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Abstract

Label-specific features serve as an effective strat-
egy to facilitate multi-label classification, which
account for the distinct discriminative proper-
ties of each class label via tailoring its own fea-
tures. Existing approaches implement this strat-
egy in a quite straightforward way, i.e. find-
ing the most pertinent and discriminative fea-
tures for each class label and directly inducing
classifiers on constructed label-specific features.
In this paper, we propose a dual perspective
for label-specific feature learning, where label-
specific discriminative properties are considered
by identifying each label’s own non-informative
features and making the discrimination process
immutable to variations of these features. To in-
stantiate it, we present a perturbation-based ap-
proach DELA to provide classifiers with label-
specific immutability on simultaneously identi-
fied non-informative features, which is optimized
towards a probabilistically-relaxed expected risk
minimization problem. Comprehensive experi-
ments on 10 benchmark data sets show that our
approach outperforms the state-of-the-art counter-
parts.

1. Introduction
Multi-label classification allows to learn from instances asso-
ciated with multiple labels simultaneously (Zhang & Zhou,
2014; Liu et al., 2021). Nowadays, researches on multi-label
classification have been greatly driven by real-world appli-
cations, where multi-semantic objects widely exist, such
as image annotation (You et al., 2020), text categorization
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(Xun et al., 2020), and bioinformatics analysis (Chen et al.,
2017), etc.

The most straightforward strategy for dealing with multi-
label data is to exploit the identical representation of an
instance in inducing classification models. However, this
strategy might be suboptimal as it fails to consider that each
class label may possess its own discriminative properties.
With the ability to model distinct characteristics of each
class label, label-specific features have become a promising
strategy to facilitate the discrimination of each class label by
tailoring its own features (Zhang & Wu, 2015; Huang et al.,
2016b; Zhang et al., 2018; Jia et al., 2020; Yu & Zhang,
2021).

As a seminal work, LIFT (Zhang & Wu, 2015) firstly per-
forms clustering analysis on positive and negative instances
of each class label, and then heuristically constructs label-
specific features via prototype-based feature transformation.
While LLSF (Huang et al., 2015) employs feature selection
to obtain the most pertinent feature subset for each class
label under a lasso-based framework. Recent works (Hang
& Zhang, 2021; Hang et al., 2022) resort to the powerful
representation learning capability of deep neural networks
to learn label-specific features in an end-to-end manner. It
is worth noting that existing approaches focus on finding
the most pertinent and discriminative features for each class
label and directly inducing classifiers on constructed label-
specific features.

In this paper, we attack the problem of label-specific fea-
ture learning from a dual perspective. Instead of finding
the most pertinent and discriminative features for each class
label as existing approaches do, we attempt to identify each
label’s own non-informative features and endow classifiers
with immutability on these identified features. For example,
to discriminate plane and non-plane images, existing ap-
proaches induce classifier on the most pertinent features, e.g.
shape-based features. Instead, we aim to make the discrimi-
nation process immutable to variations of non-informative
features, e.g. color-based features. We hypothesize that if
non-informative features specific to each class label could
be identified and their influence on the discrimination pro-
cess could be eliminated, a more effective approach to learn
from multi-label data could be achieved.
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As a first attempt towards this dual strategy, a novel approach
named DELA, i.e. Dual pErspective of Label-specific
feAture learning for multi-label classification, is presented.
Under a stochastic feature perturbation framework, DELA
simultaneously identifies non-informative features and in-
duces classifiers which are immutable to these identified
features. Specifically, by selectively injecting random noise
to label-specific non-informative features and inducing clas-
sifiers on these perturbed features, DELA succeeds to re-
move classifiers’ dependence on identified non-informative
features. With the basic assumption that non-informative
features should have no negative influence on the discrim-
ination process when perturbed by noise, identification of
non-informative features for each class label is casted as
an expected risk minimization problem, which is further re-
laxed probabilistically to support end-to-end gradient-based
optimization. We further justify DELA from the perspective
of information theory and demonstrate that DELA actually
optimizes an upper bound of the information bottleneck
(Tishby et al., 1999). Comprehensive experiments on 10
benchmark data sets show that DELA performs better than
well-established multi-label classification algorithms.

The rest of this paper is organized as follows. Section 2
briefly reviews related works. Section 3 presents details of
the proposed DELA approach. Section 4 reports experimen-
tal results over a wide range of multi-label data sets. Section
5 concludes this paper.

2. Related Works
Multi-Label Classification. In the last decade, numerous
approaches have been proposed to deal with multi-label clas-
sification problem (Zhang & Zhou, 2014; Liu et al., 2021).
As a feasible strategy to facilitate the learning process, mod-
elling label correlations is one of the primary focuses in
recent studies. Generally speaking, these approaches can
be roughly grouped into three categories, which differ in
the order of label correlations considered, namely first-order
approaches (Boutell et al., 2004; Zhang & Zhou, 2007),
second-order approaches (Zhu et al., 2018; Sun & Zhang,
2021) and high-order approaches (Wehrmann et al., 2018;
Xu & Guo, 2021). Recent works resort to deep models,
such as recurrent neural networks (Wang et al., 2016; Yazici
et al., 2020) and graph neural networks (Chen et al., 2019;
2022), to jointly consider the label correlation exploitation
and classification model induction. Some embedding ap-
proaches (Yeh et al., 2017; Bai et al., 2020; Dahiya et al.,
2021) implicitly employ label correlations via embedding
and aligning features and labels in a deep latent space.

Complementary to label correlation exploitation, label-
specific features have been proven to be another effective
strategy to improve multi-label classification, which tackle
the problem via manipulating the input space instead of the

label space. Existing approaches construct the label-specific
features mainly in two manners, i.e. prototype-based label-
specific feature transformation and label-specific feature
selection.

