
Confidence-Rated Discriminative Partial Label Learning

Cai-Zhi Tang, Min-Ling Zhang
1School of Computer Science and Engineering, Southeast University, Nanjing 210096, China

2Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, China
{220141515,zhangml}@seu.edu.cn

Abstract

Partial label learning aims to induce a multi-class classifi-
er from training examples where each of them is associated
with a set of candidate labels, among which only one label is
valid. The common discriminative solution to learn from par-
tial label examples assumes one parametric model for each
class label, whose predictions are aggregated to optimize spe-
cific objectives such as likelihood or margin over the train-
ing examples. Nonetheless, existing discriminative approach-
es treat the predictions from all parametric models in an equal
manner, where the confidence of each candidate label being
the ground-truth label is not differentiated. In this paper, a
boosting-style partial label learning approach is proposed to
enabling confidence-rated discriminative modeling. Specifi-
cally, the ground-truth confidence of each candidate label is
maintained in each boosting round and utilized to train the
base classifier. Extensive experiments on artificial as well as
real-world partial label data sets validate the effectiveness of
the confidence-rated discriminative modeling.

Introduction
Partial label learning deals with the problem where each
training example is associated with a set of candidate labels,
among which only one label corresponds to the ground-truth
one (Cour, Sapp, and Taskar, 2011; Zhang, 2014). Formal-
ly, let X = Rd denote the d-dimensional instance space and
Y = {y1, y2, . . . , yq} denote the label space consisting of q
class labels. The task of partial label learning is to induce a
multi-class classifier f : X 7→ Y from the partial label train-
ing set D = {(xi, Si) | 1 ≤ i ≤ m}. Here, xi ∈ X is a
d-dimensional feature vector and Si ⊆ Y is the set of candi-
date labels associated with xi. Particularly, the ground-truth
label yi for xi is confined within Si but not directly accessi-
ble to the learning algorithm.

The need of partial label learning arises in a number of
real-world scenarios where only weak labeling information
can be acquired during training data collection, such as auto-
matic face naming (Cour et al., 2009; Zeng et al., 2013), we-
b mining (Jie and Orabona, 2010), ecoinformatics (Liu and
Dietterich, 2012), etc. In some literature, partial label learn-
ing is also termed as ambiguous label learning (Hüllermeier
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and Beringer, 2006; Chen et al., 2014) or superset label
learning (Liu and Dietterich, 2014).

To learn from partial label examples, the common dis-
criminative solution is to assume one parametric model
g(yj | x;θ) for each class label yj , whose modeling outputs
are aggregated to optimize specific objectives such as likeli-
hood or margin over the training examples (Jin and Ghahra-
mani, 2003; Nguyen and Caruana, 2008; Cour, Sapp, and
Taskar, 2011; Liu and Dietterich, 2012; Chen et al., 2014;
Yu and Zhang, 2016). Existing discriminative approaches
conduct aggregation by treating the modeling outputs from
all parametric models in an equal manner, where the confi-
dence of each candidate label being the ground-truth label is
not differentiated. This strategy might be suboptimal as each
candidate label should contribute differently to the learning
process, especially the contribution from the ground-truth
label (i.e. yi) against those from the false positive labels (i.e.
Si \ {yi}) (Zhang, Zhou, and Liu, 2016).

To overcome the potential drawback of existing strate-
gy, a novel partial label learning approach named CORD,
i.e. COnfidence-Rated Discriminative partial label learn-
ing, is proposed in this paper. CORD learns from partial la-
bel examples by adapting the popular boosting techniques,
where the weights over training examples and the ground-
truth confidences of candidate labels are maintained in each
boosting round. Accordingly, the discriminative base classi-
fier is trained by utilizing the currently-available weight and
ground-truth confidence information. Empirical studies on a
broad range of controlled UCI data sets and real-world par-
tial label data sets clearly verify the effectiveness of the pro-
posed confidence-rated discriminative learning approach.

