holds.
Due to powerful modeling capabilities of probabilistic The task of MDC is to learn a mapping function frokhto

graphical model, Bayesian network has been adapted to salWe= C; x Cy x - - - x Cy, rather thary independent mapping

MDC problems [30], [31], [32], [13]. Specifically, a totalfunctions fromX to C; (1 < j < ¢) respectively. This means

of three subgraphs are learned, i.e., class subgraph, featbed we should consider dependencies among class spaces

subgraph, and bridge subgraph, which respectively model #g, Cs,...,C, when inducing an MDC predictive model.

dependencies among feature variables, class variables, Gemerally speaking, due to limited number of examples in

feature-class variables. Different structure types of subgraghaning set, dependencies among fewer class spaces can be

result in different solutions which form a family of MDC modeled more reliably than dependencies among many class

approaches called Multi-dimensional Bayesian network Clagpaces. Therefore, MKNN only aims at considering second-

sifier (MBC). Recent works further explore different MBCorder (or pairwise) class dependencies. Specifically; fliN

structures or efficient structure learning strategies [14], [15]ims at predicting the class vector of unseen instancéy

[16], [17]. However, structure learning for Bayesian networltilizing MAP rule based on it’NN counting statistics. For

is still challenging and only data set with discrete features céime r-th and s-th class spacel(< r < s < g), the class

be tackled. In [11], the proposed gMML approach alternatelgbel c¢; € C, and ¢; € C, with maximum posteriori

learns linear regression models for each class label as waibbability P(¢,s(c;, ,c; ) | =.°) will be returned as the

as a Mahalanobis distance metric to solve MDC problepredicted labels forx,’s r-th and s-th class space. Here,

effectively, where the Mahalanobis distance metric can makes(-,-) is some injective function from Cartesian product

the distance between linear regression outputs of one exanfleC,, and C to natural numbers, and’® = [07+,%~].

and its ground-truth class label vector closer. In [18], thiatuitively, the posteriori probability can bexplicitly estimated

proposed MMDcC approach adapts maximum margin techfrom training setD as follows:

nigue to solve MDC problem, which not only maximizes . s

classification margins on individual class variable via one-vs- P (%S(CW cz.) | =L )

1t ENg ()

one decomposition, but also considers dependencies among i L(hrs (Yirs Yis ) brs(ch o5 ) - I(m7®, 27°)

class variables via covariance regularization. = T @
Other than these approaches which adapt existing learning i I(ars, 275)

techniques to deal with MDC data, there are also some works =T

which solve the MDC problem by transforming it into other

well-established learning frameworks. By focusing on eac - ; .
S training examples and large number of possible different
class space one by one, the MDC problem can be intuitively., s . .

, there are usually fewt®s in training setD which are

transformed into a number of independent or a chain fgkentical with 2™, i.e, the denominator in Eq.(2) is usuall
successive multi-class classification problems [33], [34], one L v S q Y

per class space, while by focusing on all class spaces at & _s_maII which leads to that Eq.(2) c_ant v_vork properly.
. S pecifically, denote the number of possible differefit by
same time, the MDC problem can be intuitively transforme
; . . L . N(k,K,, K), we have
into a single multi-class classification problem. By grouping
the class spaces into super-classes [10], or enriching the N(k, K, K,)=N(k,K,) - N(k, K,) €)
original feature space with augmented features [12], [35], the
MDC problem can be transformed into a new MDC problenyvhere
which is expected to facilitate follow-up learning procedure () { u+1, when v = 2
u,v) =

after tailored transformations. Yoo N(i,v—1), whenv>2

herex!® = [§%,d%]. However, due to the limited number

T S



In this paper, Mb-kNN uses an alternative way whereAlgorithm 1 The pseudo-code of MtKNN

P((@-S(CZT,CZS) | ac:S) is estimatedmplicitly via a classifier Input: The MDC training setD, the number of nearest

grs,» Which is trained over the following multi-class data set:  neighbors considereki the multi-class training algorithm
@) M, the unseen instance,;