For the prototype-based label-specific feature transforma-
tion approaches, label-specific features are generated by
treating the prototypes of each class label as the transforma-
tion bases. Under a three-stage framework, LIFT (Zhang
& Wu, 2015) constructs label-specific features via querying
the distances between the original instance and the cluster
centers for each class label. Follow-up works enhance the
three-stage framework by customized strategies, such as
stabilizing the clustering process with clustering ensemble
(Zhan & Zhang, 2017; Zhang & Li, 2021) or spectral clus-
tering (Zhang et al., 2015), augmenting metric-based label-
specific features with local neighbor information (Weng
et al., 2018) or global topological information (Guo et al.,
2019), unifying the independent three-stage framework into
an end-to-end counterpart (Hang et al., 2022).

Alternatively, label-specific features can also be constructed
by retaining a feature subset as the most pertinent features
for each class label. LLSF (Huang et al., 2015; 2016b)
presents a lasso-based framework for label-specific fea-
ture selection, where the selection process is regularized
with pairwise label correlations. Subsequent studies ex-
tend this framework via imposing non-sparse constraints
(Weng et al., 2020), incorporating discriminant-related reg-
ularization (Huang et al., 2018), or performing selection in
a projected feature space (Yu & Zhang, 2021). Recently,
CLIF (Hang & Zhang, 2021) further advances the idea to
the deep learning scenario with an attractive collaborative
learning strategy.

In this paper, we make a first attempt to consider label-
specific discriminative properties via endowing classifiers
with immutability on non-informative features, which is an
unexplored direction for label-specific feature learning.

Nuisance Factor Removal. A similar concept, i.e. re-
moval of nuisance factors, has a long history in computer
vision. Early attempts include designing scale-invariant
(Lowe, 1999) or rotation-invariant features (Greenspan et al.,
1994), while recent approaches resort to techniques, such as
data augmentation (Devries & Taylor, 2017; Cubuk et al.,
2019) and representation disentangling (Tran et al., 2017;
Moyer et al., 2018; Lee et al., 2021), for removal of spec-
ified factors. DELA shares the idea and generalizes it by
learning to identify non-information features instead of spec-
ifying them beforehand. In domain generalization (Ahuja
et al., 2020; 2021), domain-specific features are regarded as
nuisance factors, which should be removed to learn domain-
invariant ones for achieving good performance on unseen
domains. DELA also shares similar idea but attempts to en-
courage the emergence of label(domain)-specific properties
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rather than suppressing them.

Feature Perturbation by Noise Injection. Injecting noise
to perturb features has been widely applied in machine learn-
ing community. Dropout (Srivastava et al., 2014) and its
extensions (Blum et al., 2015; Huang et al., 2016a; Achille
& Soatto, 2018) perturb featuers by randomly dropping out
neurons or layers during training to encourage redundancy
in learned representation, which deviates from our goal to
remove redundancy. Adversarial attack (Goodfellow et al.,
2015; Madry et al., 2018; Duan et al., 2021) aims to find the
most vulnerable directions to perturb the instance so that the
training loss is maximized, while we attempt to identify and
perturb non-informative features for expected risk minimiza-
tion. Besides, feature perturbation can also be exploited to
perform post-hoc explanation of prediction (Ribeiro et al.,
2016; Fong & Vedaldi, 2017), while our approach perturbs
features during the learning process for generalization.

3. The DELA Approach
3.1. Preliminaries

LetX = Rd denote the input space and Y = {l1, l2, . . . , lt}
denote the label space with t class labels. A multi-label
example is denoted as (x, Y ), where x ∈ X is its feature
vector and Y ⊆ Y is its set of relevant labels. Here, a t-
dimensional indicator vector y = [y1, y2, . . . , yt] ∈ {0, 1}t
is utilized to denote Y , where yk = 1 indicates lk ∈ Y and
yk = 0 otherwise. Formally, multi-label classification aims
to derive a multi-label prediction function h : X → 2Y

from a multi-label data set D = {(xi, Yi)|i ∈ [m]}, where
[m] denotes the set {1, 2, . . . ,m}. Given an unseen instance
u ∈ X , its associated label set is predicted as h(u) ⊆ Y .

3.2. Overview

DELA firstly computes a dz-dimensional representation
z ∈ Rdz through an embedding function eφ : Rd → Rdz

parametrized by φ, which is shared among all the class
labels. Then, a selective feature perturber injects addi-
tive random noise into representation z for perturbing non-
informative features specific to each class label. Finally,
classification is performed on the noise perturbed represen-
tations.

Learning proceeds by simultaneously identifying non-
informative features and making the discrimination process
immutable to identified non-informative features, with the
expected risk minimizing problem as following

min
φ,Π,Θ

Ep(x,y)[

t∑
k=1

L(fk(gk(eφ(x);πk);θk), yk)], (1)

where Π = {π1, . . . ,πt},Θ = {θ1, . . . ,θt} are the sets
to parametrize the selective feature perturber gk : Rdz →

Rdz and the classifier fk : Rdz → R for each class label
respectively. We will describe the ingredients of DELA in
detail in the next subsection.

3.3. Selective Feature Perturber

The goal of the selective feature perturber is to identify
non-informative features in representation z and perturb
them via injecting random noise in a label-wise manner, so
that immutability of classification on the non-informative
features can be gradually enhanced.

To instantiate the selective feature perturber, we formalize
the perturbation process as

gk(z;πk) = z + iSk
�ε, with ε ∼ pϑ(ε), (2)

where Sk ⊆ [dz] denotes a subset of identified non-
informative features for label lk which is determined by
parameter πk and iSk

∈ {0, 1}dz is the indicator vector of
set Sk. ε is a random noise variable shared among all the
class labels, which is treated as an instance-dependent Gaus-
sian one, i.e. pϑ(ε) = N (0, σ2

ϑ(x)I)
1. With the Hadamard

product�, additive random noise is selectively injected into
the identified non-informative features.

