
U
si

n
g

 U
M

L
,
P

at
te

rn
s,

 a
n
d
 J

av
a

O
b

je
ct

-O
ri

en
te

d
 S

o
ft

w
a

re
 E

n
g

in
ee

ri
n

g

Chapter 6
System Design:

Decomposing the
System

Design

“There are two ways of constructing a

software design: One way is to make it

so simple that there are obviously no

deficiencies, and the other way is to

make it so complicated that there are no

obvious deficiencies.”

- C.A.R. Hoare

Why is Design so Difficult?

• Analysis: Focuses on the application domain

• Design: Focuses on the solution domain

• Design knowledge is a moving target

• The reasons for design decisions are changing very rapidly

• Halftime knowledge in software engineering: About 3-5

years

• Cost of hardware rapidly sinking

• “Design window”:

• Time in which design decisions have to be made

The Scope of System Design

• Bridge the gap

• between a problem and

an existing system in a

manageable way

Problem

Existing System

System
Design

• How?

• Use Divide & Conquer:

1) Identify design goals

2) Model the new system

design as a set of

subsystems

3-8) Address the major

design goals.

System Design: Eight Issues

System Design

2. Subsystem Decomposition

Layers vs Partitions

Coherence & Coupling

4. Hardware/

Software Mapping

Identification of Nodes

Special Purpose Systems

Buy vs Build

Network Connectivity

 5. Persistent Data

Management

Storing Persistent

Objects

Filesystem vs

Database

Access Control

ACL vs Capabilities

Security

6. Global Resource

Handling

8. Boundary

Conditions

Initialization

Termination

Failure

3. Identify Concurrency

Identification of

Parallelism

(Processes,

Threads)

7. Software

Control

Monolithic

Event-Driven

Conc. Processes

1. Identify Design Goals

Additional NFRs

Trade-offs

How the Analysis Models influence System
Design

• Nonfunctional Requirements

=> Definition of Design Goals

• Functional model

=> Subsystem Decomposition

• Object model

=> Hardware/Software Mapping, Persistent Data

Management

• Dynamic model

=> Identification of Concurrency, Global Resource

Handling, Software Control

• Finally: Subsystem Decomposition

=> Boundary conditions

Monolithic

Event-Driven

Conc. Processes

7. Software

Control

2. System Decomposition

Layers vs Partitions

Coherence/Coupling

4. Hardware/

Software Mapping

Special Purpose Systems

Buy vs Build

Allocation of Resources

Connectivity

5. Data

Management

Persistent Objects

Filesystem vs

Database

Access Control List

vs Capabilities

Security

6. Global Resource

Handlung

8. Boundary

Conditions

Initialization

Termination

Failure

3. Concurrency

Identification of

Threads

1. Design Goals

Definition

Trade-offs

From Analysis to System Design

Object Model

Functional Model

 Functional Model

Dynamic

 Model

 Dynamic

 Model

Nonfunctional

Requirements

Example of Design Goals

• Reliability

• Modifiability

• Maintainability

• Understandability

• Adaptability

• Reusability

• Efficiency

• Portability

• Traceability of
requirements

• Fault tolerance

• Backward-compatibility

• Cost-effectiveness

• Robustness

• High-performance

Good documentation

Well-defined interfaces

User-friendliness

Reuse of components

Rapid development

Minimum number of errors

Readability

Ease of learning

Ease of remembering

Ease of use

Increased productivity

Low-cost

Flexibility

 Developer/

 Maintainer

Minimum # of errors
Modifiability, Readability
Reusability, Adaptability

Well-defined interfaces

Stakeholders have different Design Goals

Reliability

Low cost
Increased productivity
Backward compatibility
Traceability of requirements
Rapid development
Flexibility

Client
(Customer)

Portability

Good documentation

Runtime

Efficiency

End
User

Functionality
User-friendliness
Usability
Ease of learning
Fault tolerant
Robustness

