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Label Distribution Learning
Xin Geng*, Member, IEEE

Abstract—Although multi-label learning can deal with many problems with label ambiguity, it does not fit some real applications well
where the overall distribution of the importance of the labels matters. This paper proposes a novel learning paradigm named label
distribution learning (LDL) for such kind of applications. The label distribution covers a certain number of labels, representing the
degree to which each label describes the instance. LDL is a more general learning framework which includes both single-label and
multi-label learning as its special cases. This paper proposes six working LDL algorithms in three ways: problem transformation,
algorithm adaptation, and specialized algorithm design. In order to compare the performance of the LDL algorithms, six representative
and diverse evaluation measures are selected via a clustering analysis, and the first batch of label distribution datasets are collected and
made publicly available. Experimental results on one artificial and fifteen real-world datasets show clear advantages of the specialized
algorithms, which indicates the importance of special design for the characteristics of the LDL problem.

Index Terms—Multi-label learning, label distribution learning, learning with ambiguity
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1 INTRODUCTION

L Earning with ambiguity is a hot topic in recent machine
learning and data mining research. A learning process is

essentially building a mapping from the instances to the labels.
This paper mainly focuses on the ambiguity at the label side
of the mapping, i.e., one instance is not necessarily mapped
to one label. In the existing learning paradigms, there are
mainly two cases of label assignment: (1) a single label is
assigned to this instance, and (2) multiple labels are assigned
to this instance. Single-label learning (SLL) assumes that all
the instances in the training set are labeled in the first way.
Multi-label learning (MLL) [42] allows the training instances
to be labeled in the second way. Thus, MLL can deal with
the ambiguous case where one instance belongs to more
than one classes (labels). Generally speaking, current MLL
algorithms have been developed with two strategies [41]. The
first strategy is problem transformation, where the basic idea
is to transform the MLL task into one or more SLL tasks. For
example, the MLL problem could be transformed into binary
classification problems [38], a label ranking problem [22], or
an ensemble learning problem [26]. The second strategy is
algorithm adaptation, where the basic idea is to extend specific
SLL algorithms to handle multi-label data. For example, it
can be extended from k-NN [51], decision tree [37], or neural
networks [50].

Both SLL and MLL actually aim to answer the essential
question “which label can describe the instance?”, while MLL
deals with label ambiguity by allowing the answer to consist
of more than one label. However, neither SLL nor MLL can
directly handle the further question with more ambiguity “how
much does each label describe the instance?”, i.e., the relative
importance of each label is also involved in the description

• Xin Geng is with the School of Computer Science and Engineering, and
the Key Lab of Computer Network and Information Integration (Ministry
of Education), Southeast University, Nanjing 211189, China.
* Corresponding author. E-mail: xgeng@seu.edu.cn

of the instance. Surprisingly, the real-world data with the
information about such relative importance of each label might
be more common than many people think. To name just a few
from the datasets used in Section 5, first, in many scientific
experiments, the result is not a single output, but a series of
numerical outputs. For example, the biological experiments
on the yeast genes over a period of time yield different gene
expression levels on a series of time points (the 2nd to 11th
datasets in Table 1) [15]. The exact expression level on each
time point alone is of little importance. What really matters is
the overall expression distribution over the whole time period.
If the learning task is to predict such distribution for a given
gene, then it can be hardly fit into either the SLL or MLL
framework because the role of each output in the distribution
is crucial, and there is no partition of relevant and irrelevant
labels at all. Another example is the emotion analysis from
facial expressions (the 14th and 15th datasets in Table 1) [29],
[48]. A facial expression often conveys a complex mixture
of multiple basic emotions (e.g., happiness, sadness, surprise,
fear, anger, and disgust). Each basic emotion plays a different
role in the expression. The various intensities of all the basic
emotions naturally form an emotion distribution for the facial
expression. By regarding the emotion with the highest intensity
or emotions with higher intensities than a threshold as the
positive label(s), the problem can be fit into the SLL or
MLL framework. Unfortunately, this will lose the important
information of the different intensities of the related emotions.
More examples of real-world data with label distributions can
be found in Section 5.2.

For the applications mentioned above, a more natural way
to label an instance x is to assign a real number dyx to each
possible label y, representing the degree to which y describes
x. For example, if x represents a facial expression image,
y represents an emotion, then dyx should be the intensity
of the emotion y expressed by the image x. Without loss
of generality, assume that dyx ∈ [0, 1]. Further suppose that
the label set is complete, i.e., using all the labels in the set
can always fully describe the instance. Then,

∑
y d

y
x = 1.
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Such dyx is called the description degree of y to x. For a
particular instance, the description degrees of all the labels
constitute a data form similar to probability distribution. So,
it is called label distribution. The learning process on the
instances labeled by label distributions is therefore called label
distribution learning (LDL). The aforementioned applications
reveal that the nature of label ambiguity might exceed the
current framework of MLL. In such case, it is necessary to
extend MLL to LDL. In fact, the real applications suitable for
LDL might be more common than those suitable for MLL
because when there are multiple labels associated with one
instance, their importance or relevance to the instance can
hardly be exactly the same. While MLL usually assumes
indiscriminate importance within the relevant label set (e.g.,
all represented by ‘1’s) as well as within the irrelevant label
set (e.g., all represented by ‘0’s), LDL allows direct modeling
of different importance of each label to the instance, and thus
can better match the nature of many real applications.

The main contribution of this paper includes: 1) A novel
machine learning paradigm named label distribution learning is
formulated; 2) Six working LDL algorithms are proposed and
compared in the experiments; 3) Six measures for evaluation
of LDL algorithms are suggested; 4) The first batch of 15
real-world label distribution datasets are prepared and made
publicly available. This paper extends our preliminary work
[17] in the following ways: 1) More technical details and
insights of LDL are discussed; 2) The set of evaluation
measures for LDL algorithms are empirically optimized to
reveal different aspects of the algorithms; 3) Five additional
real-world LDL datasets are provided; 4) Extensive additional
experiments are performed and discussed in further detail.

The rest of the paper is organized as follows. Firstly, some
related work are briefly reviewed and discussed in Section 2.
Secondly, the problem of LDL is formulated in Section 3.
Then, six LDL algorithms are proposed in Section 4. After
that, the experiments on artificial as well as real-world datasets
are reported in Section 5. Finally, the paper is summarized and
some discussions on the future work are given in Section 6.

2 RELATED WORK

It is not a rare case in existing single-label or multi-label
machine learning literatures that an intermediate numerical
indicator (e.g., probability, confidence, grade, score, vote, etc.)
is calculated for each label [47], [51], [22], [11]. As shown in
Fig. 1, LDL is different from these learning methods in mainly
three aspects:

1) Each training instance of LDL is explicitly associated
with a label distribution, rather than a single label or
a relevant (positive) label set. The label distribution
comes from the application itself as a natural part of the
original data, while most numerical label indicators used
in previous learning algorithms are artificially generated
from the original data for later decision making.

2) The purpose of most numerical label indicators used in
previous learning algorithms is to rank the labels, and
then decide the positive label(s) through, say, threshold-
ing over the ranking. The actual value of the indicator
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Fig. 1. Comparison of LDL and typical existing learning
methods with numerical label indicators.

does not matter much so long as the ranking does not
change. In most cases, it only cares about the partition
between positive and negative labels. On the other hand,
what LDL cares about is the overall label distribution.
The value of each label’s description degree is important.

3) The performance evaluation measures of previous learn-
ing algorithms with numerical label indicators are still
those commonly used for SLL (e.g., classification ac-
curacy, error rate, etc.) or MLL (e.g., Hamming loss,
one-error, coverage, ranking loss, etc.). On the other
hand, the performance of LDL should be evaluated by
the similarity or distance between the predicted label
distribution and the real label distribution, which will
be further discussed in Section 5.1.

In the LDL framework, each instance is labeled by a
real-valued vector (i.e., the label distribution). Merely from
the data format point of view, there are also similar work
in the machine learning literature where each instance is
associated with a supervision vector (real-valued or binary).
Two typical examples are known as label embedding [5] and
attribute learning [2], [25]. Both of them are featured by the
intermediate representations for the classes. In detail, label
embedding [5] projects the class labels into a subspace to
gain advantages in sharing representations of the labels. In
the subspace, each class is represented by a real-valued vector
that can be regarded as a code for that class. Attribute learning
[2], [25] is mainly designed to leverage the prior knowledge
of attribute-class association to deal with the missing classes
(zero-shot learning) or scarce classes (few-shots learning).
Each class has the same attribute representation for all its
instances. For both label embedding and attribute learning, the
intermediate vector representation is fully determined by the
class label itself, i.e., all the instances belonging to the same
class will be labeled by the same vector. Thus, although the
supervision signal is transformed from a label into a vector,
this does not change the nature of the learning paradigm: each
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instance is still associated with one class label (represented by
a vector though), and the final aim is still standard classifica-
tion. On the other hand, label distribution is part of the nature
of the data rather than an intermediate representation. One
label distribution represents the relative roles of all the labels
with respect to the instance rather than a code for one class.
Different instances therefore usually correspond to different
label distributions. This clearly distinguishes LDL from either
label embedding or attribute learning.