Substituting Eq. (2) into Eq. (1), the expected risk minimiz-
ing problem becomes

min
φ,S,ϑ,Θ

Ep(x,y)pϑ(ε)[

t∑
k=1

L(fk(eφ(x)+iSk
�ε;θk), yk)], (3)

where S = {S1, . . . , St}. The above problem is hard to
solve, since the optimization over the discrete subsets of
non-informative features {S1, . . . , St} is intractable, whose
choices grow exponentially in dz . Furthermore, constraint
on the level of noise is necessary to prevent collapse, i.e.
insufficient perturbation, so as to endow classifiers with
immutability on non-informative features. We will describe
our considerations towards these two problems in detail.

3.3.1. DIFFERENTIABLE SUBSET SELECTION

To make Eq. (3) tractable, we introduce Bernoulli gates
to substitute the indicator vector iSk

∈ {0, 1}dz . These
Bernoulli gates can be represented by a random vector bk ∈
{0, 1}dz , whose entries are independent and satisfy P [bki =
1] = pki, i ∈ [dz]. Then, the expected risk minimizing
problem can be rewritten as

min
φ,P,ϑ,Θ

Ep(x,y)pϑ(ε)[

t∑
k=1

Ep(bk)[L(fk(eφ(x)+bk�ε;θk), yk)]]. (4)

1ϑ parametrizes the standard deviation function, which is
shared among all the class labels. We can now denote πk =
[Sk,ϑ].
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By introducing Bernoulli gates, the original intractable
subset selection problem is converted to an optimization
problem in terms of Bernoulli distribution parameters P =
{p1, . . . ,pt}. Nonetheless, the discrete property of the sam-
pling from Bernoulli distribution prevents gradients from
flowing through the discrete random nodes bk, thus making
the problem unable to be optimized end-to-end via gradient
descent.

A feasible way to circumvent this is to exploit Gumbel-
Softmax trick (Jang et al., 2017; Maddison et al., 2017)
to smooth the sampling process, where a Bernoulli ran-
dom variable b ∼ Bern(p) is relaxed by its continu-
ous alternative, i.e. a binary Concrete variable c ∼
BinConcrete(p, τ), which can be reparameterized as

c =
1

1 + exp[−(logα+ l)/τ ]
, (5)

where α = p
1−p , l is a sampling from Logistic distribution,

and τ > 0 is a temperature parameter. In the limit τ → 0, a
binary Concrete variable smoothly converges to its Bernoulli
counterpart.

We relax the Bernoulli gates bk to the above binary Concrete
gates ck so that the gradients w.r.t. the distribution parame-
ters {p1, . . . ,pt} are well-defined by the chain rule. In the
forward pass we discretize the continuous samplings from
binary Concrete gates by rounding, i.e. dk = round(ck),
and in the backward pass we use a straight-through gradient
estimator to approximate∇pk

ck ≈ ∇pk
dk.

3.3.2. CONSTRAINT ON NOISE DISTRIBUTION

Let zk = eφ(x) + round(ck) � ε, ε ∼ pϑ(ε) and ck ∼
p(ck), we can regard the above equation as the reparam-
eterization form of the random variable zk, i.e. label lk’s
perturbed stochastic representation, which follows an im-
plicit distribution Ep(ck)[pφ,ϑ(zk|x, ck)].

From a probabilistic perspective, we propose to constrain
the noise distribution pϑ(ε) by penalizing the expected dis-
crepancy between pφ,ϑ(zk|x, ck) and an instance-agnostic
prior distribution q(zk), which can be formalized as

Ep(ck)[KL(pφ,ϑ(zk|x, ck)||q(zk))], (6)

where KL(·||·) denotes the KL-divergence. The conditional
distribution pφ,ϑ(zk|x, ck) describes the extent to which the
original representation is perturbed by noise conditioning
on currently identified non-informative features, and the
prior distribution q(zk) reflects the target level of noise
which is sufficient to remove classifiers’ dependence on non-
informative features. We set q(zk) as a standard Gaussian
in this paper.

Substituting the reparameterization form of the perturbed
stochastic representation and the constraint on noise distri-

bution for each class label, the overall objective is defined
as

min
φ,P,ϑ,Θ

Ep(x,y)

t∑
k=1

Ep(ck)

[
Ep(zk|x,ck)[L(fk(zk;θk), yk)]

+ β ·KL(p(zk|x, ck)||q(zk))
]
, (7)

where β is a trade-off parameter and pφ,ϑ(zk|x, ck) is ab-
breviated to p(zk|x, ck) for clarity.

3.4. Information Theory Explanation

We further provide an information theoretic insight of DELA
and demonstrate that DELA actually optimizes towards an
upper bound of the information bottleneck when the risk
function L(·, ·) is instantiated by cross entropy loss.

The information bottleneck defines a optimal information
transportation process x→ h→ y by

min−I(h; y) + β · I(h;x), (8)

where h is the internal representation of a model (e.g. neu-
ral networks) to predict the target variable y based on the
input variable x, and I(·, ·) denotes the mutual information
operator. The goal of the information bottleneck is to learn
an optimal representation h which is maximally expres-
sive about the target variable y and maximally compressive
about the input variable x. In other words, any information
irrelevant to target prediction will be dropped during the
information transportation process x → h. In DELA, we
perform label-specific feature learning by making the dis-
crimination process immutable to non-informative features
with explicit noise injection during the above information
transportation process, which shares motivation with the
information bottleneck.

To show the connection theoretically, we firstly derive an
upper bound for the information bottleneck.

Theorem 3.1. For any random variant c ∼ p(c), the infor-
mation bottleneck can be upper bounded as follows

− I(h; y) + β · I(h;x)

≤ Ep(x,y)Ep(c)

[
Ep(h|x,c)[− log q(y|h)]

+ β ·KL(p(h|x, c)||q(h))
]
.

