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Abstract—Multi-dimensional classification (MDC) deals with
the problem where each instance is associated with multiple
class variables, each of which corresponds to a specific class
space. One of the mainstream solutions for MDC is to adapt
traditional machine learning techniques to deal with MDC data.
In this paper, a first attempt towards adapting instance-based
techniques for MDC is investigated, and a new approach named
M D-KNN is proposed. Specifically, MD-KNN identifies unseen
instance’s k nearest neighbors and obtains its corresponding
kNN counting statistics for each class space, based on which
maximum a posteriori (MAP) inference is made for each pair of
class spaces. After that, the class label w.r.t. each class space is
determined by synergizing predictions from the learned classifiers
via consulting empirical kNN accuracy. Comparative studies over
ten benchmark data sets clearly validate MD-KNN’s effectiveness.

I. I NTRODUCTION

In traditional multi-class classification, each example is rep-
resented by a single instance and associated with a single class
variable. However, there are many learning tasks where the
simplifying assumption does not fit well as real-world objects
usually have rich semantics and should be classified along
different dimensions [1], [2], [3], [4], [5], [6], [7], [8], [9]. For
example, in news categorization, we should simultaneously
classify a news document from thetopic dimension (with
possible classesSci&Tech, social, politics, sports, etc.), from
themood dimension (with possible classesgood news, neutral
news, bad news), and from thezone dimension (with possible
classesdomestic, intra-/inter-continental, etc.), etc. To deal
with this kind of problems, one natural solution is to associate
multiple class variables with the object to explicitly express
its semantics, which yields the multi-dimensional classification
framework [10], [11], [12]. Compared to multi-class classifi-
cation, each MDC example is also represented by a single
instance while associated with multiple class variables. Here,
each class variable corresponds to one specific class space
characterizing the object’s semantics from one dimension.

Formally speaking, denote the input (feature) space by
X = Rd, and the output space byY = C1 × C2 × ∙ ∙ ∙ × Cq.
Here, the output space corresponds to the Cartesian product of
q class spaces and each class spaceCj (1 ≤ j ≤ q) consists
of Kj possible class labels, i.e.,Cj = {cj

1, c
j
2, . . . , c

j
Kj

}.
Given the MDC training setD = {(xi, yi) | 1 ≤ i ≤ m}
with m training examples, for each example(xi, yi) ∈ D,

xi = [xi1, xi2, . . . , xid]> ∈ X is a d-dimensional feature
vector andyi = [yi1, yi2, . . . , yiq]> ∈ Y is the class vector
associated withxi, where each componentyij is one possible
class label inCj , i.e.,yij ∈ Cj . The task of multi-dimensional
classification is to learn a mapping functionf : X 7→ Y from
D which can predict a class vectorf(x∗) ∈ Y for unseen
instancex∗.

To solve the MDC problem, one main strategy is to adapt
popular learning techniques to directly deal with MDC data.
In [13], [14], [15], [16], [17], Bayesian network is adapted for
MDC where three subgraphs are learned specifically to model
the dependencies among feature variables, class variables, and
feature-class variables. In [11], a metric learning approach is
designed for MDC where a Mahalanobis distance metric is
learned which can make the distance between linear regression
outputs of one example and its ground-truth class label vector
closer. In [18], maximum margin technique is adapted for
MDC where not only classification margins on individual class
variable are maximized, but also dependencies among class
variables are considered.

Existing approaches focus on adapting parametric learn-
ing techniques to deal with MDC problem, while instance-
based techniques have been shown as effective solutions to
learn from objects with rich semantics [19], [20], [21], [22],
[23], [24]. In this paper, we make a first attempt to adapt
instance-based techniques for multi-dimensional classification,
and propose a novel approach named MD-KNN, i.e., Multi-
Dimensional k-Nearest Neighbor. Firstly, MD-KNN identifies
unseen instance’sk nearest neighbors in training set, and
obtains its kNN counting statistics w.r.t. each class space.
Then, for each pair of class spaces, maximum a posteriori
(MAP) inference is made based on the obtainedkNN counting
statistics w.r.t. both class spaces. Finally, the class label w.r.t.
each class space is determined by synergizing predictions from
corresponding pairwise class spaces via consulting empirical
kNN accuracy. Experimental results over ten benchmark data
sets show that MD-KNN achieves superior performance against
other state-of-the-art MDC approaches.

The rest of this paper is organized as follows. Firstly, related
works on MDC are briefly discussed. Secondly, technical
details of the proposed approach are introduced. Thirdly, ex-
perimental results of comparative studies are reported. Finally,
we conclude this paper.