The goal of LDL is to predict multiple real-valued de-
scription degrees of the labels. When concerning prediction
of multiple targets, there is a very general concept in the
literature known as multi-target learning (MTL) [44]. In
MTL, the multiple targets might refer to not only binary,
nominal, ordinal, or real-valued variables, but also rankings
or relational structures, such as a tree or a graph. Thus,
MTL includes a variety of subfields of machine learning and
statistics as its special cases, such as multi-label classification
(multiple binary targets) [42], multivariate regression (multiple
numerical targets) [23], sequence learning (ordered targets)
[46], structured prediction (targets with inherent structure)
[4], preference learning (preference relation between multiple
targets) [16], multi-task learning (multiple targets in different
but related domains) [9] and collective learning (dependent
targets) [32]. If the targets are real-valued and they satisfy the
two distribution constrains, i.e., dyx ∈ [0, 1], and

∑
y d

y
x = 1,

then MTL becomes LDL. Therefore, LDL could be viewed as
another special case of MTL.

From the conceptual point of view, it is worthwhile to
distinguish description degree from the concept membership
used in fuzzy classification [53]. Membership is a truth value
that may range between completely true and completely false.
It is designed to handle the status of partial truth which
often appears in the non-numeric linguistic variables. On the
other hand, description degree reflects the ambiguity of the
label description of the instance, i.e., one label may only
partially describe the instance, but it is completely true that
the label describes the instance. Based on fuzzy set theory, a
recent extension of multi-label classification, namely graded
multilabel classification [11], allows for graded membership
of an instance belonging to a class. Apart from the different
meanings of continuous description degree and graded mem-
bership, LDL is also different from this work in methodology.
The strategy in [11] is to reduce the graded multi-label
problem to the conventional multi-label problem, while LDL
aims to directly model the mapping from the instances to the
label distributions.

Note also that dyx is not the probability that y correctly labels
x, but the proportion that y accounts for in a full description
of x. Thus, all the labels with a non-zero description degree
are actually the ‘correct’ labels to describe the instance, but
just with different importance measured by dyx. Recognizing
this, one can distinguish label distribution from the previous
studies on probabilistic labels [39], [12], [35], where the basic
assumption is that there is only one ‘correct’ label for each
instance. Fortunately, although not a probability by definition,
dyx still shares the same constraints with probability, i.e., dyx ∈
[0, 1] and

∑
y d

y
x = 1. Thus, many theories and methods in
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Fig. 2. Example label distributions for single-label anno-
tation, multi-label annotation, and the general case.

statistics can be applied to label distributions.

3 FORMULATION OF LDL
First of all, the main notations used in this paper are listed as
follows. The instance variable is denoted by x, the particular
i-th instant is denoted by xi, the label variable is denoted by y,
the particular j-th label value is denoted by yj , the description
degree of y to x is denoted by dyx, and the label distribution
of xi is denoted by Di = {dy1

xi
, dy2

xi
, · · · , dyc

xi
}, where c is the

number of possible label values.
By the definition of label distribution given in Section 1,

both single-label annotation and multi-label annotation can be
viewed as special cases of label distribution. Fig. 2 gives one
label distribution example for single-label annotation, multi-
label annotation, and the general case, respectively. For the
single-label annotation (a), the label y2 fully describes the
instance, so dy2

x = 1. For the multi-label annotation (b), each
of the two positive labels y2 and y4 by default describes
50% of the instance, so dy2

x = dy4
x = 0.5. Finally, (c)

represents a general case of label distribution, which satisfies
the constraints dyx ∈ [0, 1] and

∑
y d

y
x = 1. Such examples

illustrate that label distribution is more general than both
single-label annotation and multi-label annotation, and thus
can provide more flexibility in the learning process.

Nevertheless, more flexibility usually means larger output
space. From single-label annotation to multi-label annotation,
and then to label distribution, the size of the output space of
the learning process becomes increasingly larger. In detail, for
a problem with c different labels, there are c possible outputs
for SLL, and 2c − 1 possible outputs for MLL. As for LDL,
there are infinite possible outputs as long as they satisfy that
dyx ∈ [0, 1] and

∑
y d

y
x = 1.

As mentioned before, since label distribution shares the
same constraints with probability distribution, many statistical
theories and methods can be applied to label distribution.
First of all, dyx can be represented by the form of conditional
probability, i.e., dyx = P (y|x). Then, the problem of LDL can
be formulated as follows.

Let X = Rq denote the input space and Y =
{y1, y2, · · · , yc} denote the complete set of la-
bels. Given a training set S = {(x1, D1),
(x2, D2), · · · , (xn, Dn)}, the goal of ldl is to learn
a conditional probability mass function p(y|x) from
S, where x ∈ X and y ∈ Y .

Suppose p(y|x) is a parametric model p(y|x;θ), where θ is
the parameter vector. Given the training set S, the goal of LDL
is to find the θ that can generate a distribution similar to Di
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given the instance xi. As will be discussed in Section 5.1, there
are different criteria that can be used to measure the distance
or similarity between two distributions. For example, if the
Kullback-Leibler divergence is used as the distance measure,
then the best parameter vector θ∗ is determined by

θ∗ = argmin
θ

∑
i

∑
j

(
d
yj
xi ln

d
yj
xi

p(yj |xi;θ)

)
= argmax

θ

∑
i

∑
j

d
yj
xi ln p(yj |xi;θ). (1)

It is interesting to examine the traditional learning
paradigms under the optimization criterion shown in Eq. (1).
For SLL (see Fig. 2(a) for example), dyj

xi = Kr(yj , y(xi)),
where Kr(·, ·) is the Kronecker delta function and y(xi) is
the single label of xi. Consequently, Eq. (1) can be simplified
to

θ∗ = argmax
θ

∑
i

ln p(y(xi)|xi;θ). (2)

This is actually the maximum likelihood (ML) estimation of
θ. The later use of p(y|x;θ) for classification is equivalent to
the maximum a posteriori (MAP) decision.

For MLL, each instance is associated with a label set (see
Fig. 2(b) for example). Consequently, Eq. (1) can be changed
into

θ∗ = argmax
θ

∑
i

1

|Yi|
∑
y∈Yi

ln p(y|xi;θ), (3)

where Yi is the label set associated with xi. Eq. (3) can
be viewed as a ML criterion weighted by the reciprocal
cardinality of the label set associated with each instance. In
fact, this is equivalent to first applying Entropy-based Label
Assignment (ELA) [42] to transform the multi-label instances
into the weighted single-label instances, and then optimizing
the ML criterion based on the weighted single-label instances.

It can be seen from the above analysis that with proper con-
straints, an LDL model can be transformed into the commonly
used methods for SLL or MLL. Thus, LDL may be viewed as
a more general learning framework which includes both SLL
and MLL as its special cases.

4 LDL ALGORITHMS

We follow three strategies to design algorithms for LDL. The
first strategy is problem transformation, i.e., transform the
LDL problem into existing learning paradigms. The second
strategy is algorithm adaptation, i.e., extend existing learning
algorithms to deal with label distributions. The first two
strategies are based on existing machine learning algorithms,
which were also adopted in some other work [3], [8], [7]. The
third strategy is to design specialized algorithms according
to the characteristics of LDL. Following each of the three
strategies, two typical algorithms are proposed in this section.

4.1 Problem Transformation
One straightforward way to transform an LDL problem into an
SLL problem is to change the training examples into weight-
ed single-label examples. In detail, each training example

(xi, Di) is transformed into c single-label examples (xi, yj)
with the weight dyj

xi , where i = 1, . . . , n and j = 1, . . . , c.
The training set is then resampled to the same size according
to the weight of each example. The resampled training set
becomes a standard single-label training set including c × n
examples, and then any SLL algorithms can be applied to the
training set. Note that although in the resampling step, one
training instance with a label distribution is transformed into
multiple instances, the resulting training set does not form
a multi-instance learning (MIL) [13] or multi-instance multi-
label learning (MIML) [52] problem. For MIL and MIML,
the training set is composed by many bags each containing
multiple instances. A bag is annotated by a label (MIL) or a
label set (MIML), meaning at least one instance in the bag
can be annotated by the label or the label set. But for each
particular instance in the bag, its label is still unknown. On
the other hand, the training set transformed from LDL training
examples via resampling is a standard single-label training set.
Each instance in this set is explicitly assigned with a label.
Moreover, although the number of the training examples is
increased from n to c × n, it does not affect the complexity
and scalability of the learning process much because the label
side has been simplified from a label distribution (c elements)
to a single label (only 1 element).

In order to predict the label distribution of a previously
unseen instance x, the learner must be able to output the
confidence/probability for each label yj , which can be regarded
as the description degree of the corresponding label, i.e.,
d
yj
x = P (yj |x). Two representative algorithms are adopted

here for this purpose. One is the Bayes classifier, the other is
SVM. In detail, the Bayes classifier assumes Gaussian distri-
bution for each class, and the posterior probability computed
by the Bayes rule is regarded as the description degree of
the corresponding label. As to SVM, the probability estimates
are obtained by a pairwise coupling multi-class method [47],
where the probability of each binary SVM is calculated by
an improved implementation of Platt’s posterior probabilities
[28], and the class probability estimates are obtained by
solving a linear system whose solution is guaranteed by the
theory in finite Markov Chains. When Bayes and SVM are
applied to the resampled training set, the resulted methods are
denoted by PT-Bayes and PT-SVM, respectively, where ‘PT’
is the abbreviation of ‘Problem Transformation’.