We start the rest of this paper by briefly reviewing related
work on partial label learning. Then, we present technical
details of the proposed CORD approach and report experi-
mental results of the comparative studies. Finally, we con-
clude the paper and indicate future research issues.

Related Work
In partial label learning, the labeling information conveyed
by the training examples is weak as the ground-truth la-
bel is not accessible to the learning algorithm. It is worth
noting that partial label learning is related to other well-
studied weakly-supervised learning frameworks including
semi-supervised learning (Zhu and Goldberg, 2009), multi-



instance learning (Amores, 2013) and multi-label learning
(Zhang and Zhou, 2014), while the weak supervision sce-
narios to be dealt with are different.

Semi-supervised learning aims to induce a classifier f :
X 7→ Y from a few labeled examples along with abundan-
t unlabeled examples, where the ground-truth label assumes
the whole label space for unlabeled example while the candi-
date label set for partial label example. Multi-instance learn-
ing aims to induce a classifier f : 2X 7→ Y from train-
ing examples each represented by a bag of instances, where
the label is assigned at the bag level for multi-instance ex-
ample while at the instance level for partial label example.
Multi-label learning aims to induce a classifier f : X 7→ 2Y

from examples each associated with multiple labels, where
the associated labels are all valid ones for multi-label exam-
ple while only candidate ones for partial label example.

Discriminative modeling is the most common solution
to learn from partial label examples, where one parametric
model g(yj | x;θ) is assumed for each class label yj (1 ≤
j ≤ q). Correspondingly, model parameters are trained by
optimizing specific objectives J(D;θ) over the training ex-
amples. One popular instantiation of the objective function
is to aggregate the modeling output of each parametric mod-
el via the maximum likelihood criterion (Jin and Ghahra-
mani, 2003; Liu and Dietterich, 2012):

J(D,θ) =

m∑
i=1

log

 q∑
j=1

I(yj ∈ Si) · g(yj | xi;θ)

 (1)

Here, I(·) corresponds to the indicator function. It is obvi-
ous that maximizing J(D,θ) is equivalent to maximizing
the following objective function:

J̃(D,θ) =
m∑
i=1

log

 ∑
yj∈Si

1

|Si|
· g(yj | xi;θ)

 (2)

As shown in Eq.(2), modeling outputs of the parametric
models contribute equally to the objective function, i.e. with
uniform weight 1

|Si| over each candidate label.
Another popular instantiation of the objective function is

to aggregate the modeling output of each parametric model
via the maximum margin criterion, such as (Cour, Sapp, and
Taskar, 2011; Zhang, Zhou, and Liu, 2016):

J(D,θ) =
m∑
i=1

 ∑
yj∈Si

1

|Si|
· g(yj | xi;θ)−

∑
yk∈Ŝi

1

|Ŝi|
· g(yk | xi;θ)

 (3)

or (Nguyen and Caruana, 2008; Yu and Zhang, 2016):

J(D,θ) =
m∑
i=1

(
max
yj∈Si

1

|Si|
· g(yj | xi;θ)−

max
yk∈Ŝi

1

|Si|
· g(yk | xi;θ)

)
(4)

Here, Ŝi corresponds to the complementary set of Si in Y .
As shown in Eq.(3) and Eq.(4), modeling outputs of the
parametric models also contribute equally to the objective
function, i.e. with uniform weight 1

|Si| over each candidate
label.

In other words, for either maximum likelihood or maxi-
mum margin instantiation, the confidence of each candidate
label being the ground-truth label is not differentiated. In
the next section, a novel partial label learning approach will
be introduced. Different from existing discriminative par-
tial label learning approaches, the ground-truth confidence
of each candidate label is estimated and utilized to facilitate
the learning procedure.

The CORD Approach
Boosting is one of the widely-used machine learning tech-
niques, which builds learning system with strong generaliza-
tion ability by iteratively combining multiple weak learners.
CORD learns from partial label examples by adapting the
general boosting procedure, where in each boosting round
the weights over training examples as well as ground-truth
confidences of candidate labels are maintained simultane-
ously.