Output: The predicted class vectey. for x.;
. Initiali MAP :
i.e., grs = M(DMAT). Here, M corresponds to the employed * Initialize D,;;*" (1 <r < s < ) as empty set;
multi-class training algorithm. According to the definition of 2: for i =1 tom do

drs(-,-), the set of new classes iPMAP corresponds to ldentify x;'s k nearest neighbors i and store their
O(DMAPY = (¢, (yir, yis) | 1 <4 < m}. Denote the compo- indices inNj (a;);

sition of functions¢.! andg,, by h,, i.e., h.s = ¢7.} 0 grs, for r=1tog¢—1do

where ¢-1(-) is the inverse function of,(-,-). For unseen for s=7r+1to qwfjo . _ _
instance x,, based on itskNN counting statisticsz’® Obtain vectors,;” and4d? according to Eq.(1);

,D}XEAP - {(mgsa 7’S(yirayis)) | 1 S ) S m}

N ar

[67+, 6], its class label w.r.t--th ands-th class space can be D%AP - Z%AP U (@, rs(yirs yis)), where
predicted by, i.e., [y73. 53] = hra (@) = 6, (grs(277)). zi’ =07, ;

It is easy to know that there are a total (g} differentDMAP & end for

andh,.,, based on which we can obtaja-1 predictive outputs 12: en?jn%rfor

for each class space. Denote the 1 predictive outputs w.r.t.

the j-th class space by?* (1< j < q): 11: for 7 =110¢—1do

12:. for s=r+1toqgdo
T . i MAP ; _ MAP).
Yy = [y;c*(l)vy;c*@), ey (g - 1)] (5) 1& Train g,s over D2, i.e., grs = M(D*);
14:  end for
where 15: end for
o yijw when 1<i<j—1 16: _Ideptn‘y xS k nearest neighbors i and store their
Y7 (@) =9 ity hew i << indices inNy(z*);
Yej o Whenj<is<qg-—l 17: Obtainz.’s ¢ kNN counting statistic®}* (1 < j < )

Note that each element ip®* is obtained by one different  according to Eq.(1);

classifier. Intuitively, the predictive ability of one classifier'®:
might vary when it is employed to classify different examplesl.gz

Therefore, we aim to choose the element gfi* which 2%
corresponds to the classifier with best ability in classifying thé':
unseen instance... Specifically, for classifief,s, we firstly 22
obtain all the correspondingNN counting statisticse;® of ;i:

x.’s k nearest neighbors, whete< t < k, i, € Nx(x.), and
Ty

for each neighboring example, i.€z;"., 9; "]

(67, 85]. Then, predictive outputs can be returned™
— hrs(a:’f's). 26:

Initialize y7~,n7* (1 < j < ¢) as empty vector,
forr=1tog—1do
for s=r+1toqdo
Obtainn*(x.) andn%*(x,) according to Eq.(6);
wro=[mre (@), mg = 3 mgt (@));

[Yirs yis] = hrs(21%), wherez(® = [67+, 67];
Pe= [y, il yd = [yd, yil;
end for
end for

(23 . .
Finally, we can estimaté:,’s predictive accuracyy’(z,) 27-forj=1togdo _
andn’*(z,) W.r.t. ther-th ands-th class space respectively: 28  Predicty,; according to Eq.(8);
i 29: end for
e (xy) = % Sy H(Q;‘j;7 Yiyr) 30: Returny, = [Yu1, -+, Yugl-

(6)

USCHES DI (75871
The estimated twokNN accuracies can be approximately
regarded ash,s's ability in classifying ther-th and s-th |0 summary, Algorithm 1 presents the complete procedure
class space ofc.. Denote theq — 1 predictive accuracies of Mp-knN. Firstly, a total of (%) different DMAP are gener-
corresponding to each elementgff- by n7: ated based on training s&t (steps 1-10), over which a total
of (g) classifiers are trained respectively for each pair of class

nf* = ["Jm (1)777;‘“(2)’ e mf*(q - 1)]T ) spaces (steps 11-15). After that, for each class space pair, the
where corresponding two empiricdfNN accuracies and predictive
) outputs for unseen instance, are obtained (steps 16-26).
e ) 17 (@), when 1 <i<j—1 Finally, for each class space af,, the predicted class label
ny (1) = 17;.'(”1)@*), when j <i<q—1 is returned by synergizing — 1 candidates according to the
] _ corresponding empiricddNN accuracies (steps 27-30).
The final predicted class vector af,, denoted byy., = . . .
Y1, Uszs - s U ]T’ can be returned as follows: Co_m_putatlonz_il complexity. For the employed multi-class
1 training algorithmM, let #(m, d, N) andF'(m, d, N) denote
Ysj =y (I), where I = argmax 17" (i) (8) the training and testing complexity of1, wherem, d, N