4.2 Algorithm Adaptation
Certain existing learning algorithms can be naturally extended
to deal with label distributions, among which two adapted
algorithms are proposed here. The first one is k-NN. Given
a new instance x, its k nearest neighbors are first found in the
training set. Then, the mean of the label distributions of all
the k nearest neighbors is calculated as the label distribution
of x, i.e.,

p(yj |x) =
1

k

∑
i∈Nk(x)

d
yj
xi , (j = 1, 2, . . . , c), (4)

where Nk(x) is the index set of the k nearest neighbors
of x in the training set. This adapted algorithm is denoted
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by AA-kNN, where ‘AA’ is the abbreviation of ‘Algorithm
Adaptation’.

The second algorithm is the backpropagation (BP) neural
network. The three-layer neural network has q (the dimension-
ality of x) input units which receive x, and c (the number of
different labels) output units each of which outputs the descrip-
tion degree of a label yj . For SLL or MLL, the desired output
t is usually a vector with ‘1’s at the positions corresponding
to the positive labels of the input instance, and ‘0’s otherwise.
For LDL, t becomes the real label distribution of the input
training instance. Thus, the target of the BP algorithm is to
minimize the sum-squared error of the output of the neural
network compared with the real label distributions. To make
sure the output of the neural network z = {z1, z2, . . . , zc}
satisfies that zj ∈ [0, 1] for j = 1, 2, . . . , c and

∑
j zj = 1, the

softmax activation function is used in each output unit. Let
the net input to the j-th output unit be ηj , then the softmax
output zj is

zj =
exp(ηj)
c∑

k=1

exp(ηk)
, (j = 1, 2, . . . , c), (5)

This adapted algorithm is denoted by AA-BP.

4.3 Specialized Algorithms

Different from the indirect strategy of problem transformation
and algorithm adaptation, the specialized algorithms directly
match the LDL problem, e.g., by directly solving the opti-
mization problem in Eq. (1). One good start toward this end
might be our previous work on facial age estimation [19], [20],
where in order to solve the insufficient training data problem
(the numbers of face images for some ages are small), each
face image is labeled by not only its chronological age, but
also the neighboring ages (close to the chronological age) so
that one training face image can contribute to the learning
of not only its chronological age, but also the neighboring
ages. This actually forms a special label distribution with
the highest description degree at the chronological age, and
gradually decreasing description degrees on both neighboring
sides of the chronological age. We proposed an algorithm IIS-
LLD for such special data, where the key step was to solve an
optimization problem similar to Eq. (1). Although IIS-LLD
was designed for a particular form of label distribution, it
can be generalized to deal with any LDL problems. Thus,
we rename IIS-LLD in this paper as SA-IIS, where ‘SA’ is
the abbreviation of ‘Specialized Algorithm’. The optimization
process of SA-IIS, however, has been evidenced to be not very
efficient [30]. So, an improved version is further proposed in
this section.

SA-IIS assumes the parametric model p(y|x;θ) to be the
maximum entropy model [6], i.e.,

p(y|x;θ) = 1

Z
exp

(∑
k

θy,kgk(x)

)
, (6)

where Z =
∑

y exp (
∑

k θy,kgk(x)) is the normalization
factor, θy,k is an element in θ, and gk(x) is the k-th feature of

Algorithm 1: SA-IIS
Input: The training set S = {(xi, Di)}ni=1 and the

convergence criterion ε
Output: p(y|x;θ)

1 Initialize the model parameter vector θ(0);
2 l← 0;
3 repeat
4 l← l + 1;
5 Solve Eq. (8) for δy,k by Gauss-Newton method;
6 θ(l) ← θ(l−1) +∆;
7 until T (θ(l))− T (θ(l−1)) < ε;
8 p(y|x;θ)← 1

Z
exp

(∑
k θ

(l)
y,kgk(x)

)
;

x. Substituting Eq. (6) into Eq. (1) yields the target function
of θ

T (θ) =
∑
i,j

d
yj
xi

∑
k

θyj ,kgk(xi) (7)

−
∑
i

ln
∑
j

exp

(∑
k

θyj ,kgk(xi)

)
.

The optimization of Eq. (7) uses a strategy similar to Improved
Iterative Scaling (IIS) [34], a well-known algorithm for max-
imizing the likelihood of the maximum entropy model. IIS
starts with an arbitrary set of parameters. Then for each step,
it updates the current estimate of the parameters θ to θ +∆,
where ∆ maximizes a lower bound to the change in likelihood
Ω = T (θ + ∆) − T (θ). The element of ∆, δyj ,k, can be
obtained by solving the equation∑

i

p(yj |xi;θ)gk(xi) exp(δyj ,ks(gk(xi))g
#(xi)) (8)

−
∑
i

d
yj
xigk(xi) = 0,

where g#(xi) =
∑

k |gk(xi)| and s(gk(xi)) is the sign
of gk(xi). The detailed derivation of Eq. (8) can be found
in the Appendix. What is nice about Eq. (8) is that δyj ,k

appears alone, and therefore can be solved one by one through
nonlinear equation solvers, such as the Gauss-Newton method.
The pseudocode of SA-IIS is given in Algorithm 1.

It has been reported in the literature [30] that IIS often
performs worse than several other optimization algorithms
such as conjugate gradient and quasi-Newton methods. Here
we follow the idea of an effective quasi-Newton method BFGS
[33] to further improve SA-IIS.

Consider the second-order Taylor series of T ′(θ) = −T (θ)
at the current estimate of the parameter vector θ(l):

T ′(θ(l+1)) ≈ T ′(θ(l))+∇T ′(θ(l))T∆+
1

2
∆TH(θ(l))∆, (9)

where ∆ = θ(l+1) − θ(l) is the update step, ∇T ′(θ(l)) and
H(θ(l)) are the gradient and Hessian matrix of T ′(θ) at θ(l),
respectively. The minimizer of Eq. (9) is

∆(l) = −H−1(θ(l))∇T ′(θ(l)). (10)
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Algorithm 2: SA-BFGS
Input: The training set S = {(xi, Di)}ni=1 and the

convergence criterion ε
Output: p(y|x;θ)

1 Initialize the model parameter vector θ(0);
2 Initialize the inverse Hessian approximation B(0);
3 Compute ∇T ′(θ(0)) by Eq. (15);
4 l← 0;
5 repeat
6 Compute search direction p(l) ← −B(l)∇T ′(θ(l));
7 Compute the step length α(l) by a line search procedure to

satisfy Eq. (12) and (13);
8 θ(l+1) ← θ(l) + α(l)p(l);
9 Compute ∇T ′(θ(l+1)) by Eq. (15);

10 Compute B(l+1) by Eq. (14);
11 l← l + 1;
12 until ∥∇T ′(θ(l))∥ < ε;
13 p(y|x;θ)← 1

Z
exp

(∑
k θ

(l)
y,kgk(x)

)
;

The line search Newton method uses ∆(l) as the search
direction p(l) = ∆(l) and updates the parameter vector by

θ(l+1) = θ(l) + α(l)p(l), (11)

where the step length α(l) is obtained from a line search
procedure to satisfy the strong Wolfe conditions [33]:

T ′(θ(l) + α(l)p(l)) ≤ T ′(θ(l)) + c1α
(l)∇T ′(θ(l))Tp(l), (12)

|∇T ′(θ(l) + α(l)p(l))Tp(l)| ≤ c2|∇T ′(θ(l))Tp(l)|, (13)

where 0 < c1 < c2 < 1.
One problem of the above method is the calculation of the

inverse Hessian matrix in each iteration, which is computa-
tionally expensive. The idea of BFGS is to avoid explicit cal-
culation of H−1(θ(l)) by approximating it with an iteratively
updated matrix B (detailed derivation can be found in [33]):

B(l+1) = (I − ρ(l)s(l)(u(l))T)B(l)(I − ρ(l)u(l)(s(l))T) (14)
+ρ(l)s(l)(s(l))T,

where s(l) = θ(l+1) − θ(l), u(l) = ∇T ′(θ(l+1))−∇T ′(θ(l)),
and ρ(l) = 1

s(l)u(l) . As to the optimization of the target
function T ′(θ), the computation of BFGS is mainly related
to the first-order gradient, which can be obtained through

∂T ′(θ)

∂θyj ,k
=
∑
i

exp

(∑
k

θyj ,kgk(xi)

)
gk(xi)∑

j

exp

(∑
k

θyj ,kgk(xi)

) −
∑
i

d
yj
xigk(xi).

(15)
Thus, it performs much more efficiently than the standard line
search Newton method, and based on previous studies [30], it
stands a good chance of outperforming the IIS-based algorithm
SA-IIS. This improved algorithm is denoted by SA-BFGS, and
its pseudocode is shown in Algorithm 2.

5 EXPERIMENTS
5.1 Evaluation Measures
The output of an LDL algorithm is a label distribution, which
is different from both the single label output of SLL and the

Fig. 3. Evaluation measure selection from the den-
drogram (modified from [10]) for the distribution dis-
tance/similarity measures.

label set output of MLL. Accordingly, the evaluation measures
for LDL algorithms should be different from those used for
SLL and MLL algorithms. A natural choice of such measure
is the average distance or similarity between the predicted and
real label distributions. There are many measures for the dis-
tance/similarity between probability distributions which can be
well borrowed to measure the distance/similarity between label
distributions. For example, Cha [10] performed a semantic
similarity analysis on 41 measures for the distance/similarity
between distributions from 8 syntactic families. The agglom-
erative single linkage clustering algorithm [14] was run on all
the 41 measures calculated from 30 independent experiments.
This resulted in a dendrogram shown in Fig. 3, where the
horizontal axis represents the distance between two clusters of
distance/similarity measures, and the vertical axis represents
different distance/similarity measures.