(9)

Proof of Theorem 3.1 can be found in the appendix A. Ex-
tending it into multi-label classification scenario, the upper
bound of label-wise information bottlenecks can be formal-
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ized as
t∑

k=1

−I(zk; yk) + β · I(zk;x)

≤
t∑

k=1

Ep(x,yk)Ep(ck)

[
Ep(zk|x,ck)[− log q(yk|zk)]

+ β ·KL(p(zk|x, ck)||q(zk))
]

= Ep(x,y)

t∑
k=1

Ep(ck)

[
Ep(zk|x,ck)[− log q(yk|zk)]

+ β ·KL(p(zk|x, ck)||q(zk))
]
,

(10)

where the last equation corresponds to the overall objective
of DELA when we instantiate L(·, ·) in Eq. (7) by cross
entropy loss2, which provides a theoretical justification for
DELA.

4. Experiments
4.1. Experimental Setup

4.1.1. DATA SETS

For comprehensive performance evaluation, ten benchmark
multi-label data sets with diversified multi-label properties
are employed in this paper. Table 1 summarizes detailed
properties of each data set D, including the number of ex-
amples (|D|), number of features (dim(D)), number of
class labels (L(D)), feature type (F (D)), label cardinal-
ity (LCard(D), i.e. average number of labels per instance).
Following (Zhang & Wu, 2015), we perform dimensionality
reduction for rcv-s1 and tmc2007 by retaining the top 2%
features with highest document frequency. For iaprtc12,
espgame and mirflickr, the local descriptor DenseSift is
used.

4.1.2. EVALUATION METRICS

Six widely-used evaluation metrics for multi-label classi-
fication are employed to evaluate the performance of each
approach, including Average precision, Macro-averaging
AUC, Hamming loss, One-error, Coverage and Ranking loss.
Detailed definitions on these metrics can be found in (Zhang
& Zhou, 2014).

4.1.3. IMPLEMENTATION DETAILS

We implement DELA with the same architecture of encoder
and decoder as MPVAE (Bai et al., 2020). Specifically, the
embedding function eφ is instantiated by a fully-connected
neural network with ReLU activations, where the hidden
dimensionalities are set to [256; 512; 256]. The standard
deviation function σϑ to parametrize the noise distribution

2Bernoulli distribution q(yk|zk) is parametrized by prediction
fk(zk;θk).

Table 1. Characteristics of the experimental data sets.
Dataset |D| dim(D) L(D) F (D) LCard(D) Domain

corel5k 5000 499 374 Nominal 3.522 Images1

rcv1-s1 6000 944 101 Numeric 2.880 Text1

Corel16k-s1 13766 500 153 Nominal 2.859 Images1

delicious 16105 500 983 Nominal 19.020 Text1

iaprtc12 19627 1000 291 Numeric 5.719 Images2

espgame 20770 1000 268 Numeric 4.686 Images2

mirflickr 25000 1000 38 Numeric 4.716 Images2

tmc2007 28596 981 22 Nominal 2.158 Text1

mediamill 43907 120 101 Numeric 4.376 Video1

bookmarks 87856 2150 208 Nominal 2.028 Text1

1 http://mulan.sourceforge.net/datasets.html
2 http://lear.inrialpes.fr/people/guillaumin/data.php

is a four-layer fully-connected neural network, which shares
the first three layers with eφ. Classifiers fk, k ∈ [t] are
implemented as three-layer fully-connected neural networks,
where the hidden dimensionalities are set to [256; 512] and
the first two layers are shared among all the class labels.
To parametrize the binary Concrete gates, we employ a
two-layer fully-connected neural network to produce the
distribution parameters {p1, . . . ,pt} and use τ = 2/3 as
suggested by (Maddison et al., 2017).

In all experiments, We consider cross entropy loss to in-
stantiate the risk function L(·, ·), as it allows to build con-
nection between DELA and the information bottleneck. To
compute the overall objective in Eq. (7), we conduct Monte
Carlo sampling to estimate the expectations in terms of
p(ck), p(zk|x, ck) with sampling number L = 1 and an-
alytically calculate the KL-divergence term between two
Gaussian distributions. For network optimization, Adam
with a batch size of 128, weight decay of 10−4, momentums
of 0.999 and 0.9 is employed.

4.2. Comparative Studies

DELA3 is compared against six well-established multi-label
classification approaches with parameter configurations sug-
gested in respective literatures:

• LIFT (Zhang & Wu, 2015): A prototype-based label-
specific feature transformation approach under inde-
pendent three-stage framework. [r = 0.1]

• LLSF (Huang et al., 2016b): LLSF performs label-
specific feature selection in a lasso-based framework
with feature-sharing between closely-related labels.
[grid search for α, β ∈ {2−10, 2−9, . . . , 210} and
γ = 0.01]

• C2AE (Yeh et al., 2017): A deep label embedding
approach, which jointly embeds features and labels
via integrating deep canonical correlation analysis and

3Code package is publicly available at: http://palm.seu.
edu.cn/zhangml/files/DELA.rar.

http://mulan.sourceforge.net/datasets.html
http://lear.inrialpes.fr/people/guillaumin/data.php
http://palm.seu.edu.cn/zhangml/files/DELA.rar
http://palm.seu.edu.cn/zhangml/files/DELA.rar
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Table 2. Predictive performance of each comparing approach (mean±std. deviation) in terms of Average precision, Macro-averaging
AUC and Hamming loss. ↑ (↓) indicates the larger (smaller) the value, the better the performance. Best results are highlighted in boldface