1<i<q—1 corresponds to the number of examples, number of features



and number of class labels respectively. According to Algo- TABLE |

rithm 1, the training complexity of M-KNN corresponds to CHARACTERISTICS OF THE EXPERIMENTALMDC DATA SETS.
O(m-(m+q¢* K)+q¢* F(m,2K, K?)), and the testing com-
plexity corresponds t@(m +q- K +¢*- F'(k,2K, K?) +q).

Data Set #Exam. #Dim. #Labels/Dim. #Featlires

. . Flarel 323 3 34,2 10
Here, K representg the maximum number of class labels in WaterQuality 1060 14 4 16
each class space, i.€5 = max{K;, K,...,Kg}. Note that 5. 004 8966 16 4 61
q represents the number of class spaces (dimensions), eachs; 8987 8 44344343 64
of which corresponds to one semantic space. Generally, it iSThyroid 9172 7 5,5,3,2,4,4,3 nf 22z
not reasonable to assume too many semantic spaces and ttrain 9734 10 2,54,2,2525.2,.2 136
number of class spaces in each MDC data set is at moderat&cmld 9803 16 4 280
size. Besides, both steps 4-9, steps 11-15 in training phase anBisfa 13095 12 55,6,3,44,54,44,64 036
steps 19-26 in testing phase can be run in parallel if there areFera 14052 5 6 136
Adult 18419 4 7,75,2 B,5¢

enough computing resources.
 n, = denote numeric and nominal features respectively.
IV. EXPERIMENTS

A. Experimental Setup For all metrics, thelarger the values the better the perfor-

1) Data Sets: In this paper, a total of ten real-worldmance. Ten-fold cross-validation is conducted over all experi-
MDC data sets are collected for comparative studies. To thfsntal data sets, where both mean metric value and standard
best of our knowledge, seven of these data set are firsfyiation are recorded for performance evaluation.
employed in MDC researches [10], [11], [12], [13], [18], 3) Compared Approachesin this paper, a total of five
[35]. Table | summarizes the detailed characteristics of thesgte_of-the-art MDC approaches are utilized as compared
data sets, includingumber of example§fExam.),number of a5pr0aches, including Binary Relevance (BR), Class Powerset
class space¢#Dim.), number of class labels per class spacgcp) Ensembles of Classifier Chains (ECC), Ensembles of
(#Labels/Dim.}, and number of featureg#Features). Super Class classifiers (ESC) [10], and a metric learning

Specifically, Flarel , WaterQuality —, Scm20d, Rfl, approach for MDC (gMML) [11]. Specifically, BR traing
Scmld are adapted from multi-target regression tesksindependent multi-class classifiers while ECC trainsuc-
Thyroid , Adult are adapted from UCI data sétsand cessive multi-class classifiers in a chain, where predictions of
Pain , Fera , Disfa are adapted from copula ordinal regrespreceding classifiers in the chain will be used as extra features
sion tasks [36], [371. for subsequent ones. CP trains a single multi-class classifier by

2) Evaluation Metrics: In this paper, a total of three reating each distinct class combination as a new class, while
evaluation metrics are used to measure the generalizatfosc firstly groups class spaces into super-classes and then CP
performance of MDC approaches, i.elamming Scor€HS), s used for each super-class. gMML alternately learns linear
Exact Match(EM) and Sub-Exact Matc{SEM). Specifically, regression models for each class label as well as a Mahalanobis
denote the test set b = {(z;,y;) | 1 < i < p}, distance metric to solve MDC problem effectively. The rec-
wherey; = [yi1, iz, - -, ¥ig) | is the ground-truth class vectorommended parameters in respective literatures are used for all
associated witlr;. Denote the MDC model to be evaluated bypproaches. For BHkNN, BR, CP, ECC and ESC, LIBSVM
[+ X — Y, the predictive class vector far; is §; = f(xi) = with linear kernel [38] is used as the base multi-class classifier.
[9i1,Gizs - - Uig] T, then the number of class spaces predictess shown in Algorithm 1, the only parametkrof MD-KNN
correctly can be obtained, i.e:{") = >7_, [y;; = ii;;]. Here, s set to 10.
the predicate]«] returns 1 if7 holds and O otherwise. The

three metrics can be defined as follows: B. Experimental Results
HS 1 1 ) Table 1l shows the detailed experimental results of each
s(f) = 52 q T MDC approach. Moreover, to show whetheDMKNN achieves
=