On a particular dataset, each of the measures may reflect a
certain aspect of an algorithm. It is hard to say which measure
is the best. Thus, we propose to use a set of measures when
comparing different LDL algorithms, which is analogous to
the common practice of using multiple evaluation measures for
MLL algorithms. In order to obtain a set of representative and
diverse measures, we select the measures from the dendrogram
shown in Fig. 3 following four principles: 1. The distance be-
tween the clusters of any two measures in the set is greater than
0.1 (indicated by the red dash line in Fig. 3); 2. Each measure
in the set comes from a different syntactic family summarized
in [10]; 3. The calculation of the selected measures is not
prone, except for some extreme cases, to unstable situations
such as division by zero or logarithm of zero; 4. The selected
measures are relatively widely used in the related areas. As
shown in Fig. 3, six measures are finally selected in this
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TABLE 1
Statistics of the 16 Datasets Used in the Experiments

No. Dataset # Examples (n) # Features (q) # Labels (c)

1 Artificial 500 (train)
40,401 (test) 3 3

2 Yeast-alpha 2,465 24 18
3 Yeast-cdc 2,465 24 15
4 Yeast-elu 2,465 24 14
5 Yeast-diau 2,465 24 7
6 Yeast-heat 2,465 24 6
7 Yeast-spo 2,465 24 6
8 Yeast-cold 2,465 24 4
9 Yeast-dtt 2,465 24 4
10 Yeast-spo5 2,465 24 3
11 Yeast-spoem 2,465 24 2
12 Human Gene 30,542 36 68
13 Natural Scene 2,000 294 9
14 SJAFFE 213 243 6
15 SBU 3DFE 2,500 243 6
16 Movie 7,755 1,869 5

way, i.e., Chebyshev distance (Cheb), Clark distance (Clark),
Canberra metric (Canber), Kullback-Leibler divergence (KL-
div), cosine coefficient (Cosine), and intersection similarity
(Intersec), which belong to the Minkowski family, the χ2

family, the L1 family, the Shannon’s entropy family, the
inner product family, and the intersection family, respectively
[10]. The first four are distance measures and the last two
are similarity measures. Suppose the real label distribution
is D = {d1, d2, . . . , dc}, the predicted label distribution is
D̂ = {d̂1, d̂2, . . . , d̂c}, then the formulae of the six measures
are summarized in the lower-right corner of Fig. 3, where
the “↓” after the distance measures indicates “the smaller the
better”, and the “↑” after the similarity measures indicates
“the larger the better”. Considering that the cluster distance
between any two selected measures is greater than 0.1, and
they all come from different families, the selected measures
are significantly different in both syntax and semantics. Thus,
they have a good chance, as will be verified in Section 5.4, to
reflect different aspects of an LDL algorithm.

5.2 Datasets
There are in total 16 datasets used in the experiments including
an artificial toy dataset and 15 real-world datasets1. Some basic
statistics about these 16 datasets are given in Table 1.

The first dataset is an artificial toy dataset which is gen-
erated to show in a direct and visual way whether the LDL
algorithms can learn the mapping from the instance to the
label distribution. In this dataset, the instance x is of three-
dimensional and there are three labels, i.e., q = 3 and c = 3.
The label distribution D = {dy1

x , d
y2
x , d

y3
x } of an instance

x = [x1, x2, x3]
T is created in the following way.

ti = axi + bx2i + cx3i + d, i = 1, . . . , 3, (16)
ψ1 = (wT

1t)
2, (17)

ψ2 = (wT
2t+ λ1ψ1)

2, (18)
ψ3 = (wT

3t+ λ2ψ2)
2, (19)

dyi
x =

ψi

ψ1 + ψ2 + ψ3
, i = 1, . . . , 3, (20)

1. The datasets and the Matlab code of the LDL algorithms are available
at our web site: http://cse.seu.edu.cn/PersonalPage/xgeng/LDL/index.htm

where t = [t1, t2, t3]
T. Note that Eq. (18) and (19) deliberately

make the description degree of one label depend on those of
other labels. The parameters in Eq. (16)-(19) are set as a = 1,
b = 0.5, c = 0.2, d = 1, w1 = [4, 2, 1]T, w2 = [1, 2, 4]T,
w3 = [1, 4, 2]T, and λ1 = λ2 = 0.01. To generate the training
set, each component of x is uniformly sampled within the
range [−1, 1]. In total, there are 500 instances sampled in
this way. Then, the label distribution corresponding to each
instance is calculated via Eq. (16)-(20). Such 500 examples
are used as the training set for the LDL algorithms proposed
in Section 4.

In order to show the result of the LDL algorithms in a direct
and visual way, the test examples of the toy dataset are selected
from a certain manifold in the instance space. The first two
components of the test instance x, x1 and x2, are located at
a grid of the interval 0.01 within the range [−1, 1] on both
dimensions, i.e., there are in total 201 × 201 = 40, 401 test
instances. The third component x3 is calculate by

x3 = sin((x1 + x2)× π). (21)

Then, the label distribution of each test instance, either the
ground-truth calculated via Eq. (16)-(20) or the prediction
given by the LDL algorithms, is transformed into a color
(details in Section 5.4.1). Thus the ground-truth and predicted
label distributions of the test instances can be compared
visually through the color pattern on the manifold.

The second to the eleventh datasets (from Yeast-alpha
to Yeast-spoem) are real-world datasets collected from ten
biological experiments on the budding yeast Saccharomyces
cerevisiae [15]. Each dataset records the result of one exper-
iment. There are in total 2, 465 yeast genes included, each
of which is represented by an associated phylogenetic profile
vector of the length 24. For each dataset, the labels correspond
to the discrete time points during one biological experiment.
The gene expression level (after normalization) at each time
point provides a natural measure of the description degree
of the corresponding label. The number of labels in the ten
Yeast Gene datasets is summarized in Table 1. The description
degrees (normalized gene expression levels) of all the labels
(time points) constitute a label distribution for a particular
yeast gene.

The twelfth dataset Human Gene is a large-scale real-
world dataset collected from the biological research on the
relationship between human genes and diseases. There are in
total 30, 542 human genes included in this dataset, each of
which is represented by the 36 numerical descriptors for a
gene sequence proposed in [49]. The labels correspond to 68
different diseases. The gene expression level (after normaliza-
tion) for each disease is regarded as the description degree of
the corresponding label. The description degrees (normalized
gene expression level) of all the 68 labels (diseases) constitute
a label distribution for a particular human gene.

The thirteenth dataset Natural Scene results from the in-
consistent multilabel rankings of 2, 000 natural scene images.
There are nine possible labels associated with these images,
i.e., plant, sky, cloud, snow, building, desert, mountain, water,
and sun. Ten human rankers are requested to label the images.
For each image, they first select from the nine candidate labels
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what they think are relevant to the image, and then rank
the relevant labels in descending order of relevance to the
image. Each human ranker makes his/her decisions indepen-
dently, and the resulting multilabel rankings are expectably
highly inconsistent. Then, the inconsistent rankings for each
image are transformed into a label distribution by a nonlinear
programming process [18], which finds the common label
distribution that is most compatible with all personal rankings.
Finally, for each image, a 294-dimensional feature vector is
extracted by the method proposed in [8].

The fourteenth and fifteenth datasets are extensions of two
widely used facial expression image databases, i.e., JAFFE
[29] and BU 3DFE [48]. The JAFFE database contains 213
grayscale expression images posed by 10 Japanese female
models. A 243-dimensional feature vector is extracted from
each image by the method of Local Binary Patterns (LBP)
[1]. Each image is scored by 60 persons on the 6 basic
emotion labels (i.e., happiness, sadness, surprise, fear, anger,
and disgust) with a 5-level scale. The average score of each
emotion is used to represent the emotion intensity. Instead of
only considering the emotion with the highest score as most
work on JAFFE does, the dataset SJAFFE (Scored JAFFE)
used in this paper keeps all the scores and normalizes them
into a label distribution over all the 6 emotion labels. Similarly,
for the bigger database BU 3DFE containing 2, 500 facial
expression images, each image is scored by 23 persons in the
same way JAFFE is scored, resulting in the label distribution
version of the dataset SBU 3DFE (Scored BU 3DFE).

Finally, the sixteenth dataset is about the user ratings on
movies. The dataset includes 7, 755 movies and 54, 242, 292
ratings from 478, 656 different users. The ratings come from
Netflix, which are on a scale from 1 to 5 integral stars (5
labels). The rating label distribution is calculated for each
movie as the percentage of each rating level. The features
of the movie are extracted from the metadata such as genre,
director, actor, country, budget, etc. Categorical attributes
are transformed into binary vectors. The final feature vector
extracted from each movie is of 1, 869-dimensional.

5.3 Methodology

All the six algorithms described in Section 4, i.e., PT-Bayes,
PT-SVM, AA-kNN, AA-BP, SA-IIS, and SA-BFGS, are ap-
plied to the 16 datasets shown in Table 1 and compared by the
six measures listed in Fig. 3. On the 15 real-world datasets,
ten-fold cross validation is conducted for each algorithm and
the mean value and standard deviation of each evaluation
measure are recorded.