Given the partial label training set D = {(xi, Si) |
1 ≤ i ≤ m}, in the t-th boosting round, let w(t) =

[w
(t)
1 , w

(t)
2 , . . . , w

(t)
m ]⊤ be the weight vector over training ex-

amples, and P(t) = [p
(t)
ij ]m×q be the confidence matrix over

candidate labels respectively. Specifically, w(t) and P(t) sat-
isfy the non-negativity constraints: w(t)

i ≥ 0 and p
(t)
ij ≥ 0,

as well as the normalization constraints:
∑m

i=1 w
(t)
i = 1 and∑q

j=1 p
(t)
ij = 1.

To train the base classifier g(y |x;θ(t)) in the t-th
boosting round, CORD chooses to maximize the following
confidence-rated objective function:

J(D,θ(t)) =

m∑
i=1

w
(t)
i log

 ∑
yj∈Si

p
(t)
ij · g(yj | xi;θ

(t))

 (5)

As shown in Eq.(5), the modeling output g(yj | xi;θ
(t)) of

each candidate label is weighted by p
(t)
ij , i.e. the confidence

of yj being the ground-truth label of xi. In this way, the
ground-truth confidence of each candidate label is utilized
to train the base classifier, reflecting the fact that different
candidate labels should contribute differently to the learning
process.

As per canonical boosting procedure, the empirical per-
formance of the trained base classifier is evaluated as the
classification accuracy over the (weighted) training exam-
ples. Nonetheless, for partial label learning, the performance
of base classifier cannot be evaluated in this way as the
ground-truth label of each training example is not directly
accessible. In this paper, CORD makes use of the predictive
difference between the maximum output of candidate and



Table 1: The pseudo-code of CORD.

Inputs:
D: the partial label training set {(xi, Si) | 1 ≤ i ≤ m}

(xi ∈ X , Si ⊆ Y,X = Rd,Y = {y1, y2, . . . , yq})
β: the confidence updating parameter
T : the maximum number of boosting rounds
x∗: the unseen instance (x∗ ∈ X )

Outputs:
y∗: the predicted label for x∗

Process:
1: Initialize the weight vector w(1) as: w(1)

i = 1
m (∀i ∈

{1, . . . ,m});
2: Initialize the confidence matrix P(1) as: p(1)ij = 1

|Si| ·
I(yj ∈ Si) (∀ i ∈ {1, . . . ,m}, j ∈ {1, . . . , q});

3: for t = 1 to T do
4: Train the base classifier g(y | x;θ(t)) by maximizing

the confidence-rated objective function in Eq.(5);
5: Evaluate the performance of current base classifier

g(y | x;θ(t)) according to Eq.(6);
6: Set α(t) according to Eq.(8);
7: Update w(t+1) and P(t+1) according to Eq.(7) and

Eq.(9) respectively;
8: end for
9: return y∗ = argmaxy∈Y

∑T
t=1 α

(t) · g(y | x∗;θ(t)).

non-candidate labels for performance evaluation (Nguyen
and Caruana, 2008; Yu and Zhang, 2016):

r(t) =
m∑
i=1

w
(t)
i · γ(t)

i where

γ
(t)
i = max

yj∈Si

g(yj | xi;θ
(t))− max

yk∈Ŝi

g(yk | xi;θ
(t)) (6)

Accordingly, the weight vector w(t+1) for the next boost-
ing round is updated as:

∀ i ∈ {1, . . . ,m} : w
(t+1)
i =

w
(t)
i · exp

(
−α(t)γ

(t)
i

)
Z(t+1)

(7)

Here, α(t) corresponds to the coefficient of the t-th boosting
round to be used for classifier combination:1

α(t) =
1

2
· log

(
1 + r(t)

1− r(t)

)
(8)

and Z(t+1) corresponds to the normalization constant ensur-
ing that

∑m
i=1 w

(t+1)
i = 1.

1Similar to canonical boosting procedure, the boosting rounds
of CORD terminate if α(t) < 0.