L significantly different performance to other compared ap-
EMs(f) = - Z[[T(z) = q] pro_ach_es, pawmsetgst.l.s conducted based on ten-fold cross-
P validation (at 0.05 significance level). Accordingly, the result-
12 , ing win/tie/loss counts are summarized in Table IlI.
SEMs(f) = - Z[[r(’) >q—1] Based on the experimental results, the following observa-
Pi3 tions can be made:

1if all class spaces have the same number of class labels, then only this’ Across all the 129 Conflguratloﬁs(lo data setsx 5

number is recorded; Otherwise, the number of class labels in each class space COmpared approaches 3 metrics), M>-KNN achieves
is recorded in turn.

2http://mulgn.s_ource_forge.net_/datasets-mtr.html 5Due to the high computational complexity which leads to “out of memory”
Shttp://archive.ics.uci.edu/ml/index.php error for LIBSVM package, experimental results under 21 configurations are
4https://github.com/R\alecki/copulaordinal_regression/ not available in Table 2 for some compared approaches.



TABLE Il

EXPERIMENTAL RESULTS(MEAN=+STD. DEVIATION) OF EACHMDC APPROACH IN ADDITION, ®/0 INDICATES WHETHERMD-KNN IS SIGNIFICANTLY

SUPERIOHINFERIOR TO OTHER COMPAREOMDC APPROACHES ON EACH DATA SET(PAIRWISE t-TEST AT 0.05SIGNIFICANCE LEVEL).

Data HammingScore

Set MD-KNN BR CP ECC ESC gMML

Flarel 0.923-0.033 0.9220.034 0.9230.033 0.9220.034 0.9230.033 0.925-0.034

WaterQuality 0.652-0.013 0.644-0.013 0.626+0.01% 0.643£0.013 0.6410.013 0.643£0.013

Scm20d 0.86&0.005 0.666:-0.006e N/A 0.665+0.00% N/A 0.600+0.007

Rf1 0.982+0.001 0.89%0.002 0.928+0.003 0.888+0.00% 0.919+0.003 0.730+0.007

Thyroid 0.9640.002 0.965-0.00 0.965+0.002 0.965+0.002 0.965+0.002 0.960G+0.002

Pain 0.97%0.003 0.9530.003 0.954+0.003 0.952+0.00% 0.954+0.003 0.948+0.00%

Scmid 0.8780.002 0.822-0.004 N/A 0.824+0.003 N/A 0.697+0.007

Disfa 0.934-0.002 0.90%0.002 N/A 0.900+0.002 0.904+0.003 0.884+0.003

Fera 0.764-0.006 0.636:0.008 N/A 0.631£0.008 N/A 0.589+0.007%

Adult 0.699+0.005 0.716-0.00% 0.70A4-0.00% 0.710+0.004 0.708+0.004 0.705+0.00%

Data ExactMatch

Set MD-KNN BR CP ECC ESC gMML

Flarel 0.82%0.073 0.82%0.073 0.82%0.073 0.81%#0.078 0.82%0.073 0.82%0.075

WaterQuality 0.002-0.009 0.00£0.008 0.006-0.000» 0.006+0.008 0.006-0.008 0.006-0.008