II. RELATED WORK

The most related learning framework to multi-dimensional
classification is multi-label classification (MLC) [25], [26],
[27], and both of them can be regarded as one possible
instantiation of multi-output learning [28] where each object
is associated with multiple output variables. Intuitively, the
difference between MLC and MDC lies in the type of output
variables, which are binary-valued for MLC while discrete-
valued for MDC. However, the essential difference between
MLC and MDC lies in whether the class space ishomoge-
neousor heterogenous. MLC usually assumes homogeneous
class space where each label represents the relevancy of one
concept, while MDC assumes heterogenous class space where
each class variable corresponds to one specific class space
which characterizes the object’s semantics along one specific
dimension [10], [12], [29].

Due to powerful modeling capabilities of probabilistic
graphical model, Bayesian network has been adapted to solve
MDC problems [30], [31], [32], [13]. Specifically, a total
of three subgraphs are learned, i.e., class subgraph, feature
subgraph, and bridge subgraph, which respectively model the
dependencies among feature variables, class variables, and
feature-class variables. Different structure types of subgraphs
result in different solutions which form a family of MDC
approaches called Multi-dimensional Bayesian network Clas-
sifier (MBC). Recent works further explore different MBC
structures or efficient structure learning strategies [14], [15],
[16], [17]. However, structure learning for Bayesian network
is still challenging and only data set with discrete features can
be tackled. In [11], the proposed gMML approach alternately
learns linear regression models for each class label as well
as a Mahalanobis distance metric to solve MDC problem
effectively, where the Mahalanobis distance metric can make
the distance between linear regression outputs of one example
and its ground-truth class label vector closer. In [18], the
proposed M3MDC approach adapts maximum margin tech-
nique to solve MDC problem, which not only maximizes
classification margins on individual class variable via one-vs-
one decomposition, but also considers dependencies among
class variables via covariance regularization.

Other than these approaches which adapt existing learning
techniques to deal with MDC data, there are also some works
which solve the MDC problem by transforming it into other
well-established learning frameworks. By focusing on each
class space one by one, the MDC problem can be intuitively
transformed into a number of independent or a chain of
successive multi-class classification problems [33], [34], one
per class space, while by focusing on all class spaces at the
same time, the MDC problem can be intuitively transformed
into a single multi-class classification problem. By grouping
the class spaces into super-classes [10], or enriching the
original feature space with augmented features [12], [35], the
MDC problem can be transformed into a new MDC problem,
which is expected to facilitate follow-up learning procedure
after tailored transformations.

III. T HE MD-KNN APPROACH

For any instancex, let Nk(x) = {it | 1 ≤ t ≤ k} denote
the set of indices forx’s k nearest neighbors identified in
training setD. Here, Euclidean distance is used to measure the
similarities between two instances. Then, the followingkNN
counting statisticsδxj = [δxj1, δ

x
j2, . . . , δ

x
jKj

] can be defined for
the j-th class space:

δxja =
∑

it∈Nk(x)

I(yitj , c
j
a) (1 ≤ a ≤ Kj , 1 ≤ j ≤ q) (1)

Here, yit = [yit1, yit2, . . . , yitq]> corresponds to the class
vector of the neighboring MDC examplexit of x. I(π1, π2)
returns 1 ifπ1 is identical withπ2 and 0 otherwise. Therefore,
δxja records the number ofx’s neighboring MDC examples
which has class labelcj

a in the j-th class space. According to
Eq.(1), it is easy to verify that

∑Kj

a=1 δxja = k holds.
The task of MDC is to learn a mapping function fromX to

Y = C1 × C2 × ∙ ∙ ∙ × Cq, rather thanq independent mapping
functions fromX to Cj (1 ≤ j ≤ q) respectively. This means
that we should consider dependencies among class spaces
C1, C2, . . . , Cq when inducing an MDC predictive model.
Generally speaking, due to limited number of examples in
training set, dependencies among fewer class spaces can be
modeled more reliably than dependencies among many class
spaces. Therefore, MD-KNN only aims at considering second-
order (or pairwise) class dependencies. Specifically, MD-KNN

aims at predicting the class vector of unseen instancex∗ by
utilizing MAP rule based on itskNN counting statistics. For
the r-th and s-th class space (1 ≤ r < s ≤ q), the class
label cr

ar
∈ Cr and cs

as
∈ Cs with maximum posteriori

probability P(φrs(cr
ar

, cs
as

) | xrs
∗ ) will be returned as the

predicted labels forx∗’s r-th and s-th class space. Here,
φrs(∙, ∙) is some injective function from Cartesian product
of Cr and Cs to natural numbers, andxrs

∗ = [δx∗
r , δx∗

s ].
Intuitively, the posteriori probability can beexplicitlyestimated
from training setD as follows:

P
(
φrs(c

r
ar

, cs
as

) | xrs
∗

)

=

m∑

i=1

I(φrs(yir, yis), φrs(cr
ar

, cs
as

)) ∙ I(xrs
i , xrs

∗ )

m∑

i=1

I(xrs
i , xrs

∗ )
(2)

wherexrs
i = [δxi

r , δxi
s ]. However, due to the limited number

of training examples and large number of possible different
xrs
∗ , there are usually fewxrs

i s in training setD which are
identical with xrs

∗ , i.e, the denominator in Eq.(2) is usually
very small which leads to that Eq.(2) can’t work properly.
Specifically, denote the number of possible differentxrs