In addition, the confidence matrix P(t+1) for the nex-
t boosting round is updated as:

∀ i ∈ {1, . . . ,m}, j ∈ {1, . . . , q} :

p
(t+1)
ij =

p
(t)
ij · exp

(
β · I

(
yj = y

(t)
i

))
R

(t+1)
i

where

y
(t)
i = argmax

y∈Si

g(y | xi;θ
(t)) (9)

Here, β > 0 is the confidence updating parameter and y
(t)
i is

the candidate label of xi which has the largest modeling out-
put at the t-th boosting round. Similarly, R(t+1)

i corresponds
to the normalization constant ensuring that

∑q
j=1 p

(t+1)
ij =

1. In this way, the ground-truth confidence for the candidate
label which coincides with y

(t)
i will be increased.

Table 1 summarizes the boosting procedure of CORD.2
Given the partial label training set, CORD initializes unifor-
m weight over each training example and identical ground-
truth confidence (i.e. 1

|Si| ) for each candidate label of the
training example (Steps 1-2). Then, in each boosting round
the base classifier is trained w.r.t confidence-rated objective
function (Step 4), the performance and coefficient for the
base classifier are evaluated (Steps 5-6), and the weight vec-
tor and confidence matrix are updated accordingly (Step 7).
Finally, the prediction on unseen instance is made by con-
sulting the combined outputs of all base classifiers.

Experiments
Comparing Algorithms
In this paper, the effectiveness of CORD is evaluated a-
gainst several state-of-the-art partial label learning algo-
rithms, each configured with suggested parameters in the lit-
erature:

• CLPL (Cour, Sapp, and Taskar, 2011): A convex optimiza-
tion approach which learns from partial label examples by
degenerating to binary classification problem [suggested
configuration: SVM with squared hinge loss];

• PL-KNN (Hüllermeier and Beringer, 2006): A k-nearest
neighbor approach which learns from partial label exam-
ples by reasoning with the labeling information of neigh-
boring examples [suggested configuration: k = 10];

• PL-SVM (Nguyen and Caruana, 2008): A maximum-
margin approach which learns from partial label examples
by regularizing margin-based objective function [sug-
gested configuration: regularization parameter pool with
{10−3, . . . , 103}];

• LSB-CMM (Liu and Dietterich, 2012): A maximum-
likelihood approach which learns from partial label ex-
amples by maximizing mixture-based likelihood function
[suggested configuration: q mixture components].

2Code package for CORD is publicly-available at:
http://cse.seu.edu.cn/PersonalPage/zhangml/
Resources.htm#aaai17
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Figure 1: Classification accuracy of each comparing algorithm changes as p (proportion of partially labeled examples) increases
(with one false positive candidate label [r = 1]).

As shown in Table 1, the proposed CORD approach em-
ploys two parameters β and T for iterative training. In this
paper, the confidence updating parameter β is set to be 0.53

and the maximum boosting rounds T is set to be 10. Further-
more, maximum entropy model (Jin and Ghahramani, 2003;
Della Pietra, Della Pietra, and Lafferty, 1997) is employed
to serve as the base classifier which is trained with gradient-
based optimization (Table 1, Step 4).

Two series of comparative studies are conducted among
the comparing algorithms, with one series on controlled UCI
data sets (Bache and Lichman, 2013) and another series on
real-world partial label data sets. Ten-fold cross-validation
is performed on each data set, and the mean predictive accu-
racies (as well as the standard deviations) of all comparing
algorithms are reported in the rest of this section.

Controlled UCI Data Sets
Table 2 summarizes the characteristics of controlled UCI
data sets. Specifically, an artificial partial label data set is
generated from one multi-class UCI data set under speci-
fied configuration of three controlling parameters p, r and ϵ
(Cour, Sapp, and Taskar, 2011; Chen et al., 2014; Liu and
Dietterich, 2012; Zhang, Zhou, and Liu, 2016). Here, p con-
trols the proportion of examples being partially labeled (i.e.
|Si| > 1), r controls the number of false positive candidate
labels (i.e. |Si| = r + 1), and ϵ controls the co-occurring
probability between the ground-truth label and one coupling
candidate label. As shown in Table 2, a total of 28 (4x7)
controlling parameter configurations are specified here.