Data Sets Average precision ↑
LIFT LLSF C2AE MPVAE CLIF PACA DELA

corel5k 0.2911±0.0137 0.2996±0.0133 0.2915±0.0100 0.3285±0.0130 0.3147±0.0106 0.3240±0.0127 0.3382±0.0103
rcv1-s1 0.5921±0.0145 0.6129±0.0116 0.6147±0.0100 0.6332±0.0136 0.6246±0.0094 0.6340±0.0151 0.6391±0.0153
Corel16k-s1 0.3168±0.0059 0.3428±0.0053 0.3297±0.0042 0.3646±0.0063 0.3516±0.0070 0.3654±0.0087 0.3675±0.0062
delicious 0.3833±0.0061 0.3587±0.0079 0.3648±0.0075 0.4042±0.0065 0.3832±0.0069 0.4046±0.0072 0.4082±0.0053
iaprtc12 0.3853±0.0058 0.3597±0.0041 0.3900±0.0061 0.4326±0.0047 0.4366±0.0049 0.4357±0.0068 0.4490±0.0050
espgame 0.2808±0.0072 0.2770±0.0046 0.2741±0.0072 0.3074±0.0059 0.3095±0.0072 0.3138±0.0045 0.3162±0.0059
mirflickr 0.6516±0.0041 0.6477±0.0039 0.6627±0.0064 0.6849±0.0053 0.6857±0.0025 0.6900±0.0040 0.6960±0.0043
tmc2007 0.8207±0.0048 0.8130±0.0050 0.7977±0.0048 0.8297±0.0032 0.8189±0.0024 0.8286±0.0057 0.8363±0.0037
mediamill 0.7417±0.0058 0.7275±0.0051 0.7266±0.0051 0.7669±0.0062 0.7650±0.0061 0.7833±0.0055 0.7883±0.0049
bookmarks 0.5119±0.0044 0.4920±0.0035 0.4707±0.0046 0.5104±0.0050 0.4928±0.0036 0.5022±0.0036 0.5191±0.0036

Data Sets Macro-averaging AUC ↑
LIFT LLSF C2AE MPVAE CLIF PACA DELA

corel5k 0.7119±0.0112 0.6568±0.0141 0.7021±0.0122 0.7522±0.0150 0.7306±0.0154 0.7509±0.0143 0.7546±0.0185
rcv1-s1 0.9241±0.0103 0.9062±0.0100 0.9131±0.0084 0.9368±0.0078 0.9320±0.0044 0.9362±0.0067 0.9374±0.0079
Corel16k-s1 0.6937±0.0097 0.6614±0.0075 0.7212±0.0131 0.7867±0.0130 0.7657±0.0105 0.7885±0.0120 0.7872±0.0098
delicious 0.7919±0.0044 0.7509±0.0047 0.7830±0.0052 0.8272±0.0039 0.8107±0.0043 0.8255±0.0024 0.8305±0.0030
iaprtc12 0.8216±0.0034 0.8114±0.0041 0.8290±0.0039 0.8735±0.0025 0.8788±0.0027 0.8746±0.0027 0.8810±0.0033
espgame 0.7554±0.0059 0.7515±0.0057 0.7360±0.0046 0.7959±0.0055 0.7914±0.0064 0.7997±0.0065 0.8015±0.0047
mirflickr 0.8091±0.0077 0.8196±0.0042 0.8213±0.0046 0.8461±0.0040 0.8436±0.0045 0.8488±0.0043 0.8538±0.0045
tmc2007 0.9229±0.0035 0.9225±0.0040 0.8993±0.0052 0.9307±0.0038 0.9274±0.0048 0.9299±0.0046 0.9356±0.0037
mediamill 0.8302±0.0080 0.7874±0.0110 0.8172±0.0069 0.8627±0.0083 0.8703±0.0086 0.8723±0.0089 0.8836±0.0067
bookmarks 0.8984±0.0030 0.8857±0.0037 0.8403±0.0040 0.9106±0.0015 0.9024±0.0028 0.9086±0.0017 0.9117±0.0022

Data Sets Hamming loss ↓
LIFT LLSF C2AE MPVAE CLIF PACA DELA

corel5k 0.0094±0.0001 0.0094±0.0001 0.0124±0.0003 0.0094±0.0001 0.0094±0.0001 0.0094±0.0003 0.0093±0.0002
rcv1-s1 0.0259±0.0009 0.0263±0.0011 0.0408±0.0016 0.0270±0.0011 0.0267±0.0011 0.0269±0.0011 0.0266±0.0009
Corel16k-s1 0.0187±0.0002 0.0186±0.0002 0.0233±0.0005 0.0188±0.0003 0.0188±0.0003 0.0187±0.0002 0.0186±0.0002
delicious 0.0180±0.0001 0.0184±0.0002 0.0248±0.0006 0.0177±0.0001 0.0179±0.0001 0.0179±0.0002 0.0178±0.0001
iaprtc12 0.0189±0.0001 0.0190±0.0002 0.0420±0.0010 0.0184±0.0002 0.0181±0.0002 0.0184±0.0002 0.0180±0.0002
espgame 0.0179±0.0003 0.0173±0.0002 0.0572±0.0015 0.0174±0.0002 0.0176±0.0002 0.0173±0.0003 0.0172±0.0002
mirflickr 0.1019±0.0009 0.1005±0.0009 0.1259±0.0037 0.0969±0.0011 0.0965±0.0008 0.0959±0.0015 0.0945±0.0012
tmc2007 0.0603±0.0007 0.0607±0.0013 0.0632±0.0014 0.0586±0.0006 0.0587±0.0010 0.0590±0.0012 0.0572±0.0009
mediamill 0.0291±0.0003 0.0304±0.0002 0.0348±0.0004 0.0281±0.0004 0.0279±0.0004 0.0271±0.0005 0.0260±0.0004
bookmarks 0.0086±0.0001 0.0087±0.0001 0.0106±0.0001 0.0087±0.0001 0.0085±0.0001 0.0087±0.0001 0.0086±0.0001

autoencoder. [search for α ∈ {0.1, 1, 2, 5, 10}]