∗ by
N(k,Kr,Ks), we have

N(k,Kr,Ks) = N(k,Kr) ∙ N(k,Ks) (3)

where

N(u, v) =

{
u + 1, when v = 2∑u

i=0 N(i, v − 1), when v > 2



In this paper, MD-KNN uses an alternative way where
P
(
φrs(cr

ar
, cs

as
) | xrs

∗

)
is estimatedimplicitly via a classifier

grs, which is trained over the following multi-class data set:

DMAP
rs = {(xrs

i , φrs(yir, yis)) | 1 ≤ i ≤ m} (4)

i.e., grs = M(DMAP
rs ). Here,M corresponds to the employed

multi-class training algorithm. According to the definition of
φrs(∙, ∙), the set of new classes inDMAP

rs corresponds to
Φ(DMAP

rs ) = {φrs(yir, yis) | 1 ≤ i ≤ m}. Denote the compo-
sition of functionsφ−1

rs andgrs by hrs, i.e., hrs = φ−1
rs ◦ grs,

whereφ−1
rs (∙) is the inverse function ofφrs(∙, ∙). For unseen

instancex∗, based on itskNN counting statisticsxrs
∗ =

[δx∗
r , δx∗

s ], its class label w.r.t.r-th ands-th class space can be
predicted byhrs, i.e., [yrs

∗r, y
rs
∗s] = hrs(xrs

∗ ) = φ−1
rs (grs(xrs

∗ )).
It is easy to know that there are a total of

(
q
2

)
differentDMAP

rs

andhrs, based on which we can obtainq−1 predictive outputs
for each class space. Denote theq−1 predictive outputs w.r.t.
the j-th class space byyx∗

j (1 ≤ j ≤ q):

yx∗
j =

[
yx∗

j (1), yx∗
j (2), . . . , yx∗

j (q − 1)
]>

(5)

where

yx∗
j (i) =

{
yij
∗j , when 1 ≤ i ≤ j − 1

y
j(i+1)
∗j , when j ≤ i ≤ q − 1

Note that each element inyx∗
j is obtained by one different

classifier. Intuitively, the predictive ability of one classifier
might vary when it is employed to classify different examples.
Therefore, we aim to choose the element inyx∗

j which
corresponds to the classifier with best ability in classifying the
unseen instancex∗. Specifically, for classifierhrs, we firstly
obtain all the correspondingkNN counting statisticsxrs

it
of

x∗’s k nearest neighbors, where1 ≤ t ≤ k, it ∈ Nk(x∗), and
xrs

it
= [δ

xit
r , δ

xit
s ]. Then, predictive outputs can be returned

for each neighboring example, i.e.,[ŷrs
itr, ŷ

rs
its

] = hrs(xrs
it

).
Finally, we can estimatehrs’s predictive accuracyηrs

r (x∗)
andηrs

s (x∗) w.r.t. ther-th ands-th class space respectively:

ηrs
r (x∗) = 1

k

∑k
t=1 I(ŷ

rs
itr

, yitr)
ηrs

s (x∗) = 1
k

∑k
t=1 I(ŷ

rs
its

, yits)
(6)

The estimated twokNN accuracies can be approximately
regarded ashrs’s ability in classifying the r-th and s-th
class space ofx∗. Denote theq − 1 predictive accuracies
corresponding to each element inyx∗

j by ηx∗
j :

ηx∗
j =

[
ηx∗

j (1), ηx∗
j (2), . . . , ηx∗

j (q − 1)
]>

(7)

where

ηx∗
j (i) =

{
ηij

j (x∗), when 1 ≤ i ≤ j − 1

η
j(i+1)
j (x∗), when j ≤ i ≤ q − 1

The final predicted class vector ofx∗, denoted byy∗ =
[y∗1, y∗2, . . . , y∗q]

>, can be returned as follows:

y∗j = yx∗
j (I), where I = arg max

1≤i≤q−1
ηx∗

j (i) (8)

Algorithm 1 The pseudo-code of MD-KNN

Input: The MDC training setD, the number of nearest
neighbors consideredk, the multi-class training algorithm
M, the unseen instancex∗;

Output: The predicted class vectory∗ for x∗;
1: Initialize DMAP

rs (1 ≤ r < s ≤ q) as empty set;
2: for i = 1 to m do
3: Identify xi’s k nearest neighbors inD and store their

indices inNk(xi);
4: for r = 1 to q − 1 do
5: for s = r + 1 to q do
6: Obtain vectorδxi

r andδxi
s according to Eq.(1);