3Preliminary experiments show that CORD performs stably
with β taking values within [0.1, 1].

Table 2: Characteristics of the controlled UCI data sets.

Data Set #Examples #Features #Class Labels
Deter 358 23 6

Vehicle 846 18 4
Segment 2,310 18 7

Usps 9,298 256 10
Pendigits 10,992 16 10

Letter 20,000 16 26
Configurations
(I) r = 1, p ∈ {0.1, 0.2, . . . , 0.7}
(II) r = 2, p ∈ {0.1, 0.2, . . . , 0.7}
(III) r = 3, p ∈ {0.1, 0.2, . . . , 0.7}
(IV) p = 1, r = 1, ϵ ∈ {0.1, 0.2, . . . , 0.7}

Figure 1 illustrates the classification accuracy of each
comparing algorithm as p increases from 0.1 to 0.7 with
step-size 0.1 (r = 1). Along with the ground-truth label, one
class label in Y will be randomly chosen to constitute the
candidate label set of each partially labeled example. Due
to page limit, figures for the cases of r = 2 and r = 3 are
not illustrated here, while similar results to Figure 1 can be
observed as well. Figure 2 illustrates the classification ac-
curacy of each comparing algorithm as ϵ increases from 0.1
to 0.7 with step-size 0.1 (p = 1, r = 1). Given the ground-
truth label y ∈ Y , another label y′ ∈ Y designated as the
coupling label will co-occur with y in the candidate label set
with probability ϵ.

As shown in Figures 1 to 2, CORD performs favorably a-
gainst the comparing algorithms in most cases. Furthermore,
Table 3 reports the win/tie/loss counts between CORD and
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Figure 2: Classification accuracy of each comparing algorithm changes as ϵ (co-occurring probability of the coupling label)
increases from 0.1 to 0.7 (with 100% partially labeled examples [p = 1] and one false positive candidate label [r = 1]).

Table 4: Characteristic of the real-world partial label data sets.

Data Set #Examples #Features #Class Labels avg. #CLs Task Domain
Lost 1,122 108 16 2.23 automatic face naming (Cour, Sapp, and Taskar, 2011)

MSRCv2 1,758 48 23 3.16 object classification (Liu and Dietterich, 2012)
BirdSong 4,998 38 13 2.18 bird song classification (Briggs, Fern, and Raich, 2012)

Soccer Player 17,472 279 171 2.09 automatic face naming (Zeng et al., 2013)
Yahoo! News 22,991 163 219 1.91 automatic face naming (Guillaumin, Verbeek, and Schmid, 2010)

Table 3: Win/tie/loss counts (pairwise t-test at 0.05 signif-
icance level) on the classification performance of CORD a-
gainst each comparing algorithm.

CORD against
CLPL PL-KNN PL-SVM LSB-CMM

varying p [r=1] 38/4/0 10/11/21 28/7/7 18/20/4
varying p [r=2] 32/10/0 12/9/21 28/7/7 18/21/3
varying p [r=3] 33/9/0 14/7/21 28/7/7 23/15/4

varying ϵ [p, r=1] 32/10/0 17/7/18 30/5/7 29/12/1
In Total 135/33/0 53/34/81 114/26/28 88/68/12

each comparing algorithm based on pairwise t-test at 0.05
significance level.

Out of the 168 statistical tests (28 configurations × 6 U-
CI data sets), it is shown that: 1) CORD achieves superior
or at least comparable performance against CLPL in all cas-
es; 2) CORD achieves superior performance against PL-KNN

in 31.5% cases while has been outperformed by PL-KNN
in 49.7% cases; 3) CORD achieves superior performance a-
gainst PL-SVM and LSB-CMM in 67.8% and 52.3% cases
and has been outperformed by them in only 16.7% and 7.1%
cases. Generally, CORD is highly competitive to the com-
paring algorithms w.r.t. controlled UCI data sets, especially
performs favorably against the discriminative partial label
learning counterparts CLPL, PL-SVM and LSB-CMM.