• MPVAE (Bai et al., 2020): MPVAE employs a vari-
ational autoencoder to align features and labels in
a probabilistic latent space and explicitly learns a
shared covariance matrix to model the label correla-
tions. [λ1 = λ2 = 0.5, λ3 = 10, β = 1.1]

• CLIF (Hang & Zhang, 2021): A deep approach for
label-specific feature learning, which finds the most
discriminative features for each class label with the
guidance of collaboratively learned label semantics.
[grid search for λ ∈ {10−5, 10−4, . . . , 1, 2, 5, 10} and
de ∈ {64, 128, 256}]

• PACA (Hang et al., 2022): A prototype-based deep
label-specific feature transformation approach, which
learns prototypes, label-specific features and clas-
sifiers in a unified probabilistic framework. [grid
search for α ∈ {1, 2, 5, 10, 20, 50} and λ ∈
{10−4, 10−3, . . . , 10}]

For our DELA approach, the trade-off parameter β is

searched in {10−5, 10−4, . . . , 10}. For fair comparison, all
deep approaches share the same neural network structure.
Grid search is conducted to find the best learning rate and
learning rate decay schedule. We take out 10% examples in
each data set as hold-out validation set for hyperparamter
searching and perform ten-fold cross validation on the re-
maining 90% examples to evaluate above approaches.

Table 2 and Table 3 report detailed experimental results in
terms of each evaluation metric. Table 5 further reports
results of the Wilcoxon signed-ranks test (Wilcoxon, 1992)
at 0.05 significance level to analyze whether DELA performs
statistically better than other comparing algorithms. Based
on these results, it is impressive to observe that:

• Across all evaluation metrics, DELA achieves the best
performance in 92% cases over all the 10 data sets.

• As shown in Table 5, DELA significantly outperforms
deep label embedding approaches C2AE and MPVAE
in all evaluation metrics. The superior performance of
DELA against C2AE and MPVAE indicates that it is a
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Table 3. Predictive performance of each comparing approach (mean±std. deviation) in terms of One-error, Coverage and Ranking loss. ↑
(↓) indicates the larger (smaller) the value, the better the performance. Best results are highlighted in boldface

Data Sets One-error ↓
LIFT LLSF C2AE MPVAE CLIF PACA DELA

corel5k 0.6804±0.0251 0.6460±0.0231 0.6462±0.0145 0.6229±0.0339 0.6320±0.0246 0.6280±0.0279 0.6178±0.0260
rcv1-s1 0.4106±0.0194 0.4220±0.0161 0.4383±0.0210 0.4078±0.0330 0.4102±0.0192 0.4026±0.0239 0.4006±0.0215
Corel16k-s1 0.6764±0.0126 0.6398±0.0092 0.6442±0.0090 0.6331±0.0155 0.6420±0.0126 0.6283±0.0168 0.6268±0.0099
delicious 0.3339±0.0153 0.3537±0.0145 0.3374±0.0178 0.3070±0.0183 0.3194±0.0180 0.3091±0.0156 0.3061±0.0138
iaprtc12 0.4649±0.0182 0.4827±0.0118 0.4684±0.0145 0.4279±0.0134 0.4275±0.0097 0.4228±0.0114 0.4104±0.0105
espgame 0.6549±0.0211 0.6371±0.0140 0.6511±0.0122 0.6070±0.0118 0.6033±0.0173 0.5933±0.0101 0.5938±0.0135
mirflickr 0.3076±0.0106 0.3025±0.0089 0.2848±0.0110 0.2740±0.0105 0.2702±0.0083 0.2695±0.0113 0.2622±0.0089
tmc2007 0.2125±0.0076 0.2245±0.0094 0.2296±0.0082 0.2031±0.0072 0.2003±0.0036 0.2013±0.0093 0.1945±0.0067
mediamill 0.1757±0.0122 0.1590±0.0040 0.1643±0.0072 0.1422±0.0046 0.1421±0.0060 0.1339±0.0043 0.1288±0.0038
bookmarks 0.5115±0.0044 0.5319±0.0054 0.5408±0.0070 0.5165±0.0068 0.5337±0.0050 0.5242±0.0050 0.5079±0.0042

Data Sets Coverage ↓
LIFT LLSF C2AE MPVAE CLIF PACA DELA

corel5k 0.2906±0.0101 0.4367±0.0228 0.3228±0.0126 0.2314±0.0103 0.2403±0.0105 0.2324±0.0115 0.2214±0.0086
rcv1-s1 0.1231±0.0124 0.1245±0.0120 0.1040±0.0078 0.0932±0.0091 0.0992±0.0068 0.0938±0.0096 0.0866±0.0085
Corel16k-s1 0.3247±0.0050 0.3243±0.0071 0.3049±0.0068 0.2372±0.0055 0.2499±0.0067 0.2331±0.0072 0.2330±0.0049
delicious 0.4809±0.0132 0.6150±0.0093 0.5108±0.0062 0.4058±0.0063 0.4208±0.0051 0.4002±0.0043 0.3943±0.0049
iaprtc12 0.3080±0.0120 0.3770±0.0047 0.2940±0.0037 0.2356±0.0036 0.2223±0.0042 0.2297±0.0053 0.2207±0.0035
espgame 0.4026±0.0274 0.4157±0.0090 0.3821±0.0049 0.3179±0.0059 0.3203±0.0055 0.3082±0.0071 0.3029±0.0054
mirflickr 0.3086±0.0038 0.3205±0.0043 0.3075±0.0041 0.2741±0.0031 0.2757±0.0033 0.2732±0.0035 0.2686±0.0046
tmc2007 0.1193±0.0028 0.1270±0.0025 0.1511±0.0059 0.1144±0.0023 0.1161±0.0026 0.1160±0.0033 0.1110±0.0023
mediamill 0.1517±0.0088 0.1671±0.0031 0.1760±0.0029 0.1233±0.0033 0.1239±0.0030 0.1164±0.0024 0.1143±0.0028
bookmarks 0.1293±0.0060 0.1510±0.0032 0.1905±0.0040 0.1189±0.0028 0.1270±0.0019 0.1183±0.0023 0.1105±0.0019