7: DMAP
rs = DMAP

rs ∪ (xrs
i , φrs(yir, yis)), where

xrs
i = [δxi

r , δxi
s ];

8: end for
9: end for

10: end for
11: for r = 1 to q − 1 do
12: for s = r + 1 to q do
13: Train grs overDMAP

rs , i.e., grs = M(DMAP
rs );

14: end for
15: end for
16: Identify x∗’s k nearest neighbors inD and store their

indices inNk(x∗);
17: Obtain x∗’s q kNN counting statisticsδx∗

j (1 ≤ j ≤ q)
according to Eq.(1);

18: Initialize yx∗
j , ηx∗

j (1 ≤ j ≤ q) as empty vector;
19: for r = 1 to q − 1 do
20: for s = r + 1 to q do
21: Obtainηrs

r (x∗) andηrs
s (x∗) according to Eq.(6);

22: ηx∗
r = [ηx∗

r , ηrs
r (x∗)], ηx∗

s = [ηx∗
s , ηrs

s (x∗)];
23: [yrs

∗r, y
rs
∗s] = hrs(xrs

∗ ), wherexrs
∗ = [δx∗

r , δx∗
s ];

24: yx∗
r = [yx∗

r , yrs
∗r], y

x∗
s = [yx∗

s , yrs
∗s];

25: end for
26: end for
27: for j = 1 to q do
28: Predicty∗j according to Eq.(8);
29: end for
30: Returny∗ = [y∗1, . . . , y∗q].

In summary, Algorithm 1 presents the complete procedure
of MD-KNN. Firstly, a total of

(
q
2

)
differentDMAP

rs are gener-
ated based on training setD (steps 1-10), over which a total
of
(
q
2

)
classifiers are trained respectively for each pair of class

spaces (steps 11-15). After that, for each class space pair, the
corresponding two empiricalkNN accuracies and predictive
outputs for unseen instancex∗ are obtained (steps 16-26).
Finally, for each class space ofx∗, the predicted class label
is returned by synergizingq − 1 candidates according to the
corresponding empiricalkNN accuracies (steps 27-30).

Computational complexity. For the employed multi-class
training algorithmM, letF(m, d,N ) andF ′(m, d,N ) denote
the training and testing complexity ofM, where m, d, N
corresponds to the number of examples, number of features



and number of class labels respectively. According to Algo-
rithm 1, the training complexity of MD-KNN corresponds to
O(m ∙(m+q2 ∙K)+q2 ∙F(m, 2K,K2)), and the testing com-
plexity corresponds toO(m+ q ∙K + q2 ∙F ′(k, 2K,K2)+ q).
Here, K represents the maximum number of class labels in
each class space, i.e.,K = max{K1,K2, . . . ,Kq}. Note that
q represents the number of class spaces (dimensions), each
of which corresponds to one semantic space. Generally, it is
not reasonable to assume too many semantic spaces and the
number of class spaces in each MDC data set is at moderate
size. Besides, both steps 4-9, steps 11-15 in training phase and
steps 19-26 in testing phase can be run in parallel if there are
enough computing resources.

IV. EXPERIMENTS

A. Experimental Setup

1) Data Sets: In this paper, a total of ten real-world
MDC data sets are collected for comparative studies. To the
best of our knowledge, seven of these data set are firstly
employed in MDC researches [10], [11], [12], [13], [18],
[35]. Table I summarizes the detailed characteristics of these
data sets, includingnumber of examples(#Exam.),number of
class spaces(#Dim.), number of class labels per class space
(#Labels/Dim.),1 andnumber of features(#Features).

Specifically, Flare1 , WaterQuality , Scm20d, Rf1 ,
Scm1d are adapted from multi-target regression tasks,2

Thyroid , Adult are adapted from UCI data sets,3 and
Pain , Fera , Disfa are adapted from copula ordinal regres-
sion tasks [36], [37].4

2) Evaluation Metrics: In this paper, a total of three
evaluation metrics are used to measure the generalization
performance of MDC approaches, i.e.,Hamming Score(HS),
Exact Match(EM) andSub-Exact Match(SEM). Specifically,
denote the test set byS = {(xi, yi) | 1 ≤ i ≤ p},
whereyi = [yi1, yi2, . . . , yiq]> is the ground-truth class vector
associated withxi. Denote the MDC model to be evaluated by
f : X 7→ Y , the predictive class vector forxi is ŷi = f(xi) =
[ŷi1, ŷi2, . . . , ŷiq]>, then the number of class spaces predicted
correctly can be obtained, i.e.,r(i) =

∑q
j=1Jyij = ŷijK. Here,

the predicateJπK returns 1 ifπ holds and 0 otherwise. The
three metrics can be defined as follows:

HSS(f) =
1
p

p∑

i=1

1
q
∙ r(i)

EMS(f) =
1
p

p∑

i=1

Jr(i) = qK

SEMS(f) =
1
p

p∑

i=1

Jr(i) ≥ q − 1K

1If all class spaces have the same number of class labels, then only this
number is recorded; Otherwise, the number of class labels in each class space
is recorded in turn.