For each algorithm, several parameter configurations are
tried. On the artificial dataset, one fifth of the training set is
randomly selected as the validation set. The model is trained
on those examples left in the training set and tested on the
validation set to select the best parameters. Then, the model is
trained on the whole training set with the best parameters and
tested on the test set. On the real-world datasets, the parameter
selection process is nested into the ten-fold cross validation.
In detail, the whole data is first randomly split into 10 chunks.
Each time, one chunk is used as test set, another is used as

(a) Ground-Truth

(b) PT-Bayes (c) PT-SVM

(d) AA-kNN (e) AA-BP

(f) SA-IIS (g) SA-BFGS

Fig. 4. Comparison between the ground-truth and pre-
dicted label distributions (regarded as RGB colors) on the
artificial test manifold.

validation set, and the rest 8 chunks are used as training set.
Then, the model is trained with different parameter settings on
the training set and tested on the validation set. This procedure
is repeated 10 times (each time with different training and
validation sets), and the parameter setting with the best average
performance is selected. After that, the original validation
set is merged into the training set and the test set remains
unchanged. The model is trained with the selected parameter
setting on the updated training set and tested on the test
set. This procedure is repeated 10 times and the average
performance is recorded.

5.4 Results
5.4.1 Artificial Dataset
In order to visually show the results of the LDL algorithms
on the artificial dataset, the description degrees of the three
labels are regarded as the three color channels of the RGB
color space, respectively. In this way, the color of a point in
the instance space will visually represent its label distribution.
Thus, the predictions made by the LDL algorithms can be
compared with the ground-truth label distributions through
observing the color patterns on the manifold where the test
examples lie on. For easier comparison, the images are visually
enhanced by applying a decorrelation stretch process. The
results are shown in Fig. 4. It can be seen that the two
specialized LDL algorithms, SA-IIS and SA-BFGS, predict
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TABLE 2
Experimental Results on the Artificial Dataset

Criterion PT-Bayes PT-SVM AA-kNN AA-BP SA-IIS SA-BFGS

Chebyshev ↓ 0.080(3) 0.653(6) 0.086(4) 0.101(5) 0.0767(2) 0.0766(1)
Clark ↓ 0.341(1) 1.135(6) 0.382(4) 0.520(5) 0.349(2) 0.352(3)
Canberra ↓ 0.488(1) 1.823(6) 0.564(4) 0.699(5) 0.489(2) 0.495(3)
Kullback-Leibler ↓ 0.030(3) 1.482(6) 0.035(4) 0.066(5) 0.029(1) 0.030(2)
Cosine ↑ 0.990(3) 0.377(6) 0.989(4) 0.983(5) 0.99116(2) 0.99120(1)
Intersection ↑ 0.920(3) 0.347(6) 0.914(4) 0.899(5) 0.9233(2) 0.9234(1)

Avg. Rank 2.33 6.00 4.00 5.00 1.83 1.83

Running Time (ms) 22 / 45 391 / 1,153 0 / 79,961 101,568 / 149 1,168 / 33 187 / 33

almost identical color patterns with the ground-truth. PT-Bayes
and AA-kNN can also discover similar color patterns with the
ground-truth. However, PT-SVM and AA-BP fail to obtain a
reasonable result.

For quantitative analysis, the six measures listed in Fig. 3
calculated from the LDL predictions on the artificial dataset
are given in Table 2. On each measure, the algorithms are
ranked in decreasing order of their performance, and the best
performance is highlighted by boldface. The ranks are given
in the parentheses right after the measure values, and the
average ranks are given in the second last row of the table.
The running time (train / test) on an Intel Core i7 3.4GHz
workstation is given in the last row of the table. Note that
since the training set and the test set of the artificial dataset
are fixed (see Table 1) in order to visualize in Fig. 4 the LDL
predictions on exactly the same test set, each LDL algorithm
only runs once on the test set. So there is no record of standard
deviation as in the ten-fold cross validation on the real-world
datasets shown in Table 4 to Table 9.

The first observation from Table 2 is that the performances
of the best three algorithms (SA-IIS, SA-BFGS and PT-
Bayes) evaluated by different measures are quite different.
This proves the effectiveness of the selection process described
in Section 5.1 to obtain a set of representative and diverse
measures. Each of the six measures reflects a certain aspect of
the compared LDL algorithms. For example, PT-Bayes appears
very good on the measures ‘Clark’ and ‘Canberra’ because it
has been evidenced that such measures are sensitive to small
changes near zero [21], and the Gaussian assumption in PT-
Bayes makes it less apt to produce near-zero outputs than SA-
IIS and SA-BFGS.

The second observation from Table 2 is that the quantitative
comparison results are consistent with the visual comparison
results in Fig. 4. Based on the average ranks, the performances
of the six LDL algorithms on the artificial dataset can be
ranked as SA-BFGS = SA-IIS ≻ PT-Bayes ≻ AA-kNN ≻
AA-BP ≻ PT-SVM. The specialized algorithms (SA-IIS and
SA-BFGS) achieve the best performance since they directly
aim to minimize the distance between the predicted and real
label distributions (in fact, their optimization target is one of
the measures in Fig. 3, i.e., the Kullback-Leibler divergence).
PT-Bayes also achieves relatively good performance since the
Gaussian assumption on each class could match the simple
case of the toy data well. AA-kNN can also get reasonable
result since it is extended from the stable training-free algo-
rithm kNN. Finally, the poor performance of PT-SVM and
AA-BP is possibly due to overfitting since they have more

parameters to learn and the training set (500 examples) is
relatively small compared to the test set (40,401 examples)
and they are sampled from very different distributions.

As for the running time, the training time of AA-BP is the
longest due to slow convergence of the neural network. AA-
kNN does not need to train but costs the most test time. SA-
BFGS and SA-IIS cost the same minimum test time because
they share the same parametric model. But consistent to the
remarks in [30], the training of SA-BFGS is much faster than
that of SA-IIS. In general, SA-BFGS and PT-Bayes are the
most efficient LDL algorithms in Table 2.

5.4.2 Real-world Datasets
To give a direct idea of the LDL predictions on the real-
world datasets, some typical examples of the predicted label
distributions by the six LDL algorithms are shown in Table 3.
The first row shows the real label distributions of four typical
test instances with 18, 7, 4 and 2 labels, which come from the
2nd, 5th, 9th, and 11th datasets in Table 1, respectively. Each
of the following rows shows the corresponding predictions of
one LDL algorithm. The evaluation measures shown in Fig. 3
are given under each predicted label distribution in two sets.
The upper set includes the four distances {Chebyshev, Clark,
Canberra, Kullback-Leibler}, and the lower set includes the
two similarities {cosine, intersection}. The best performance
for each case is highlighted by boldface. As can be seen
that the specialized algorithms (SA-IIS and SA-BFGS) can
generally give better label distribution predictions compared
with other algorithms, in the sense of either visual similarity
or quantitative evaluation measures. It is worth mentioning that
the order of labels will affect the shape of the label distribution,
but not the correlations among the labels. As long as the label
orders are the same in the training and test sets, it will not
affect, at least for the algorithms proposed in this paper, the
effectiveness of LDL.

Table 4 to Table 9 tabulate the results of the six LDL
algorithms on the 15 real-world datasets (the 2nd to 16th
datasets in Table 1) evaluated by the six measures Chebyshev
distance, Clark distance, Canberra metric, Kullback-Leibler
divergence, cosine coefficient, and intersection similarity, re-
spectively. Since the LDL algorithms are tested via ten-fold
cross validation, the performance is represented by “mean ±
standard deviation” of the corresponding measure calculated
during the ten-fold cross validation. In each table, the best
performance on each dataset is highlighted by boldface. The
LDL algorithms are ranked in decreasing order of their perfor-
mance on each dataset. The ranks are given in the parentheses
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TABLE 3
Typical Examples of the Real and Predicted Label Distributions

Real

18 Labels 7 Labels 4 Labels 2 Labels

PT-Bayes

{0.048, 0.552, 1.885, 0.036}
{0.960 0.891}

{0.042, 0.230, 0.492, 0.016}
{0.984, 0.929}

{0.170, 0.516, 0.911, 0.128}
{0.907, 0.786}

{0.192, 0.310, 0.421, 0.086}
{0.939, 0.808}

PT-SVM

{0.006, 0.105, 0.368, 0.0012}
{0.9988, 0.980}

{0.040, 0.190, 0.359, 0.011}
{0.990, 0.949}

{0.041, 0.108, 0.188, 0.006}
{0.995 0.954}

{0.018, 0.025, 0.036, 0.001}
{0.999, 0.982}

AA-kNN

{0.005, 0.091, 0.282, 0.0009}
{0.9991, 0.9844}

{0.028, 0.151, 0.381, 0.007}
{0.993, 0.945}

{0.030, 0.080, 0.124, 0.003}
{0.997, 0.970}

{0.058, 0.085, 0.118, 0.007}
{0.994, 0.942}

AA-BP

{0.008, 0.156, 0.583, 0.003}
{0.997, 0.968}

{0.014, 0.076, 0.172, 0.002}
{0.998, 0.975}

{0.036, 0.085, 0.145 0.004}
{0.996, 0.964}

{0.069, 0.102, 0.143, 0.010}
{0.991, 0.931}

SA-IIS

{0.004, 0.083, 0.283, 0.00077}
{0.99923, 0.9843}

{0.013, 0.072, 0.160, 0.002}
{0.998, 0.977}

{0.016, 0.042 0.067 0.0008}
{0.9992, 0.984}

{0.012, 0.018, 0.025, 0.0003}
{0.9997, 0.988}

SA-BFGS

{0.006, 0.086, 0.260, 0.00081}
{0.99919, 0.986}

{0.012, 0.056, 0.120, 0.001}
{0.999, 0.983}

{0.014, 0.034, 0.055, 0.0006}
{0.9994, 0.987}

{0.007, 0.010, 0.014, 0.0001}
{0.9999, 0.993}

right after the performance values. The average rank of each
algorithm over all the datasets is also calculated and given in
the last row of each table.