Data Sets Ranking loss ↓
LIFT LLSF C2AE MPVAE CLIF PACA DELA

corel5k 0.1219±0.0039 0.1907±0.0107 0.1576±0.0075 0.1038±0.0052 0.1082±0.0048 0.1063±0.0065 0.0963±0.0038
rcv1-s1 0.0490±0.0056 0.0497±0.0046 0.0428±0.0032 0.0390±0.0041 0.0426±0.0025 0.0392±0.0039 0.0344±0.0035
Corel16k-s1 0.1636±0.0017 0.1611±0.0042 0.1638±0.0052 0.1239±0.0038 0.1303±0.0043 0.1219±0.0037 0.1202±0.0028
delicious 0.0985±0.0020 0.1449±0.0046 0.1197±0.0021 0.0884±0.0019 0.0933±0.0017 0.0880±0.0014 0.0856±0.0016
iaprtc12 0.1023±0.0033 0.1241±0.0019 0.1045±0.0023 0.0794±0.0021 0.0772±0.0019 0.0784±0.0021 0.0738±0.0014
espgame 0.1568±0.0087 0.1668±0.0047 0.1634±0.0027 0.1314±0.0043 0.1368±0.0038 0.1281±0.0045 0.1246±0.0036
mirflickr 0.1125±0.0020 0.1196±0.0028 0.1120±0.0038 0.0939±0.0015 0.0986±0.0015 0.0958±0.0022 0.0937±0.0019
tmc2007 0.0449±0.0019 0.0489±0.0017 0.0629±0.0023 0.0416±0.0013 0.0432±0.0014 0.0428±0.0022 0.0395±0.0015
mediamill 0.0412±0.0017 0.0496±0.0011 0.0537±0.0014 0.0342±0.0012 0.0343±0.0011 0.0320±0.0010 0.0309±0.0009
bookmarks 0.0813±0.0037 0.0947±0.0025 0.1271±0.0028 0.0767±0.0020 0.0838±0.0013 0.0765±0.0017 0.0700±0.0014

promising direction to facilitate multi-label classifica-
tion with the strategy of label-specific features.

• Meantime, DELA achieves much better performance
against other approaches based on label-specific fea-
tures. Specifically, DELA is statistically superior to
deep approach CLIF in terms of all evaluation metrics,
and achieves statistically superior or at least compa-
rable performance against PACA. These consistently
better results demonstrate the effectiveness of our dual
perspective for label-specific feature learning.

4.3. Further Analyses

4.3.1. ABLATION STUDIES

In ablation studies, we employ ten-fold cross validation
on all the 10 data sets to validate the superiority of DELA
against its variants. Table 4 summarizes the p-value statistics
of the Wilcoxon signed-ranks test at 0.05 significance level
and Table 6 shows the detailed experimental results in terms
of Average precision.

Table 4. Summary of the Wilcoxon signed-ranks test for DELA

against its variants at 0.05 significance level. p-values are shown
in the brackets.

DELA against DELA-sn DELA-nn DELA-fs

Average precision win [0.0020] win [0.0020] win [0.0039]
Macro-averaging AUC tie [0.1055] win [0.0098] win [0.0371]
Hamming loss win [0.0078] win [0.0469] tie [0.0996]
One error win [0.0332] win [0.0020] win [0.0098]
Coverage win [0.0098] win [0.0020] win [0.0020]
Ranking loss win [0.0039] win [0.0020] win [0.0020]

Consideration on label-specific discriminative properties.
DELA accounts for each label’s own discriminative proper-
ties via perturbing label-specific non-informative features in
the shared representation z and inducing classifiers on these
perturbed representations. To validate the effectiveness of
the above consideration, we implement two variants named
DELA-sn and DELA-nn. DELA-sn removes the identifica-
tion process of label-specific non-informative features and
merely perturbs z with a noise ε shared among all class la-
bels, while DELA-nn further removes the noise and directly
induces classifiers on the shared representation z. Results
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Table 5. Summary of the Wilcoxon signed-ranks test for DELA against other comparing approaches at 0.05 significance level. p-values
are shown in the brackets.

DELA against LIFT LLSF C2AE MPVAE CLIF PACA

Average precision win [0.0020] win [0.0020] win [0.0020] win [0.0020] win [0.0020] win [0.0020]
Macro-averaging AUC win [0.0020] win [0.0020] win [0.0020] win [0.0020] win [0.0020] tie [0.0059]
Hamming loss win [0.0352] win [0.0313] win [0.0020] win [0.0078] win [0.0117] win [0.0020]
One-error win [0.0020] win [0.0020] win [0.0020] win [0.0020] win [0.0020] win [0.0039]
Coverage win [0.0020] win [0.0020] win [0.0020] win [0.0020] win [0.0020] win [0.0020]
Ranking loss win [0.0020] win [0.0020] win [0.0020] win [0.0020] win [0.0020] win [0.0020]

Table 6. Predictive performance of DELA and its variants
(mean±std. deviation) in terms of Average precision.