2http://mulan.sourceforge.net/datasets-mtr.html
3http://archive.ics.uci.edu/ml/index.php
4https://github.com/RWalecki/copulaordinal regression/

TABLE I
CHARACTERISTICS OF THE EXPERIMENTALMDC DATA SETS.

Data Set #Exam. #Dim. #Labels/Dim. #Features†

Flare1 323 3 3,4,2 10x
WaterQuality 1060 14 4 16n
Scm20d 8966 16 4 61n
Rf1 8987 8 4,4,3,4,4,3,4,3 64n
Thyroid 9172 7 5,5,3,2,4,4,3 7n, 22x
Pain 9734 10 2,5,4,2,2,5,2,5,2,2 136n
Scm1d 9803 16 4 280n
Disfa 13095 12 5,5,6,3,4,4,5,4,4,4,6,4 136n
Fera 14052 5 6 136n
Adult 18419 4 7,7,5,2 5n,5x
† n, x denote numeric and nominal features respectively.

For all metrics, thelarger the values the better the perfor-
mance. Ten-fold cross-validation is conducted over all experi-
mental data sets, where both mean metric value and standard
deviation are recorded for performance evaluation.

3) Compared Approaches:In this paper, a total of five
state-of-the-art MDC approaches are utilized as compared
approaches, including Binary Relevance (BR), Class Powerset
(CP), Ensembles of Classifier Chains (ECC), Ensembles of
Super Class classifiers (ESC) [10], and a metric learning
approach for MDC (gMML) [11]. Specifically, BR trainsq
independent multi-class classifiers while ECC trainsq suc-
cessive multi-class classifiers in a chain, where predictions of
preceding classifiers in the chain will be used as extra features
for subsequent ones. CP trains a single multi-class classifier by
treating each distinct class combination as a new class, while
ESC firstly groups class spaces into super-classes and then CP
is used for each super-class. gMML alternately learns linear
regression models for each class label as well as a Mahalanobis
distance metric to solve MDC problem effectively. The rec-
ommended parameters in respective literatures are used for all
approaches. For MD-KNN, BR, CP, ECC and ESC, LIBSVM
with linear kernel [38] is used as the base multi-class classifier.
As shown in Algorithm 1, the only parameterk of MD-KNN

is set to 10.

B. Experimental Results

Table II shows the detailed experimental results of each
MDC approach. Moreover, to show whether MD-KNN achieves
significantly different performance to other compared ap-
proaches, pairwiset-test is conducted based on ten-fold cross-
validation (at 0.05 significance level). Accordingly, the result-
ing win/tie/loss counts are summarized in Table III.

Based on the experimental results, the following observa-
tions can be made:

• Across all the 129 configurations5 (10 data sets× 5
compared approaches× 3 metrics), MD-KNN achieves

5Due to the high computational complexity which leads to “out of memory”
error for LIBSVM package, experimental results under 21 configurations are
not available in Table 2 for some compared approaches.



TABLE II
EXPERIMENTAL RESULTS(MEAN±STD. DEVIATION ) OF EACH MDC APPROACH. IN ADDITION , •/◦ INDICATES WHETHER MD-KNN IS SIGNIFICANTLY

SUPERIOR/INFERIOR TO OTHER COMPAREDMDC APPROACHES ON EACH DATA SET(PAIRWISE t-TEST AT 0.05SIGNIFICANCE LEVEL).