As can be seen from Table 4 to Table 9, for each par-
ticular dataset, the rankings of the six LDL algorithms are
often different on different measures. This corresponds to the
design of a diverse set of evaluation measures described in
Section 5.1. Thus, when comparing two LDL algorithms on
a particular dataset, all the six measures should be simultane-
ously considered. When looking at the average ranks over all
the 15 real-world datasets, the rankings of the algorithms on
five measures (Clark, Canberra, Kullback-Leibler, cosine, and
intersection) are very consistent, i.e., SA-BFGS ≻ SA-IIS ≻
AA-kNN ≻ PT-SVM ≻ AA-BP≻ PT-Bayes. The specialized
algorithms (SA-BFGS and SA-IIS) generally perform better
than those transformed from traditional learning algorithms
(PT-Bayes, PT-SVM, AA-kNN, and AA-BP) because they
directly aim to minimize the distance between the predicted

and real label distributions. Moreover, SA-BFGS improves the
performance of SA-IIS and achieves the best performance in
most cases by using more effective optimization process. AA-
BP and PT-Bayes perform worse than their siblings (AA-kNN
and PT-SVM, respectively) because the many parameters in
the BP neural network makes AA-BP vulnerable to overfit-
ting, and the Gaussian distributions assumption for PT-Bayes
might be inappropriate for the complex real-world datasets.
Finally, AA-kNN performs better than PT-SVM because AA-
kNN keeps the label distribution and thus keeps the overall
labelling structure for each instance, while PT-SVM breaks
down the original label distributions by weighted resampling.
The average ranking on the Chebyshev distance, however, is
slightly different in that the average ranks of PT-SVM and
AA-BP are the same. Note that the Chebyshev distance only
cares about the worst match over the whole label distribution
(see Fig. 3). The transformation from an LDL training set
into an SLL training set for the ‘PT’ algorithms (PT-SVM
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TABLE 4
Experimental Results (mean±std(rank)) on the Real-world Datasets Measured by Chebyshev Distance ↓

Dataset PT-Bayes PT-SVM AA-kNN AA-BP SA-IIS SA-BFGS

Yeast-alpha 0.174±0.011(6) 0.017±0.002(4) 0.0147±0.001(2) 0.036±0.003(5) 0.0148±0.001(3) 0.013±0.001(1)
Yeast-cdc 0.172±0.016(6) 0.020±0.003(4) 0.0177±0.001(2) 0.037±0.002(5) 0.0178±0.001(3) 0.016±0.001(1)
Yeast-elu 0.166±0.014(6) 0.019±0.001(4) 0.0177±0.0005(2) 0.036±0.002(5) 0.0178±0.001(3) 0.016±0.001(1)
Yeast-diau 0.167±0.007(6) 0.046±0.004(4) 0.0392±0.001(3) 0.048±0.003(5) 0.0386±0.001(2) 0.037±0.002(1)
Yeast-heat 0.176±0.018(6) 0.046±0.001(4) 0.045±0.001(3) 0.052±0.003(5) 0.043±0.001(2) 0.042±0.001(1)
Yeast-spo 0.178±0.009(6) 0.065±0.006(4) 0.064±0.002(3) 0.067±0.005(5) 0.060±0.004(2) 0.058±0.004(1)
Yeast-cold 0.177±0.011(6) 0.0574±0.003(5) 0.055±0.002(3) 0.0572±0.003(4) 0.053±0.002(2) 0.051±0.002(1)
Yeast-dtt 0.177±0.010(6) 0.040±0.001(4) 0.0392±0.001(3) 0.043±0.002(5) 0.0388±0.001(2) 0.036±0.001(1)
Yeast-spo5 0.211±0.011(6) 0.0929±0.006(3) 0.096±0.005(5) 0.094±0.006(4) 0.0928±0.006(2) 0.091±0.005(1)
Yeast-spoem 0.190±0.017(6) 0.091±0.005(4) 0.093±0.004(5) 0.0892±0.005(3) 0.0891±0.005(2) 0.087±0.005(1)
Human Gene 0.195±0.085(6) 0.054±0.004(3) 0.065±0.005(5) 0.059±0.004(4) 0.0534±0.004(2) 0.0533±0.004(1)
Natural Scene 0.407±0.027(5) 0.414±0.036(6) 0.374±0.013(4) 0.335±0.016(2) 0.341±0.017(3) 0.322±0.017(1)
s-JAFFE 0.121±0.016(4) 0.127±0.017(5) 0.114±0.017(2) 0.130±0.017(6) 0.117±0.015(3) 0.107±0.015(1)
s-BU 3DFE 0.116±0.004(5) 0.119±0.006(6) 0.103±0.003(2) 0.113±0.005(4) 0.111±0.004(3) 0.088±0.003(1)
Movie 0.199±0.009(5) 0.213±0.039(6) 0.154±0.005(3) 0.157±0.013(4) 0.150±0.008(2) 0.136±0.010(1)

Avg. Rank 5.67 4.40 3.13 4.40 2.40 1.00

TABLE 5
Experimental Results (mean±std(rank)) on the Real-world Datasets Measured by Clark Distance ↓

Dataset PT-Bayes PT-SVM AA-kNN AA-BP SA-IIS SA-BFGS

Yeast-alpha 1.729±0.076(6) 0.277±0.031(4) 0.232±0.012(2) 0.711±0.054(5) 0.233±0.012(3) 0.210±0.014(1)
Yeast-cdc 1.491±0.062(6) 0.260±0.029(4) 0.237±0.014(3) 0.568±0.037(5) 0.235±0.012(2) 0.216±0.013(1)
Yeast-elu 1.379±0.082(6) 0.234±0.015(4) 0.218±0.005(3) 0.505±0.034(5) 0.216±0.007(2) 0.199±0.005(1)
Yeast-diau 0.771±0.032(6) 0.246±0.014(4) 0.212±0.004(3) 0.263±0.017(5) 0.209±0.007(2) 0.200±0.009(1)
Yeast-heat 0.670±0.047(6) 0.198±0.007(4) 0.195±0.005(3) 0.228±0.015(5) 0.188±0.003(2) 0.182±0.003(1)
Yeast-spo 0.695±0.029(6) 0.273±0.024(4) 0.271±0.011(3) 0.292±0.022(5) 0.255±0.017(2) 0.250±0.017(1)
Yeast-cold 0.484±0.032(6) 0.155±0.008(4) 0.150±0.007(3) 0.155±0.009(5) 0.144±0.005(2) 0.139±0.005(1)
Yeast-dtt 0.480±0.029(6) 0.108±0.005(4) 0.106±0.004(3) 0.118±0.007(5) 0.105±0.004(2) 0.098±0.004(1)
Yeast-spo5 0.438±0.027(6) 0.187±0.013(3) 0.193±0.011(5) 0.189±0.012(4) 0.187±0.013(2) 0.184±0.012(1)
Yeast-spoem 0.315±0.029(6) 0.134±0.008(4) 0.137±0.006(5) 0.1323±0.008(3) 0.1321±0.007(2) 0.129±0.008(1)
Human Gene 4.674±0.415(6) 2.139±0.087(3) 2.388±0.109(4) 3.344±0.250(5) 2.123±0.088(2) 2.111±0.086(1)
Natural Scene 2.523±0.027(5) 2.557±0.045(6) 1.418±0.057(1) 2.458±0.023(3) 2.461±0.025(4) 2.411±0.023(2)
s-JAFFE 0.430±0.035(4) 0.457±0.039(5) 0.410±0.050(2) 0.510±0.054(6) 0.419±0.034(3) 0.399±0.044(1)
s-BU 3DFE 0.467±0.009(4) 0.494±0.022(6) 0.396±0.006(2) 0.477±0.030(5) 0.416±0.009(3) 0.367±0.009(1)
Movie 0.799±0.035(6) 0.797±0.108(5) 0.652±0.023(3) 0.675±0.048(4) 0.591±0.028(2) 0.589±0.038(1)

Avg. Rank 5.67 4.27 3.00 4.67 2.33 1.07

TABLE 6
Experimental Results (mean±std(rank)) on the Real-world Datasets Measured by Canberra Metric ↓