Typical Design Trade-offs

• Functionality v. Usability

• Cost v. Robustness

• Efficiency v. Portability

• Rapid development v. Functionality

• Cost v. Reusability

• Backward Compatibility v. Readability

Subsystem Decomposition

• Subsystem

• Collection of classes, associations, operations, events and

constraints that are closely interrelated with each other

• The objects and classes from the object model are the

“seeds” for the subsystems

• In UML subsystems are modeled as packages

• Service

• A set of named operations that share a common purpose

• The origin (“seed”) for services are the use cases from

the functional model

• Services are defined during system design

Tournament

Component

Management

User Management

Tournament

Statistics

User Directory

User Interface

Session

Management

Adds games, styles,

and expert rating

formulas

Stores user profiles

(contact info &

subscriptions)

Stores results of

archived

tournaments

Maintains state

during matches

Administers user

accounts

Advertisement

Manages

tournaments,promotions,

applications

Manages advertisement

banners & sponsorships

Example: Services
provided by the
ARENA Subsystems

Services

are described

 by subsystem interfaces

Subsystem Interfaces vs API

• Subsystem interface: Set of fully typed UML

operations

• Specifies the interaction and information flow from and to

subsystem boundaries, but not inside the subsystem

• Refinement of service, should be well-defined and small

• Subsystem interfaces are defined during object design

• Application programmer’s interface (API)

• The API is the specification of the subsystem interface in

a specific programming language

• APIs are defined during implementation

• The terms subsystem interface and API are often

confused with each other

• The term API should not be used during system design

and object design, but only during implementation

Example: Notification subsystem

• Service provided by Notification Subsystem

• LookupChannel()

• SubscribeToChannel()

• SendNotice()

• UnscubscribeFromChannel()

• Subsystem Interface of Notification Subsystem

• Set of fully typed UML operations

• API of Notification Subsystem

• Implementation in Java

Subsystem Interface Object

• Good design: The subsystem interface object

describes all the services of the subsystem

interface

• Subsystem Interface Object

• The set of public operations provided by a subsystem

Subsystem Interface Objects can be realized with the

Façade pattern

Properties of Subsystems: Layers and
Partitions

• A layer is a subsystem that provides a service to

another subsystem with the following

restrictions:

• A layer only depends on services from lower layers

• A layer has no knowledge of higher layers

• A layer can be divided horizontally into several

independent subsystems called partitions

• Partitions provide services to other partitions on the

same layer

• Partitions are also called “weakly coupled” subsystems

Relationships between Subsystems

• Two major types of Layer relationships

• Layer A “depends on” Layer B (compile time dependency)

• Example: Build dependencies

• Layer A “calls” Layer B (runtime dependency)

• Example: A web browser calls a web server

• Partition relationship

• The subsystems have mutual knowledge about each other

• A calls services in B; B calls services in A (Peer-to-Peer)

• UML convention

• Runtime dependencies are associations with dashed lines

• Compile time dependencies are associations with solid lines.

F:Subsystem E:Subsystem G:Subsystem

D:Subsystem C:Subsystem B:Subsystem

A:Subsystem Layer 1

Layer 2

Layer 3

Example of a Subsystem Decomposition

Layer
Relationship
“depends on”

Partition
relationship

Layer
Relationship

“calls”

Tournament

Component

Management

User Management

Tournament

Statistics

User Directory

User Interface

Session

Management

Advertisement

ARENA Subsystem
Decomposition

Example of a Bad Subsystem
Decomposition

Advertisement

User Interface

Session

Management
User Management

Tournament

Statistics

Component

Management

Tournament

Good Design: The System as set of Interface
Objects

User Interface

 Tournament

Component
Management

Session
Management

Tournament
Statistics

Advertisement

User
Management

Subsystem Interface Objects

Virtual Machine

• A virtual machine is a subsystem connected to

higher and lower level virtual machines by

"provides services for" associations

• A virtual machine is an abstraction that provides a

set of attributes and operations

• The terms layer and virtual machine can be used

interchangeably

• Also sometimes called “level of abstraction”.