Data HammingScore
Set MD-KNN BR CP ECC ESC gMML
Flare1 0.923±0.033 0.922±0.034 0.923±0.033 0.922±0.034 0.923±0.033 0.925±0.034
WaterQuality 0.652±0.013 0.644±0.013• 0.626±0.012• 0.643±0.013• 0.641±0.013• 0.643±0.013•
Scm20d 0.868±0.005 0.666±0.006• N/A 0.665±0.005• N/A 0.600±0.007•
Rf1 0.982±0.001 0.891±0.002• 0.928±0.003• 0.888±0.004• 0.919±0.003• 0.730±0.007•
Thyroid 0.967±0.002 0.965±0.002• 0.965±0.002• 0.965±0.002• 0.965±0.002• 0.960±0.002•
Pain 0.971±0.003 0.953±0.003• 0.954±0.003• 0.952±0.004• 0.954±0.003• 0.948±0.004•
Scm1d 0.878±0.002 0.829±0.004• N/A 0.824±0.003• N/A 0.697±0.007•
Disfa 0.937±0.002 0.901±0.002• N/A 0.900±0.002• 0.904±0.003• 0.884±0.003•
Fera 0.764±0.006 0.636±0.008• N/A 0.631±0.008• N/A 0.589±0.007•
Adult 0.699±0.005 0.710±0.004◦ 0.707±0.005◦ 0.710±0.004◦ 0.708±0.004◦ 0.705±0.004◦
Data ExactMatch
Set MD-KNN BR CP ECC ESC gMML
Flare1 0.821±0.073 0.821±0.073 0.821±0.073 0.817±0.078 0.821±0.073 0.821±0.075
WaterQuality 0.009±0.009 0.007±0.008 0.000±0.000• 0.006±0.008 0.006±0.008 0.006±0.008
Scm20d 0.237±0.012 0.065±0.008• N/A 0.101±0.010• N/A 0.052±0.007•
Rf1 0.860±0.011 0.428±0.014• 0.612±0.013• 0.438±0.017• 0.580±0.011• 0.138±0.011•
Thyroid 0.788±0.016 0.773±0.015• 0.776±0.014• 0.772±0.014• 0.771±0.014• 0.741±0.015•
Pain 0.833±0.015 0.759±0.015• 0.771±0.016• 0.761±0.016• 0.769±0.015• 0.750±0.018•
Scm1d 0.262±0.014 0.175±0.010• N/A 0.197±0.013• N/A 0.102±0.009•
Disfa 0.577±0.012 0.401±0.009• N/A 0.402±0.010• 0.427±0.011• 0.379±0.011•
Fera 0.400±0.014 0.211±0.013• N/A 0.211±0.013• N/A 0.196±0.013•
Adult 0.256±0.009 0.247±0.009• 0.307±0.012◦ 0.260±0.008 0.310±0.009◦ 0.230±0.009•
Data Sub-ExactMatch
Set MD-KNN BR CP ECC ESC gMML
Flare1 0.951±0.036 0.947±0.039 0.951±0.036 0.951±0.036 0.951±0.036 0.957±0.039
WaterQuality 0.060±0.017 0.051±0.024 0.034±0.017• 0.050±0.023 0.046±0.022• 0.049±0.024
Scm20d 0.473±0.019 0.131±0.008• N/A 0.171±0.007• N/A 0.100±0.009•
Rf1 0.993±0.002 0.785±0.006• 0.867±0.012• 0.769±0.010• 0.842±0.012• 0.375±0.014•
Thyroid 0.981±0.003 0.982±0.004 0.981±0.005 0.981±0.004 0.982±0.004 0.982±0.005
Pain 0.923±0.008 0.863±0.009• 0.867±0.008• 0.859±0.010• 0.864±0.008• 0.846±0.010•
Scm1d 0.498±0.020 0.348±0.018• N/A 0.358±0.014• N/A 0.198±0.015•
Disfa 0.798±0.010 0.652±0.012• N/A 0.652±0.011• 0.668±0.013• 0.590±0.009•
Fera 0.653±0.011 0.435±0.012• N/A 0.432±0.013• N/A 0.378±0.013•
Adult 0.642±0.008 0.669±0.009◦ 0.637±0.007 0.662±0.009◦ 0.638±0.008 0.669±0.008◦

TABLE III
WIN/TIE/LOSS COUNTS OF PAIRWISEt-TEST (AT 0.05SIGNIFICANCE

LEVEL) BETWEEN MD-KNN AND EACH MDC APPROACH.

Evaluation MD-KNN against
metric BR CP ECC ESC gMML
HS 8/1/1 4/1/1 8/1/1 5/1/1 8/1/1
EM 8/2/0 4/1/1 7/3/0 4/2/1 8/2/0
SEM 6/3/1 3/3/0 6/3/1 4/3/0 6/3/1
In Total 22/6/2 11/5/2 21/7/2 13/6/2 22/6/2

superior or at least comparable performance against the
five compared approaches in 119 cases.

• CP, ECC, ESC explicitly consider class dependencies
when learning from training examples. It is shown
that MD-KNN achieves highly competitive performance
against these approaches, which clearly validate the ef-
fectiveness of MD-KNN’s pairwise dependency modeling

strategy.
• gMML learns a Mahalanobis distance metric which can

make the distance between the predicted class vector of
one example and its ground-truth one closer. Although
Euclidean distance is simply utilized to measure sim-
ilarities in this paper, MD-KNN also achieves superior
performance against gMML in 22 out of 30 cases.

• All the 10 under-performing cases and 23 out of 30
comparable cases for MD-KNN against other compared
approaches occur forFlare1, Thyroid and Adult, which
all have nominal features. In this scenario, Hamming
distance serves as a complementary metric by MD-KNN

to measure similarities, which might not be a good choice
and further studies could be explored in the future.

C. Further Analysis

1) The Effectiveness of MD-KNN ’s Design: There are a
total of four noteworthy technical components in MD-KNN’s
design. Firstly, MD-KNN aims at makingMAP inferencebased



TABLE IV
EXPERIMENTAL RESULTS(MEAN±STD. DEVIATION ) OF MD-KNN AND ITS FOUR DEGENERATED VERSIONS. IN ADDITION , THE RANK FOR EACH

APPROACH PER DATA SET IS ALSO SHOWN IN PARENTHESES.