Real-world Data Sets
Table 4 summarizes the characteristics of real-world par-
tial label data sets, which have been collected from several
task domains.4 For Lost (Cour, Sapp, and Taskar, 2011),
Soccer Player (Zeng et al., 2013) and Yahoo! News
(Guillaumin, Verbeek, and Schmid, 2010) from the task of
automatic face naming, faces cropped from an image or a

4These data sets are publicly-available at: http:
//cse.seu.edu.cn/PersonalPage/zhangml/
Resources.htm#partial_data



Table 5: Classification accuracy (mean±std) of each comparing algorithm on the real-world partial label data sets. In addition,
•/◦ indicates whether CORD is statistically superior/inferior to the comparing algorithm on each data set (pairwise t-test at 0.05
significance level).

Lost MSRCv2 BirdSong Soccer Player Yahoo! News
CORD 0.806±0.026 0.474±0.040 0.712±0.008 0.457±0.013 0.624±0.010
CLPL 0.742±0.038• 0.413±0.039• 0.632±0.017• 0.368±0.010• 0.462±0.009•
PL-KNN 0.424±0.041• 0.448±0.037• 0.614±0.024• 0.497±0.014◦ 0.457±0.010•
PL-SVM 0.729±0.040• 0.482±0.043 0.673±0.018• 0.443±0.014• 0.636±0.010
LSB-CMM 0.707±0.055• 0.456±0.031 0.717±0.024 0.525±0.015◦ 0.648±0.007◦

Table 6: Transductive accuracy (mean±std) of each comparing algorithm on the real-world partial label data sets. In addition,
•/◦ indicates whether CORD is statistically superior/inferior to the comparing algorithm on each data set (pairwise t-test at 0.05
significance level).

Lost MSRCv2 BirdSong Soccer Player Yahoo! News
CORD 0.925±0.006 0.667±0.007 0.843±0.002 0.764±0.002 0.873±0.001
CORD† 0.925±0.006 0.667±0.007 0.843±0.002 0.763±0.002 0.873±0.001
CLPL 0.894±0.005• 0.656±0.010 0.822±0.004• 0.680±0.010• 0.834±0.002•
PL-KNN 0.615±0.036• 0.616±0.006• 0.772±0.021• 0.492±0.015• 0.692±0.010•
PL-SVM 0.887±0.012• 0.653±0.024 0.825±0.012• 0.688±0.014• 0.871±0.002
LSB-CMM 0.721±0.010• 0.524±0.007• 0.716±0.014• 0.704±0.002• 0.872±0.001

video frame are represented as instances while names ex-
tracted from the associated image captions or video subti-
tles are regarded as candidate labels. For MSRCv2 (Liu and
Dietterich, 2012) from the task of object classification, im-
age segmentations are represented as instances while object-
s appearing within the image are regarded as candidate la-
bels. For BirdSong (Briggs, Fern, and Raich, 2012) from
the task of bird song classification, singing syllables of the
birds are represented as instances while bird species joint-
ly singing during the same period are regarded as candidate
labels. In addition, the average number of candidate labels
(avg. #CLs) for each data set is also recorded in Table 4.

Table 5 reports the mean predictive accuracy as well as
standard deviation of each comparing algorithm. Pairwise
t-test at 0.05 significance level is conducted based on the
ten-fold cross-validation, where the test outcomes between
CORD and the comparing algorithms are also recorded.

As shown in Table 5, it is impressive to observe that: 1)
On all data sets, CORD significantly outperforms CLPL and
achieves superior or at least comparable performance to PL-
SVM; 2) CORD achieves superior performance to PL-KNN
on the Lost, MSRCv2, BirdSong and Yahoo! News
data sets, and is only inferior to PL-KNN on the Soccer
Player data set; 3) CORD is outperformed by LSB-CMM
on the Soccer Player and Yahoo! News data sets,
and achieves superior or comparable performance to LSB-
CMM on the rest real-world partial label data sets.