Scm20d 0.23%0.012 0.065-0.008 N/A 0.101+0.010» N/A 0.052+0.007

Rf1 0.860£0.011 0.4280.01% 0.612+0.013 0.438+0.01% 0.580+0.011 0.138+0.011e

Thyroid 0.788:0.016 0.7730.015 0.776+0.01% 0.772:0.01% 0.7710.01% 0.7410.015

Pain 0.8330.015 0.7520.015 0.7714+0.016e 0.7614+0.016e 0.769+0.015 0.75G+0.018

Scmld 0.2620.014 0.1750.010 N/A 0.19740.013 N/A 0.102+0.00%

Disfa 0.57#40.012 0.40%0.00% N/A 0.402+0.010» 0.42740.011e 0.379£0.011e

Fera 0.406-0.014 0.21%#0.013 N/A 0.211+0.013 N/A 0.196+0.013

Adult 0.256+0.009 0.2470.00% 0.30A40.012 0.260G+0.008 0.316:0.00® 0.230+0.00%

Data Sub-ExacMatch

Set MD-KNN BR CP ECC ESC gMML

Flarel 0.95%0.036 0.94£0.039 0.95%0.036 0.9510.036 0.9510.036 0.95#0.039

WaterQuality 0.068-0.017 0.05%0.024 0.034-0.01% 0.050+0.023 0.046-0.02% 0.049+0.024

Scm20d 0.4730.019 0.131%0.008 N/A 0.171£0.007% N/A 0.100+0.00%

Rf1 0.993t0.002 0.785-0.006» 0.86740.01% 0.769£0.01G 0.842+0.01%» 0.375t0.01%

Thyroid 0.981-0.003 0.9820.004 0.9810.005 0.981%0.004 0.9820.004 0.9820.005

Pain 0.9230.008 0.8630.00% 0.86A4-0.008 0.859+-0.010» 0.864+0.008 0.846+0.010»

Scmld 0.4980.020 0.3480.01% N/A 0.358+0.01% N/A 0.198+0.015

Disfa 0.798t0.010 0.6520.01% N/A 0.652+0.01% 0.668+0.013 0.590+0.00%

Fera 0.653:0.011 0.435-0.012» N/A 0.432+0.013 N/A 0.378+0.013

Adult 0.642+0.008 0.6620.00® 0.63A0.007 0.6620.00® 0.638+0.008 0.662-0.00&

TABLE Il strategy.
WIN/TIE/LOSS COUNTS OF PA|RW|SE'TEST(AT 0.05SIGNIFICANCE ° gMML Iearns a Mahalanobls dlstance metrIC WhICh can
LEVEL) BETWEEN MD-KNN AND EACH MDC APPROACH . .
make the distance between the predicted class vector of

Evaluation | MD-KNN against one _examplg and its_, gr(.)und—trut.h one closer. AIthoggh
metric BR CP ECC ESC  gMML Euclidean distance is simply utilized to measure sim-
HS 8L 4/UL 81 511 8/1/1 ilarities in this paper, M-KNN also achieves superior
EM 8/2/0 4/1/1 7/3/0 4/2/1 8/2/0 performance against gMML in 22 out of 30 cases.
SEM 6/3/1 3/3/0 6/3/1 4/3/0  6/3/1 « All the 10 under-performing cases and 23 out of 30
In Total 22/6/2  11/5/2  21/7/2  13/6/2 22/6/2 comparable cases for DAKNN against other compared

superior or at least comparable performance against the

five compared approaches in 119 cases.
« CP, ECC, ESC explicitly consider class dependencies )

when learning from training examples. It is showrf- Further Analysis

that MD-KNN achieves highly competitive performance 1) The Effectiveness of DMKNN’s Design: There are a

against these approaches, which clearly validate the &ftal of four noteworthy technical components irDMKNN's

fectiveness of M-KNN's pairwise dependency modelingdesign. Firstly, M>-KNN aims at makindMAP inferencebased

approaches occur fdelarel, Thyroid and Adult, which

all have nominal features. In this scenario, Hamming
distance serves as a complementary metric tp-#tiiN

to measure similarities, which might not be a good choice
and further studies could be explored in the future.