Data HammingScore
Set MD-KNN DeV1 DeV2 DeV3 DeV4
Flare1 0.923±0.033(1) 0.923±0.038(1) 0.923±0.033(1) 0.923±0.033(1) 0.923±0.033(1)
WaterQuality 0.652±0.013(1) 0.644±0.012(5) 0.650±0.013(4) 0.651±0.012(2) 0.651±0.012(2)
Scm20d 0.868±0.005(1) 0.863±0.006(5) 0.866±0.005(4) 0.867±0.005(2) 0.867±0.006(2)
Rf1 0.982±0.001(1) 0.981±0.001(2) 0.981±0.001(2) 0.981±0.001(2) 0.981±0.001(2)
Thyroid 0.967±0.002(1) 0.966±0.003(5) 0.967±0.003(1) 0.967±0.002(1) 0.967±0.002(1)
Pain 0.971±0.003(1) 0.968±0.003(5) 0.970±0.003(2) 0.970±0.003(2) 0.970±0.003(2)
Scm1d 0.878±0.002(1) 0.871±0.003(5) 0.876±0.002(4) 0.877±0.002(2) 0.877±0.002(2)
Disfa 0.937±0.002(1) 0.932±0.002(5) 0.936±0.002(3) 0.937±0.002(1) 0.936±0.002(3)
Fera 0.764±0.006(1) 0.756±0.006(5) 0.762±0.008(3) 0.762±0.008(3) 0.763±0.007(2)
Adult 0.699±0.005(1) 0.693±0.005(3) 0.691±0.004(5) 0.693±0.005(3) 0.698±0.005(2)
Data ExactMatch
Set MD-KNN DeV1 DeV2 DeV3 DeV4
Flare1 0.821±0.073(1) 0.814±0.085(5) 0.821±0.073(1) 0.817±0.078(4) 0.821±0.073(1)
WaterQuality 0.009±0.009(1) 0.006±0.007(5) 0.008±0.008(3) 0.008±0.008(3) 0.009±0.010(1)
Scm20d 0.237±0.012(1) 0.235±0.013(3) 0.234±0.012(5) 0.235±0.014(3) 0.236±0.013(2)
Rf1 0.860±0.011(1) 0.857±0.010(3) 0.857±0.010(3) 0.858±0.011(2) 0.856±0.008(5)
Thyroid 0.788±0.016(1) 0.778±0.017(5) 0.784±0.016(3) 0.786±0.016(2) 0.784±0.015(3)
Pain 0.833±0.015(1) 0.822±0.015(5) 0.827±0.016(4) 0.830±0.017(2) 0.828±0.015(3)
Scm1d 0.262±0.014(1) 0.251±0.014(5) 0.256±0.016(4) 0.259±0.014(3) 0.260±0.017(2)
Disfa 0.577±0.012(1) 0.552±0.012(5) 0.566±0.012(4) 0.570±0.012(2) 0.568±0.012(3)
Fera 0.400±0.014(1) 0.391±0.013(5) 0.397±0.014(3) 0.397±0.015(3) 0.400±0.014(1)
Adult 0.256±0.009(1) 0.245±0.008(2) 0.191±0.010(5) 0.196±0.013(4) 0.244±0.010(3)
Data Sub-ExactMatch
Set MD-KNN DeV1 DeV2 DeV3 DeV4
Flare1 0.951±0.036(3) 0.957±0.036(1) 0.951±0.036(3) 0.954±0.037(2) 0.951±0.036(3)
WaterQuality 0.060±0.017(1) 0.044±0.015(5) 0.052±0.018(3) 0.049±0.021(4) 0.057±0.021(2)
Scm20d 0.473±0.019(2) 0.462±0.019(5) 0.467±0.017(4) 0.470±0.017(3) 0.475±0.020(1)
Rf1 0.993±0.002(2) 0.994±0.002(1) 0.993±0.002(2) 0.993±0.002(2) 0.993±0.001(2)
Thyroid 0.981±0.003(4) 0.981±0.003(4) 0.982±0.003(1) 0.982±0.003(1) 0.982±0.003(1)
Pain 0.923±0.008(1) 0.912±0.011(5) 0.920±0.010(4) 0.922±0.011(2) 0.921±0.010(3)
Scm1d 0.498±0.020(2) 0.479±0.016(5) 0.493±0.016(4) 0.496±0.017(3) 0.499±0.015(1)
Disfa 0.798±0.010(2) 0.781±0.011(5) 0.794±0.008(4) 0.799±0.009(1) 0.795±0.009(3)
Fera 0.653±0.011(1) 0.642±0.010(5) 0.649±0.014(4) 0.651±0.014(2) 0.650±0.013(3)
Adult 0.642±0.008(4) 0.633±0.009(5) 0.656±0.006(2) 0.657±0.009(1) 0.649±0.008(3)