Data Sets Average precision ↑
DELA DELA-sn DELA-nn DELA-fs

corel5k 0.3382±0.0103 0.3338±0.0117 0.3321±0.0135 0.3313±0.0124
rcv1-s1 0.6391±0.0153 0.6365±0.0149 0.6114±0.0132 0.6355±0.0122
Corel16k-s1 0.3675±0.0062 0.3627±0.0048 0.3610±0.0048 0.3635±0.0055
delicious 0.4082±0.0053 0.4078±0.0057 0.3872±0.0066 0.3897±0.0065
iaprtc12 0.4490±0.0050 0.4401±0.0046 0.4255±0.0057 0.4257±0.0062
espgame 0.3162±0.0059 0.3128±0.0049 0.3087±0.0059 0.3099±0.0056
mirflickr 0.6960±0.0043 0.6951±0.0069 0.6900±0.0057 0.6922±0.0061
tmc2007 0.8363±0.0037 0.8306±0.0050 0.8302±0.0049 0.8304±0.0045
mediamill 0.7883±0.0049 0.7815±0.0055 0.7849±0.0040 0.7908±0.0071
bookmarks 0.5191±0.0036 0.5104±0.0038 0.5067±0.0033 0.5123±0.0039

Figure 1. Validation performance of DELA with varying trade-off
parameter β in terms of Average precision.

in Table 4 show the consideration on label-specific discrimi-
native properties is statistically effective.

Effectiveness of the dual perspective. We implement a vari-
ant named DELA-fs, which performs label-specific feature
selection on the shared representation z with the stochastic
gates employed in DELA (i.e. zk = round(ck)� z, ck ∼
p(ck) in DELA-fs). It is worth noting that DELA-fs fol-
lows the conventional perspective for label-specific feature
learning, while its implementation is kept as consistent as
possible with DELA, so that it provides an apple-to-apple
comparison between the conventional and the dual one. As
shown in Table 4 and Table 6, the superiority of our dual per-
spective against the conventional perspective is statistically
significant.

4.3.2. PARAMETER SENSITIVITY

Figure 1 gives an illustrative example on how the perfor-
mance of DELA changes when the value of the trade-off
parameter β changes. Degraded performance is witnessed

Figure 2. Visualization of identified non-informative features in
DELA on tmc2007. The kth row denotes the indicator vector of
the subset of non-informative features for label lk, where the blue
one denotes a non-informative feature and the white one denotes a
pertinent feature.

when β = 0, which demonstrates that the proposed con-
straint on noise distribution does facilitate the learning pro-
cess. Similar results can be observed on other data sets.

4.3.3. VISUALIZATION

Figure 2 gives an illustrative example on identified non-
informative features for each class label. As can be seen,
the subsets of non-informative features are quite different
among class labels, which is essential to fully consider dis-
tinct discriminative properties of each class label. It is ap-
pealing to explore how to incorporate label correlations into
the identification process of non-informative features, e.g.
letting closely-related labels share more features (Huang
et al., 2016b), which will be left for future work.

4.3.4. COMPLEXITY ANALYSES

Let b be the batch size and d̂ denote a proxy of the hidden
dimensionalities of the network, the time complexity of
DELA corresponds to O(btd̂2) with t class labels. Figure
B.1 illustrates the empirical training and test time of each
comparing approach, which shows that DELA is comparable
to existing approaches in time overhead.

5. Conclusion
In this paper, we propose to tackle the problem of label-
specific feature learning for multi-label classification from
a novel dual perspective, where distinct discriminative prop-
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erties of each class label are considered by endowing clas-
sifiers with immutability on identified label-specific non-
informative features. Following this dual perspective, we
present a perturbation-based approach DELA which learns
to simultaneously identify non-informative features and
make the discrimination process immutable to variations
of these identified features via solving a probabilistically-
relaxed expected risk minimization problem. Theoretical
justification from an information theoretic view and com-
prehensive empirical studies against other well-established
multi-label classification algorithms show the superiority
of our approach. A nature direction for future work is to
incorporate label correlations into the identification process
of non-informative features and it is also interesting to ex-
plore alternative implementations towards the promising
dual perspective for label-specific feature learning.
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A. The Proof of Theorem 3.1
Theorem 3.1. For any random variant c ∼ p(c), the information bottleneck can be upper bounded as follows

−I(h; y) + β · I(h;x) ≤ Ep(x,y)Ep(c)

[
Ep(h|x,c)[− log q(y|h)] + β ·KL(p(h|x, c)||q(h))

]
.

Proof.

−I(h; y) + β · I(h;x) ≤ Ep(x,y)

[
Ep(h|x)[− log q(y|h)] + β ·KL(p(h|x)||q(h))

]
= Ep(x,y)

[
Ep(c)p(h|x,c)[− log q(y|h)] + β ·Ep(c)p(h|x,c)[log

p(h|x)
q(h)

]
]

= Ep(x,y)

[
Ep(c)p(h|x,c)[− log q(y|h)] + β ·Ep(c)p(h|x,c)[log

p(h|x, c)
q(h)

− log
p(h|x, c)
p(h|x)

]
]

= Ep(x,y)

[
Ep(c)p(h|x,c)[− log q(y|h)] + β ·Ep(c)[KL(p(h|x, c)||q(h))−KL(p(h|x, c)||p(h|x))]

]
≤ Ep(x,y)Ep(c)

[
Ep(h|x,c)[− log q(y|h)] + β ·KL(p(h|x, c)||q(h))

]
,

where the first inequality is derived based on the variational approximation (Alemi et al., 2017) to the information bottleneck
and the last inequality is derived based on non-negativity of the KL-divergence.

B. Empirical Running Time Comparison
Empirical running time of each comparing approach considered in the Comparative Studies part of the main body is further
reported here for comprehensive evaluation. Figure B.1 illustrates the empirical training and test time of each comparing
approach, which shows that DELA is comparable to existing approaches in time overhead.

Figure B.1. Running time (training/test) of each comparing approach on five benchmark data sets. For histogram illustration, the y-axis
corresponds to the logarithm of running time.