Dataset PT-Bayes PT-SVM AA-kNN AA-BP SA-IIS SA-BFGS

Yeast-alpha 6.382±0.305(6) 0.921±0.107(4) 0.758±0.040(2) 2.352±0.173(5) 0.763±0.042(3) 0.684±0.046(1)
Yeast-cdc 4.987±0.222(6) 0.785±0.084(4) 0.717±0.041(3) 1.718±0.110(5) 0.709±0.036(2) 0.649±0.041(1)
Yeast-elu 4.461±0.282(6) 0.691±0.047(4) 0.644±0.016(3) 1.488±0.098(5) 0.639±0.019(2) 0.583±0.016(1)
Yeast-diau 1.744±0.071(6) 0.528±0.031(4) 0.455±0.011(3) 0.568±0.033(5) 0.449±0.017(2) 0.431±0.020(1)
Yeast-heat 1.415±0.102(6) 0.396±0.016(4) 0.392±0.010(3) 0.459±0.031(5) 0.377±0.005(2) 0.364±0.006(1)
Yeast-spo 1.473±0.069(6) 0.565±0.049(4) 0.559±0.024(3) 0.599±0.043(5) 0.523±0.034(2) 0.513±0.035(1)
Yeast-cold 0.845±0.059(6) 0.267±0.014(4) 0.260±0.013(3) 0.268±0.015(5) 0.249±0.009(2) 0.240±0.010(1)
Yeast-dtt 0.846±0.051(6) 0.186±0.008(4) 0.182±0.007(3) 0.204±0.012(5) 0.181±0.005(2) 0.169±0.005(1)
Yeast-spo5 0.681±0.038(6) 0.287±0.019(3) 0.297±0.016(5) 0.291±0.018(4) 0.287±0.019(2) 0.283±0.018(1)
Yeast-spoem 0.424±0.038(6) 0.187±0.011(4) 0.191±0.008(5) 0.1842±0.011(3) 0.1840±0.010(2) 0.179±0.011(1)
Human Gene 34.238±3.634(6) 14.631±0.647(3) 16.283±0.818(4) 22.788±1.841(5) 14.541±0.653(2) 14.453±0.645(1)
Natural Scene 7.149±0.109(5) 7.208±0.205(6) 3.044±0.137(1) 6.767±0.095(4) 6.765±0.104(3) 6.620±0.097(2)
s-JAFFE 0.904±0.086(4) 0.935±0.074(5) 0.843±0.113(2) 1.046±0.124(6) 0.875±0.086(3) 0.820±0.103(1)
s-BU 3DFE 1.116±0.020(5) 1.147±0.064(6) 0.841±0.014(2) 1.051±0.064(4) 0.934±0.022(3) 0.794±0.019(1)
Movie 1.547±0.075(6) 1.537±0.216(5) 1.276±0.046(4) 1.269±0.089(3) 1.137±0.057(1) 1.138±0.079(2)

Avg. Rank 5.73 4.27 3.07 4.60 2.20 1.13

and PT-Bayes) breaks down the original label distributions by
weighted resampling. The unbalanced and unstable resampling
process could possibly make the worst case worse (e.g., the
label with small description degree is not sampled at all). This
explains why the ‘PT’ algorithms perform slightly worse on
the Chebyshev distance.

One apparent difference between the results on the real-
world datasets and those on the artificial dataset is that PT-
Bayes performs much worse on the real-world datasets than on
the artificial dataset. This might be because that the Gaussian
assumption for each label may match the relatively simple

artificial toy dataset better than those complex real-world
datasets. Another noticeable point is that the values of the
Clark distance (Table 5) and the Canberra metric (Table 6) on
the Human Gene and Natural Scene datasets are significantly
larger than those on other datasets, no matter which LDL algo-
rithm is applied. The reason is of two-fold. On the one hand,
the two datasets might be inherently more difficult to learn
than other datasets, which can be evidenced by the relatively
poor performances on them evaluated by other measures. On
the other hand, such gap on the Clark distance and Canberra
metric is particularly significant due to the definition of these
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TABLE 7
Experimental Results (mean±std(rank)) on the Real-world Datasets Measured by Kullback-Leibler Divergence ↓

Dataset PT-Bayes PT-SVM AA-kNN AA-BP SA-IIS SA-BFGS

Yeast-alpha 0.719±0.080(6) 0.009±0.002(4) 0.0066±0.001(2) 0.081±0.011(5) 0.0067±0.001(3) 0.006±0.001(1)
Yeast-cdc 0.603±0.073(6) 0.010±0.002(4) 0.0083±0.001(3) 0.060±0.007(5) 0.0082±0.001(2) 0.007±0.001(1)
Yeast-elu 0.556±0.071(6) 0.008±0.001(4) 0.0074±0.0004(3) 0.051±0.009(5) 0.0073±0.0005(2) 0.006±0.0004(1)
Yeast-diau 0.306±0.036(6) 0.019±0.002(4) 0.015±0.001(3) 0.024±0.004(5) 0.014±0.001(2) 0.013±0.001(1)
Yeast-heat 0.255±0.040(6) 0.0148±0.001(4) 0.0145±0.001(3) 0.021±0.004(5) 0.0133±0.0004(2) 0.0126±0.0005(1)
Yeast-spo 0.281±0.031(6) 0.0304±0.005(4) 0.0302±0.002(3) 0.034±0.006(5) 0.0254±0.003(2) 0.0246±0.003(1)
Yeast-cold 0.208±0.031(6) 0.0147±0.001(4) 0.014±0.001(3) 0.0149±0.002(5) 0.013±0.001(2) 0.012±0.001(1)
Yeast-dtt 0.206±0.029(6) 0.0073±0.001(4) 0.0072±0.001(3) 0.009±0.001(5) 0.0070±0.001(2) 0.006±0.001(1)
Yeast-spo5 0.214±0.025(6) 0.03010±0.003(3) 0.033±0.003(5) 0.031±0.003(4) 0.03007±0.003(2) 0.029±0.003(1)
Yeast-spoem 0.190±0.038(6) 0.0280±0.004(4) 0.0285±0.003(5) 0.026±0.003(3) 0.025±0.003(2) 0.024±0.003(1)
Human Gene 1.887±0.766(6) 0.240±0.019(3) 0.301±0.026(4) 0.500±0.068(5) 0.238±0.019(2) 0.236±0.019(1)
Natural Scene 3.065±0.487(6) 1.447±0.243(4) 2.767±0.137(5) 0.875±0.029(3) 0.870±0.026(2) 0.854±0.062(1)
s-JAFFE 0.074±0.014(4) 0.086±0.016(5) 0.071±0.023(3) 0.113±0.030(6) 0.070±0.012(2) 0.064±0.016(1)
s-BU 3DFE 0.079±0.004(4) 0.089±0.007(6) 0.065±0.002(2) 0.085±0.009(5) 0.068±0.004(3) 0.049±0.002(1)
Movie 0.953±0.352(6) 0.268±0.079(5) 0.201±0.011(4) 0.179±0.03(3) 0.137±0.013(1) 0.140±0.020(2)

Avg. Rank 5.73 4.13 3.40 4.60 2.07 1.07

TABLE 8
Experimental Results (mean±std(rank)) on the Real-world Datasets Measured by Cosine Coefficient ↑

Dataset PT-Bayes PT-SVM AA-kNN AA-BP SA-IIS SA-BFGS

Yeast-alpha 0.743±0.015(6) 0.991±0.002(4) 0.9935±0.001(2) 0.949±0.006(5) 0.9934±0.001(3) 0.995±0.001(1)
Yeast-cdc 0.766±0.017(6) 0.991±0.002(4) 0.9920±0.001(3) 0.960±0.004(5) 0.9921±0.001(2) 0.993±0.001(1)
Yeast-elu 0.780±0.018(6) 0.992±0.001(4) 0.99286±0.0003(3) 0.965±0.004(5) 0.99290±0.0005(2) 0.994±0.0004(1)
Yeast-diau 0.856±0.007(6) 0.982±0.002(4) 0.986±0.001(3) 0.979±0.002(5) 0.987±0.001(2) 0.988±0.001(1)
Yeast-heat 0.866±0.015(6) 0.98607±0.001(4) 0.98612±0.001(3) 0.981±0.003(5) 0.987±0.0004(2) 0.988±0.0005(1)
Yeast-spo 0.859±0.008(6) 0.971±0.005(4) 0.972±0.002(3) 0.969±0.004(5) 0.976±0.003(2) 0.977±0.003(1)
Yeast-cold 0.898±0.008(6) 0.9860±0.001(4) 0.987±0.001(3) 0.9859±0.002(5) 0.988±0.001(2) 0.989±0.001(1)
Yeast-dtt 0.897±0.008(6) 0.9930±0.0005(4) 0.9931±0.0005(3) 0.991±0.001(5) 0.9933±0.0004(2) 0.994±0.0004(1)
Yeast-spo5 0.893±0.008(6) 0.9732±0.003(3) 0.970±0.003(5) 0.9728±0.003(4) 0.9733±0.003(2) 0.974±0.003(1)
Yeast-spoem 0.914±0.011(6) 0.976±0.003(4) 0.975±0.002(5) 0.9777±0.002(3) 0.9780±0.002(2) 0.979±0.002(1)
Human Gene 0.456±0.089(6) 0.832±0.011(3) 0.766±0.020(4) 0.726±0.026(5) 0.833±0.011(2) 0.834±0.011(1)
Natural Scene 0.559±0.014(5) 0.490±0.082(6) 0.624±0.016(4) 0.697±0.011(3) 0.698±0.008(2) 0.710±0.017(1)
s-JAFFE 0.930±0.013(4) 0.920±0.014(5) 0.9337±0.018(3) 0.908±0.019(6) 0.9340±0.012(2) 0.940±0.015(1)
s-BU 3DFE 0.924±0.004(5) 0.914±0.006(6) 0.938±0.002(2) 0.926±0.006(4) 0.935±0.004(3) 0.954±0.002(1)
Movie 0.850±0.008(5) 0.806±0.061(6) 0.880±0.006(4) 0.895±0.014(3) 0.905±0.008(2) 0.912±0.010(1)

Avg. Rank 5.67 4.33 3.33 4.53 2.13 1.00

TABLE 9
Experimental Results (mean±std(rank)) on the Real-world Datasets Measured by Intersection Similarity ↑