on kNN counting statistics from a general view. Then, to
consider pairwise class dependencies, MD-KNN is specially
designed in bothfeaturespace andoutputspace. As shown in
Eq.(4), for each pair of class spaces, both thekNN counting
statistics are used as features and all distinct class combina-
tions are used as new classes. Finally, for each class space,
MD-KNN determines the prediction by selecting one from the
candidates viaempirical kNN accuracy. By integrating these
four technical components, MD-KNN achieves highly com-
petitive performance against state-of-the-art MDC approaches
which has been shown in the previous section. Here, to further
validate the effectiveness of MD-KNN’s design, we conduct
specific comparative studies between MD-KNN and its four
degenerated versions, which are denoted by DeV1, DeV2,
DeV3, and DeV4 respectively.

Specifically, in DeV1, each class space is independently
solved by a standardkNN classifier, i.e., none of the technical
components above are used here. In DeV2, each class space is
independently solved by a classifier trained over the following

data set:

DMAP
j = {(δxi

j , yij) | 1 ≤ i ≤ m} (1 ≤ j ≤ q)

i.e., only MAP rule is used here. In DeV3, the only difference
from MD-KNN is that we replace the

(
q
2

)
different DMAP

rs in
Eq.(4) with q ∙ (q − 1) differentDDeV3

rs defined as follows:

DDeV3
rs = {(xrs

i , yir) | 1 ≤ i ≤ m} (1 ≤ r < s ≤ q)

i.e., the third technical component in MD-KNN is not used
here. In DeV4, the only difference from MD-KNN is that we
replacekNN accuracy selection criterion with majority voting
when making an ensemble ofq − 1 predictions in Eq.(5).

Table IV reports the detailed experimental results of these
four degenerated versions and the rank for each approach per
data set is also shown in parentheses. Furthermore,Wilcoxon
signed-ranks test[39] is used as the statistical test to show
whether MD-KNN performs significantly better than DeV1,
DeV2, DeV3, and DeV4 in terms of each evaluation metric
respectively. Table V summarizes the statistical test results and
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Fig. 1. Performance of MD-KNN changes ask varies from 5 to 15.

TABLE V
WILCOXON SIGNED-RANKS TEST FORMD-KNN AGAINST ITS FOUR

DEGENERATED VERSIONS IN TERMS OF EACH EVALUATION METRIC

(SIGNIFICANCE LEVEL α = 0.05; p-VALUES SHOWN IN THE BRACKETS).

MD-KNN Evaluationmetric
versus HS EM SEM
DeV1 win [3.91e-3] win [1.95e-3] win [1.95e-2]
DeV2 win [3.91e-3] win [3.91e-3] tie [2.50e-1]
DeV3 win [3.91e-3] win [1.95e-3] tie [6.95e-1]
DeV4 win [3.91e-3] win [1.56e-2] tie [8.20e-1]

the p-values for the corresponding tests are also shown in the
brackets.

As shown in Table V, MD-KNN achieves statistically better
performance than DeV1 in terms of all metrics, and DeV2,
DeV3, DeV4 in terms of HS and EM. These results clearly
validate the effectiveness of MD-KNN’s design.

2) Sensitivity Analysis:As shown in Algorithm 1, there
is only one parameterk to be set for MD-KNN, i.e., the
number of nearest neighbors considered. Figure 1 shows how
the performance of MD-KNN changes ask increases from 5
to 15. It is shown that MD-KNN achieves relatively stable
performance when the value ofk varies. Therefore, we simply
fix k to be the moderate value of 10 in this paper.

V. CONCLUSION

In this paper, a first attempt towards adapting instance-based
techniques to solve multi-dimensional classification problem is
investigated. Specifically, a novel approach named MD-KNN

is proposed which makes use of instance-based techniques in
two levels. In the first level, for each pair of class spaces, MAP
inference is made based on their correspondingkNN counting
statistics. In the second level, predictive label w.r.t. each class
space for the unseen instance is determined by selecting
one from candidates according to empiricalkNN accuracy
estimation. Comparative studies on ten real-world MDC data
sets clearly validate the effectiveness of the proposed MD-KNN

approach.
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[10] J. Read, C. Bielza, and P. Larrañaga, “Multi-dimensional classification
with super-classes,”IEEE Transactions on Knowledge and Data Engi-
neering, vol. 26, no. 7, pp. 1720–1733, 2014.

[11] Z. Ma and S. Chen, “Multi-dimensional classification via a metric
approach,”Neurocomputing, vol. 275, pp. 1121–1131, 2018.

[12] B.-B. Jia and M.-L. Zhang, “Multi-dimensional classification via kNN
feature augmentation,”Pattern Recognition, vol. 106, 2020, Article
107423.
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