In addition to the inductive performance reported in Table
5, it is also interesting to investigate the transductive perfor-
mance of each comparing algorithm on classifying training
examples (Cour, Sapp, and Taskar, 2011; Zhang, Zhou, and
Liu, 2016). For each partial label training example (xi, Si),
its ground-truth label is predicted by confining within the

candidate label set, i.e. yi = argmaxy∈Si g(y | xi;θ).
Conceptually, transductive performance of each comparing
algorithm reflects its disambiguation ability in recovering
the ground-truth label from candidate label set. Accordingly,
Table 6 reports the transductive performance of each com-
paring algorithm along with the outcomes of pairwise t-tests
at 0.05 significance level.

As shown in Table 6, on the Lost, BirdSong and
Soccer Player data sets, CORD significantly outper-
forms all the comparing algorithms in terms of transduc-
tive accuracy. Furthermore, on the MSRCv2 and Yahoo!
News data sets, the performance of CORD is superior or
at least comparable to all the comparing algorithms. As
the boosting procedure of CORD terminates, the ground-
truth label of each training example can also be predict-
ed from the resulting confidence matrix P(T ), i.e. yi =

argmaxyj∈Si p
(T )
ij . For reference purpose, the correspond-

ing transductive performance is also reported in Table 6 (de-
noted as CORD†). As shown in Table 6, CORD† and CORD
perform almost identically across all data sets, which shows
that the confidence matrix serves as a good indicator in dis-
ambiguating the ground-truth label.

Conclusion
In this paper, a new solution to partial label learning named
CORD is proposed which employs the ground-truth con-
fidence of each candidate label in discriminative model-
ing. Specifically, boosting techniques are adapted to learn
from partial label examples which maintain the weights over
training examples as well as the ground-truth confidences
over candidate labels in each boosting round. Effectiveness
of the proposed approach is clearly verified via extensive ex-



periments on artificial and real-world partial label data sets.
One interesting future work is to explore other ways

in instantiating confidence-rated discriminative partial la-
bel learning, such as trying alternative implementations of
CORD (e.g. Step 5 in Table 1), adapting other discrimi-
native learning techniques, etc. Furthermore, investigating
whether confidence-rated modeling is helpful to improve
non-discriminative partial label learning (Hüllermeier and
Beringer, 2006) is also worth further study.

References
Amores, J. 2013. Multiple instance classification: Review,

taxonomy and comparative study. Artificial Intelligence
201:81–105.

Bache, K., and Lichman, M. 2013. UCI ma-
chine learning repository. School of Information and
Computer Sciences, University of California, Irvine.
[http://archive.ics.uci.edu/ml].

Briggs, F.; Fern, X. Z.; and Raich, R. 2012. Rank-loss
support instance machines for MIML instance annotation.
In Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
534–542.

Chen, Y.-C.; Patel, V. M.; Chellappa, R.; and Phillips, P. J.
2014. Ambiguously labeled learning using dictionaries.
IEEE Transactios on Information Forensics and Security
9(12):2076–2088.

Cour, T.; Sapp, B.; Jordan, C.; and Taskar, B. 2009. Learning
from ambiguously labeled images. In Proceedings of the
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 919–926.

Cour, T.; Sapp, B.; and Taskar, B. 2011. Learning from
partial labels. Journal of Machine Learning Research
12(May):1501–1536.

Della Pietra, S.; Della Pietra, V.; and Lafferty, J. 1997.
Inducing features of random fields. IEEE Transactions
on Pattern Analysis and Machine Intelligence 19(4):380–
393.

Guillaumin, M.; Verbeek, J.; and Schmid, C. 2010. Mul-
tiple instance metric learning from automatically labeled
bags of faces. In Daniilidis, K.; Maragos, P.; and Para-
gios, N., eds., Lecture Notes in Computer Science 6311.
Berlin: Springer. 634–647.
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