TABLE IV

APPROACH PER DATA SET IS ALSO SHOWN IN PARENTHESES

EXPERIMENTAL RESULTS(MEANZSTD. DEVIATION) OF MD-KNN AND ITS FOUR DEGENERATED VERSIONSIN ADDITION, THE RANK FOR EACH

Data HammingScore

Set MD-KNN DeV1 DeV2 DeV3 DeV4
Flarel 0.923-0.033(1) 0.923-0.038(1) 0.923-0.033(1) 0.923-0.033(2) 0.923-0.033(1)
WaterQuality 0.652-0.013(1) 0.6440.012(5) 0.656:-0.013(4) 0.65%0.012(2) 0.65%0.012(2)
Scm20d 0.86&0.005(1) 0.863-0.006(5) 0.866:0.005(4) 0.8670.005(2) 0.8670.006(2)
Rf1 0.982+0.001(1) 0.98%0.001(2) 0.981:0.001(2) 0.98%0.001(2) 0.9810.001(2)
Thyroid 0.96740.002(1) 0.966:0.003(5) 0.96#0.003(1) 0.96#0.002(1) 0.96#0.002(1)
Pain 0.9710.003(1) 0.968:0.003(5) 0.978:0.003(2) 0.976:0.003(2) 0.978:0.003(2)
Scmild 0.8780.002(1) 0.8740.003(5) 0.876:0.002(4) 0.87#0.002(2) 0.87#0.002(2)
Disfa 0.9370.002(1) 0.932:0.002(5) 0.936:0.002(3) 0.93%0.002(1) 0.936:0.002(3)
Fera 0.764-0.006(1) 0.756:0.006(5) 0.762-0.008(3) 0.762:0.008(3) 0.763-0.007(2)
Adult 0.699+0.005(1) 0.693-0.005(3) 0.6910.004(5) 0.693-0.005(3) 0.698:0.005(2)
Data ExactMatch

Set MD-KNN DeV1 DeV2 DeV3 DeV4
Flarel 0.8210.073(1) 0.8140.085(5) 0.8210.073(1) 0.81#0.078(4) 0.8210.073(1)
WaterQuality 0.002:0.009(1) 0.006:0.007(5) 0.008:0.008(3) 0.008:0.008(3) 0.009:0.010(2)
Scm20d 0.2370.012(2) 0.235:0.013(3) 0.2340.012(5) 0.235:0.014(3) 0.236:0.013(2)
Rf1 0.860:0.011(2) 0.857%0.010(3) 0.85%0.010(3) 0.858:0.011(2) 0.856:0.008(5)
Thyroid 0.788t0.016(1) 0.7780.017(5) 0.7840.016(3) 0.786:0.016(2) 0.7840.015(3)
Pain 0.8330.015(1) 0.822:0.015(5) 0.82#0.016(4) 0.838:0.017(2) 0.828:0.015(3)
Scmld 0.262:0.014(1) 0.25%0.014(5) 0.256:0.016(4) 0.259:0.014(3) 0.2668:0.017(2)
Disfa 0.5740.012(2) 0.552:0.012(5) 0.566:0.012(4) 0.576:0.012(2) 0.568:0.012(3)
Fera 0.4068:0.014(1) 0.39%0.013(5) 0.39%0.014(3) 0.39%0.015(3) 0.408:0.014(12)
Adult 0.256+0.009(1) 0.245:0.008(2) 0.19%4:0.010(5) 0.196:0.013(4) 0.2440.010(3)
Data Sub-ExacMatch

Set MD-KNN DeV1 DeV2 DeV3 DeV4
Flarel 0.95%0.036(3) 0.95#0.036(1) 0.95%0.036(3) 0.9540.037(2) 0.95%0.036(3)
WaterQuality 0.066-0.017(1) 0.0440.015(5) 0.052-0.018(3) 0.049-0.021(4) 0.05#0.021(2)
Scm20d 0.4730.019(2) 0.462:0.019(5) 0.46%0.017(4) 0.476:0.017(3) 0.4750.020(2)
Rf1 0.993t0.002(2) 0.9940.002(2) 0.993-0.002(2) 0.993-0.002(2) 0.993-0.001(2)
Thyroid 0.981-0.003(4) 0.9810.003(4) 0.982-0.003(1) 0.982-0.003(1) 0.982:0.003(1)
Pain 0.923-0.008(1) 0.912:0.011(5) 0.926:0.010(4) 0.922:0.011(2) 0.9210.010(3)
Scmild 0.4980.020(2) 0.4720.016(5) 0.493-0.016(4) 0.496:0.017(3) 0.499:0.015(1)
Disfa 0.798t0.010(2) 0.78%0.011(5) 0.7940.008(4) 0.799:0.009(2) 0.795:0.009(3)
Fera 0.653-0.011(1) 0.642:0.010(5) 0.649-0.014(4) 0.65%0.014(2) 0.6568-0.013(3)
Adult 0.642+0.008(4) 0.633:0.009(5) 0.656:0.006(2) 0.65%0.009(2) 0.649:0.008(3)