Building Systems as a Set of Virtual Machines

A system is a hierarchy of virtual machines, each using

language primitives offered by the lower machines

Virtual Machine 1

Virtual Machine 4

Virtual Machine 3

Virtual Machine 2

Existing System

Operating System, Libraries

Closed Architecture (Opaque Layering)

• Each virtual machine

can only call operations

from the layer below

VM1

VM2

VM3

VM4
C1ass1

attr

op

C1ass3

attr

op

C1ass2

attr

op

C1assE

attr

op

C1assF

attr

op

C1assC

attr

op

C1assD

attr

op

Class A

attr

op

C1ass B

attr

op

Design goals:

Maintainability,

flexibility.

Opaque Layering in ARENA

ArenaServer

Notification

ArenaClient

UserManagement

AdvertisementManagement

GameManagement

ArenaStorage

TournamentManagement

Interface

Storage

Application Logic

Open Architecture (Transparent Layering)

• Each virtual machine

can call operations

from any layer below

VM4

VM3

VM2

VM1
C1

attr

op

C1

attr

op

C1

attr

op

C1

attr

op

C1

attr

op

C1

attr

op

C1

attr

op

C1

attr

op

C1

attr

op

Design goal:

Runtime efficiency

• Layered systems are hierarchical. This is a desirable

design, because hierarchy reduces complexity

• Closed architectures are more portable

• Open architectures are more efficient

• Layered systems often have a chicken and egg

problem

G: Operating System

D: File System

Properties of Layered Systems

A: Symbolic Debugger

Symbol Table

How do you open the

symbol table when you are

debugging the File

System?

Coupling and Coherence of Subsystems

• Goal: Reduce system complexity while allowing

change

• Coherence measures dependency among classes

• High coherence: The classes in the subsystem perform

similar tasks and are related to each other via many

associations

• Low coherence: Lots of miscellaneous and auxiliary classes,

almost no associations

• Coupling measures dependency among subsystems

• High coupling: Changes to one subsystem will have high

impact on the other subsystem

• Low coupling: A change in one subsystem does not affect

any other subsystem.

Coupling and Coherence of Subsystems

• Goal: Reduce system complexity while allowing

change

• Coherence measures dependency among classes

• High coherence: The classes in the subsystem perform

similar tasks and are related to each other via associations

• Low coherence: Lots of miscellaneous and auxiliary classes,

no associations

• Coupling measures dependency among subsystems

• High coupling: Changes to one subsystem will have high

impact on the other subsystem

• Low coupling: A change in one subsystem does not affect

any other subsystem

Good Design

Architectural Style vs Architecture

• Subsystem decomposition: Identification of

subsystems, services, and their association to

each other (hierarchical, peer-to-peer, etc)

• Architectural Style: A pattern for a subsystem

decomposition

• Software Architecture: Instance of an

architectural style

Examples of Architectural Styles

• Client/Server

• Peer-To-Peer

• Repository

• Model/View/Controller

• Three-tier, Four-tier Architecture

• Service-Oriented Architecture (SOA)

• Pipes and Filters

Client/Server Architectural Style

• One or many servers provide services to instances

of subsystems, called clients

Client

Server

+service1()
+service2()

+serviceN()

* *

requester provider

• Each client calls on the server, which performs

 some service and returns the result

The clients know the interface of the server

The server does not need to know the interface

of the client

• The response in general is immediate

• End users interact only with the client

Client/Server Architectures

• Often used in the design of database systems

• Front-end: User application (client)

• Back end: Database access and manipulation (server)

• Functions performed by client:

• Input from the user (Customized user interface)

• Front-end processing of input data

• Functions performed by the database server:

• Centralized data management

• Data integrity and database consistency

• Database security

Design Goals for Client/Server Architectures

Location-

Transparency

Server runs on many operating systems
and many networking environments

Server might itself be distributed, but
provides a single "logical" service to the
user

Client optimized for interactive display-
intensive tasks; Server optimized for
CPU-intensive operations

Server can handle large # of clients

User interface of client supports a variety
of end devices (PDA, Handy, laptop,
wearable computer)

Service Portability

High Performance

Reliability

Scalability

Flexibility

Server should be able to survive client
and communication problems

Problems with Client/Server Architectures

• Client/Server systems do not provide peer-to-

peer communication

• Peer-to-peer communication is often needed

• Example:

• Database must process queries from application and

should be able to send notifications to the application

when data have changed

application1:DBUser

database:DBMS

1. updateData

application2:DBUser
2. changeNotification

Peer-to-Peer Architectural Style

Generalization of Client/Server Architectural Style

Introduction a new abstraction: Peer

application1:DBUser

database:DBMS

1. updateData

application2:DBUser
2. changeNotification

Peer

service1()
service2()

serviceN()
…

requester

provider

*

*

L
e
v
e
l
o
f
a
b
s
tr

a
c
ti
o
n

Application

Presentation

Session

Transport

Network

DataLink

Physical

Example: Peer-to-Peer Architectural Style

• ISO’s OSI Reference

Model

• ISO = International

Standard Organization

• OSI = Open System

Interconnection

• Reference model which

defines 7 layers and

communication protocols

between the layers

OSI Model Layers and Services

• The Application layer is the

system you are building (unless

you build a protocol stack)

• The application layer is usually

layered itself

• The Presentation layer performs

data transformation services,

such as byte swapping and

encryption

• The Session layer is responsible

for initializing a connection,

including authentication

Application

Presentation

Session

Transport

Network

DataLink

Physical

OSI Model Layers and their Services

• The Transport layer is responsible

for reliably transmitting messages

• Used by Unix programmers who

transmit messages over TCP/IP sockets

• The Network layer ensures

transmission and routing

• Services: Transmit and route data

within the network

• The Datalink layer models frames

• Services: Transmit frames without

error

• The Physical layer represents the

hardware interface to the network

• Services: sendBit() and receiveBit()

Application

Presentation

Session

Transport

Network

DataLink

Physical

Application

Presentation

Session

Transport

Network

DataLink

Physical

Frame

Packet

Bit

Connection

Format

Message

An Object-Oriented View of the OSI Model

• The OSI Model is a

closed software

architecture (i.e., it

uses opaque layering)

• Each layer can be

modeled as a UML

package containing a

set of classes

available for the layer

above

Middleware Allows Focus On Higher Layers

Application

Presentation

Session

Transport

Network

DataLink

Physical

Socket

Object

Wire

TCP/IP

CORBA

Ethernet

Abstraction provided

By Middleware
�Middleware

Repository Architectural Style

• Subsystems access and modify data from a single

data structure called the repository

• Subsystems are loosely coupled (interact only

 through the repository)

• Control flow is dictated by the repository

 through triggers or by the subsystems

 through locks and synchronization primitives

Subsystem

Repository

createData()
setData()
getData()
searchData()

*

Examples of Repository Architectural Style

 Hearsay II speech

understanding system

(“Blackboard

architecture”)

 Database Management

Systems

 Modern Compilers

LexicalAnalyzer

SyntacticAnalyzer
SemanticAnalyzer

CodeGenerator

Compiler

SyntacticEditor

ParseTree SymbolTable

Repository

SourceLevelDebugger

Optimizer

Model-View-Controller (MVC) Architectural
Style

• Subsystems are classified into 3 different types

Model subsystem: Responsible for application domain

knowledge

subscriber
notifier

*

1

initiator
repository 1 *

View subsystem: Responsible for displaying application

domain objects to the user

Controller subsystem: Responsible for sequence of

interactions with the user and notifying views of changes in

the model

Model

Controller

View

Example of a File System Based on the MVC
Architectural Style

Sequence of Events (Collaborations)

:Controller

:InfoView

:Model

2.User types new filename

1. Views subscribe to event

3. Request name change in model

4. Notify subscribers

5. Updated views

:FolderView

Summary

 System Design

 An activity that reduces the gap between the problem and an existing

(virtual) machine

 Design Goals Definition

 Describes the important system qualities

 Defines the values against which options are evaluated

 Subsystem Decomposition

 Decomposes the overall system into manageable parts by using the

principles of cohesion and coherence

 Architectural Style

 A pattern of a typical subsystem decomposition

 Software architecture

 An instance of an architectural style

 Client Server, Peer-to-Peer, Repository, Model-View-Controller, …