Dataset PT-Bayes PT-SVM AA-kNN AA-BP SA-IIS SA-BFGS

Yeast-alpha 0.660±0.016(6) 0.949±0.006(4) 0.9581±0.002(2) 0.877±0.008(5) 0.9577±0.002(3) 0.962±0.003(1)
Yeast-cdc 0.681±0.015(6) 0.948±0.006(4) 0.9528±0.003(3) 0.891±0.007(5) 0.9531±0.002(2) 0.957±0.003(1)
Yeast-elu 0.695±0.019(6) 0.951±0.003(4) 0.9546±0.001(3) 0.899±0.006(5) 0.9547±0.001(2) 0.959±0.001(1)
Yeast-diau 0.764±0.008(6) 0.926±0.004(4) 0.937±0.002(3) 0.922±0.004(5) 0.938±0.002(2) 0.940±0.003(1)
Yeast-heat 0.773±0.018(6) 0.935±0.003(4) 0.936±0.002(3) 0.925±0.005(5) 0.938±0.001(2) 0.940±0.001(1)
Yeast-spo 0.765±0.010(6) 0.906±0.008(4) 0.908±0.004(3) 0.902±0.007(5) 0.914±0.005(2) 0.915±0.006(1)
Yeast-cold 0.802±0.012(6) 0.9339±0.004(5) 0.936±0.003(3) 0.9340±0.004(4) 0.938±0.002(2) 0.941±0.002(1)
Yeast-dtt 0.801±0.011(6) 0.954±0.002(4) 0.9549±0.002(3) 0.950±0.003(5) 0.9552±0.001(2) 0.958±0.001(1)
Yeast-spo5 0.789±0.011(6) 0.9071±0.006(3) 0.904±0.005(5) 0.906±0.006(4) 0.9072±0.006(2) 0.909±0.005(1)
Yeast-spoem 0.810±0.017(6) 0.909±0.005(4) 0.907±0.004(5) 0.9108±0.005(3) 0.9109±0.005(2) 0.913±0.005(1)
Human Gene 0.470±0.062(6) 0.781±0.010(3) 0.742±0.014(4) 0.671±0.025(5) 0.783±0.010(2) 0.784±0.010(1)
Natural Scene 0.350±0.014(6) 0.364±0.055(5) 0.544±0.018(2) 0.499±0.012(3) 0.487±0.012(4) 0.548±0.017(1)
s-JAFFE 0.846±0.016(4) 0.839±0.015(5) 0.855±0.021(2) 0.824±0.022(6) 0.851±0.016(3) 0.860±0.019(1)
s-BU 3DFE 0.834±0.003(5) 0.827±0.009(6) 0.872±0.002(2) 0.847±0.008(4) 0.862±0.004(3) 0.884±0.003(1)
Movie 0.725±0.011(5) 0.711±0.052(6) 0.780±0.007(4) 0.788±0.015(3) 0.800±0.010(2) 0.809±0.013(1)

Avg. Rank 5.73 4.33 3.13 4.47 2.33 1.00

two measures. As mentioned before, the Clark distance and
Canberra metric are sensitive to small changes near zero [21].
It can be found from Fig. 3 that when the description degree of
the j-th label in the real label distribution, dj , is close to zero,
the j-th additive term in the formula of ‘Clark’ or ‘Canberra’
will be close to its maximum value 1. If there are many near-
zero description degrees in the real label distribution, then
the value of ‘Clark’ or ‘Canberra’ tends to be large. For the
Human Gene dataset, one gene is usually related to only a
few diseases. Similarly, for the Natural Scene dataset, one
image is usually relevant to only a few scene classes. Thus, the

real label distributions in both of these two datasets contain
many near-zero description degrees, which makes the values
of ‘Clark’ and ‘Canberra’ relatively large.

6 SUMMARY AND DISCUSSIONS

This paper proposes label distribution learning, which is a
more general learning framework than single-label learning
and multi-label learning. It can deal with not only multiple
labels of one instance, but also the different importance of
these labels. This paper proposes six working LDL algorithms
in three ways: problem transformation, algorithm adaptation,
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and specialized algorithm design. In order to compare these
algorithms, six evaluation measures are used and the first batch
of label distribution datasets are prepared and made publicly
available. Experimental results on one artificial and fifteen
real-world datasets show clear advantages of the specialized
algorithms. This illustrates that the characteristics of LDL
require special design to achieve good performance.

LDL is motivated by the real-world data with natural
measures of description degrees (e.g., gene expression level).
However, as a general learning framework, LDL might also
be used to solve other kinds of problems. Generally speaking,
there are at least three scenarios where LDL could be helpful:

1) There is a natural measure of description degree that
associates the labels with the instances. This is the most
direct application of LDL, as described in this paper.

2) When there are multiple labeling sources (e.g., multiple
experts) for one instance, known as learning with auxil-
iary information [31] or learning from multiple experts
[43], the annotations from different sources might be
significantly inconsistent. In such case, it is usually
better for the learning algorithm to integrate the labels
from all the sources rather than to decide one or more
‘winning label(s)’ via majority voting [36]. One good
way to incorporate all the labeling sources is to generate
a label distribution for the instance: the label favored by
more sources is given a higher description degree, while
that chosen by fewer sources is assigned with a lower
description degree. In this way, the multi-labeling-source
problem is transformed into a LDL problem.

3) Some labels are highly correlated with other labels.
Utilizing such correlation is one of the most important
approaches to improve the learning process [24], [45],
[40]. LDL provides a new way toward this purpose. The
key step is to transform an SLL or MLL problem into
an LDL problem. This can be achieved by generating
a label distribution for each instance according to the
correlation among the labels.

Each of the three scenarios actually covers a vast area of
applications. A lot of interesting work, both at the theoretical
level and at the application level, may be conducted in the fu-
ture. In addition, the relationship between LDL and traditional
machine learning paradigms, e.g., SLL and MLL, is another
promising research direction. For example, we have applied
LDL to solve the MLL problems by generating the label
distributions via an iterative label propagation process among
the training samples [27]. Comprehensive experiments show
that the LDL-augmented MLL algorithm could significantly
improve the state-of-the-art MLL performance.

APPENDIX
DERIVATION OF EQ. (8)
The change of T (θ) in Eq. (7) between adjacent steps is

T (θ +∆)− T (θ) =
∑
i,j

d
yj
xi

∑
k

δyj ,kgk(xi)−

∑
i

ln
∑
j

p(yj |xi;θ) exp

(∑
k

δyj ,kgk(xi)

)
, (22)

where δyj ,k is the increment for θyj ,k. Applying the inequality
− lnx ≥ 1− x yields

T (θ +∆)− T (θ) ≥
∑
i,j

d
yj
xi

∑
k

δyj ,kgk(xi) + n−

∑
i,j

p(yj |xi;θ) exp

(∑
k

δyj ,kgk(xi)

)
. (23)

Differentiating the right side of Eq. (23) w.r.t. δyj ,k yields
the coupled equations of δy,k which are hard to be solved.
To decouple the interaction among δy,k, Jensen’s inequality
is applied here, i.e., for a probability mass function p(x) and
another arbitrary function f(x),

exp

(∑
x

p(x)f(x)

)
≤
∑
x

p(x) exp (f(x)) . (24)

The last term of Eq. (23) can be rewritten as∑
i,j

p(yj |xi;θ) exp

(∑
k

δyj ,ks(gk(xi))g
#(xi)

|gk(xi)|
g#(xi)

)
, (25)

where g#(xi) =
∑

k |gk(xi)| and s(gk(xi)) is the sign of
gk(xi). Since |gk(xi)|/g#(xi) can be viewed as a probability
mass function, Jensen’s inequality can be applied to Eq. (23)
to yield

T (θ +∆)− T (θ) ≥
∑
i,j

d
yj
xi

∑
k

δyj ,kgk(xi) + n−

∑
i,j

p(yj |xi;θ)
∑
k

|gk(xi)|
g#(xi)

exp(δyj ,ks(gk(xi))g
#(xi)). (26)

Denote the right side of Eq. (26) as A(∆|θ), which is a lower
bound to T (θ+∆)−T (θ). Setting the derivative of A(∆|θ)
w.r.t. δyj ,k to zero gives Eq. (8).
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binary patterns: Application to face recognition,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 28, no. 12, pp. 2037–2041, 2006.

[2] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid, “Label-embedding
for attribute-based classification,” in Proc. IEEE Conf. Computer Vision
and Pattern Recognition, Portland, OR, 2013, pp. 819–826.

[3] N. S. Altman, “An introduction to kernel and nearest-neighbor non-
parametric regression,” The American Statistician, vol. 46, no. 3, pp.
175–185, 1992.

[4] G. BakIr, T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, and
S. Vishwanathan, Eds., Predicting Structured Data. Cambridge, MA:
The MIT Press, 2007.

[5] S. Bengio, J. Weston, and D. Grangier, “Label embedding trees for
large multi-class tasks,” in Advances in Neural Information Processing
Systems 23, Vancouver, Canada, 2010, pp. 163–171.

[6] A. L. Berger, S. D. Pietra, and V. J. D. Pietra, “A maximum entropy
approach to natural language processing,” Computational Linguistics,
vol. 22, no. 1, pp. 39–71, 1996.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

[7] H. Borchani, G. Varando, C. Bielza, and P. Larrañaga, “A survey
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