on kNN counting statistics from a general view. Then, tolata set:
consider pairwise class dependencie)-kNN is specially MAP z; , .
designed in botlieaturespace anautputspace. As shown in Dj - {(61 i) [1<i<m} (1<5<q)
Eq.(4), for each pair of class spaces, both kN&N counting i.e., only MAP rule is used here. In DeV3, the only difference
statistics are used as features and all distinct class combifiam MD-KNN is that we replace th¢?) different DMAP in
tions are used as new classes. Finally, for each class sp&g(4) withq - (¢ — 1) different DPV3 defined as follows:
MD-KNN determines the prediction by selecting one from the
candidates vie@mpirical KNN accuracyBy integrating these
four technical components, MKNN achieves highly com- i.e., the third technical component in OMKNN is not used
petitive performance against state-of-the-art MDC approachasre. In DeV4, the only difference from DAKNN is that we
which has been shown in the previous section. Here, to furtireplacekNN accuracy selection criterion with majority voting
validate the effectiveness of BAKNN’s design, we conduct when making an ensemble gf— 1 predictions in Eq.(5).
specific comparative studies betweerpMNN and its four Table IV reports the detailed experimental results of these
degenerated versions, which are denoted by DeV1, DeMaur degenerated versions and the rank for each approach per
DeV3, and DeV4 respectively. data set is also shown in parentheses. Furthernvgilepxon
Specifically, in DeV1, each class space is independentsligned-ranks tesf39] is used as the statistical test to show
solved by a standarkNN classifier, i.e., none of the technicalwhether Mb-kKNN performs significantly better than DeV1,
components above are used here. In DeV2, each class spa@eig2, DeV3, and DeV4 in terms of each evaluation metric
independently solved by a classifier trained over the followimgspectively. Table V summarizes the statistical test results and

DRV3 — (&7 y;) [ 1<i<m} (1<r<s<gq)
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Fig. 1. Performance of M-KNN changes a% varies from 5 to 15.

TABLE V
WILCOXON SIGNED-RANKS TEST FORMD-KNN AGAINST ITS FOUR
DEGENERATED VERSIONS IN TERMS OF EACH EVALUATION METRIC
(SIGNIFICANCE LEVEL o = 0.05; p-VALUES SHOWN IN THE BRACKETS).

(2]

MD-KNN Evaluationmetric

versus HS EM SEM

DeVv1l win [3.91e-3] win [1.95e-3] win [1.95e-2]

DeV2 win [3.91e-3] win [3.91e-3] tie [2.50e-1]

DeV3 win [3.91e-3] win [1.95e-3] tie [6.95e-1]

DeV4 win [3.91e-3] win [L.56e-2] tie [8.20e-1] (4l

the p-values for the corresponding tests are also shown in tHel
brackets.

As shown in Table V, Nb-KNN achieves statistically better
performance than DeV1 in terms of all metrics, and DeV2

DeV3, DeV4 in terms of HS and EM. These results clearl °]
validate the effectiveness of DAKNN’s design.
2) Sensitivity Analysis:As shown in Algorithm 1, there 7

is only one parametek to be set for Mb-KNN, i.e., the
number of nearest neighbors considered. Figure 1 shows how
the performance of M-KNN changes a% increases from 5
to 15. It is shown that M-KNN achieves relatively stable (8]
performance when the value kivaries. Therefore, we simply
fix k to be the moderate value of 10 in this paper. -
V. CONCLUSION

In this paper, a first attempt towards adapting instance-based
techniques to solve multi-dimensional classification problem [&)]
investigated. Specifically, a novel approach namen-fhN
is proposed which makes use of instance-based techniqueg in
two levels. In the first level, for each pair of class spaces, MAP
inference is made based on their correspon#iy counting (12]
statistics. In the second level, predictive label w.r.t. each class
space for the unseen instance is determined by selectitg
one from candidates according to empiriddN accuracy
estimation. Comparative studies on ten real-world MDC dajgy
sets clearly validate the effectiveness of the proposeddwn

approach. [15]
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