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ABSTRACT
The main difficulty in face image modeling is to decompose those
semantic factors contributing to the formation of the face images,
such as identity, illumination and pose. One promising way is to
organize the face images in a higher-order tensor with each mode
corresponding to one contributory factor. Then, a technique called
Multilinear Subspace Analysis (MSA) is applied to decompose the
tensor into the mode-n product of several mode matrices, each of
which represents one semantic factor. In practice, however, it is
usually difficult to obtain such a complete training tensor since it
requires a large amount of face images with all possible combina-
tions of the states of the contributory factors. To solve the problem,
this paper proposes a method named M2SA, which can work on
the training tensor with massive missing values. Thus M2SA can
be used to model face images even when there are only a small
number of face images with limited variations (which will cause
missing values in the training tensor). Experiments on face recog-
nition show that M2SA can work reasonably well with up to 70%
missing values in the training tensor.

Categories and Subject Descriptors
I.2.10 [Computing Methodologies]: Artificial Intelligence—Vi-
sion and Scene Understanding

General Terms
Algorithms

1. INTRODUCTION
Face images are highly variable source of multimedia data. Each

face image results from the interaction of multiple contributory fac-
tors. For instance, one particular face image might be obtained by
imaging a certain person (factor 1: identity), under certain lighting
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conditions (factor 2: illumination), from a certain view angle (fac-
tor 3: pose). The difficulties of face image modeling exist in the
complexity of the interaction of the contributory factors. Among
these factors, usually only one is of interest in a particular prob-
lem, and all the others are regarded as interferences. For example,
in face recognition, the only goal is the recognition of identity, re-
gardless of other possible variations. The key issue is, how to dis-
tinguish the target factor from the interferential factors while they
are complicatedly interlaced in the face image?

Many face modeling methods [2] [3] [4] [8] aim to find certain
statistical properties of the face images that correspond to the target
factor. Once such properties are found, modeling them is equivalent
to modeling the target factor. As a typical example, the PCA-based
Eigenface method [8] models the major variation in the training
face images, which is assumed to be caused by the difference of
identities. Unfortunately, the variation caused by the changes in il-
lumination, pose, or other interferential factors could be larger than
that caused by identity changes. The problem is, PCA models the
input data according to only one factor, i.e., the variance of the data.
This creates the gap between the statistical factor (variance) and the
semantic factors (identity, illumination, pose, etc.). Similar prob-
lems happen in the LDA-based Fisherface [2], the ISS [3] [4] based
on PCA+MCA, and many other face modeling methods. Generally
speaking, a ‘good’ model for multi-factor problems should satisfy
the following requirements:

• The model consists of several components, each explicitly
representing one semantic factor contributing to the problem;

• In each component, there is an unique feature vector for each
state of the corresponding semantic factor. Except for the
related factor, this feature vector will not change with any
other contributory factors;

• There is a way for the model to decompose a single data
source into its inner components with semantic meanings.

Toward this end, the training face images can be organized in a
higher-order tensor rather than matrices. Each mode (also referred
to as dimension or way in the literatures of multiway data analy-
sis [1]) of the tensor explicitly corresponds to one of the semantic
factors that generate the images. Multilinear Subspace Analysis
(MSA) [9] [10] was recently proposed to decompose such a tensor
of image ensemble. Through the application of N-mode SVD [9] to
the tensor, MSA separates and parsimoniously represents each of



the semantic factors. Then each image can be represented by a set
of coefficient vectors, one for each semantic factor. Given a state
of one semantic factor, there is an unique coefficient vector asso-
ciated to it. For a particular problem, only the coefficient vector
accounting for the target factor is used (to find out the state of the
target factor for the input image). Thus the influence of interferen-
tial factors can be filtered out. Clearly, MSA fulfills the checklist
of a ‘good’ face image model mentioned above.

Despite the beauty in theory, there are practical problems in MSA.
The most prominent one might be the possible missing values in the
training tensor. Back to the history of linear PCA, the missing value
problem has long been recognized as an important practical issue
and intensively investigated [5] [7] [11]. Although MSA is a mul-
tilinear extension of PCA, to the best of our knowledge, not much
work has been done so far to deal with missing values in the train-
ing tensor. In fact, the missing value problem in MSA is much more
common than that in PCA. In addition to the same situation PCA
might encounter when some of the values in the training samples
are missing due to data acquisition, transmission or storage prob-
lems, the following reason makes the missing values more likely
to appear in MSA. Instead of a set of samples, the training data
of MSA is a single well organized tensor. To fill all the positions
in the tensor, a large amount of samples with all combinations of
the states of the contributory factors are needed. Unfortunately, in
many real applications, it is very hard (or impossible) to obtain such
a large ‘complete’ image ensemble. In some other applications,
even when the collection of samples with all kinds of variations is
possible, clients wish to reduce cost by using as few as possible
training samples without noticeable performance deterioration. In
such cases, the available training samples might only account for
a small portion of the quantity required to compose a ‘complete’
training tensor. Thus the algorithm must be able to work on the
tensor with massive missing values even when no missing value
appears in individual training samples. The missing value problem
is therefore crucial for the practicability of MSA.

To solve the problem, this paper proposes a new method called
M2SA (Multilinear Subspace Analysis with Missing values) to model
face images. Instead of minimizing the reconstruction error of the
whole training tensor, M2SA finds the approximation that can best
reconstruct the available values in the tensor. The missing values
may appear anywhere in the tensor, and they may even account for
the majority of the tensor.

The rest of the paper is organized as follows. Section 2 intro-
duces tensor fundamentals. Section 3 proposes the M2SA algo-
rithm to decompose the tensors with missing values. Experiments
on face recognition using M2SA are reported in Section 4. Finally,
conclusions are drawn in Section 5

2. TENSOR FUNDAMENTALS
Tensors are higher-order generalization of scalar (zero-order ten-

sor), vector (first-order tensor), and matrix (second-order tensor).
In this paper, lowercase italic letters (a, b, . . . ) denote scalars, bold
lowercase letters (a, b, . . . ) denote vectors, bold uppercase letters
(A,B, . . . ) denote matrices, and calligraphic uppercase letters (A,
B, . . . ) denote tensors. The order of a tensor A ∈ RI1×I2×···×IN

is N . An element ofA is denoted byAi1i2...iN or ai1i2...iN , where
1 ≤ in ≤ In, n = 1, 2, . . . , N . The mode-n vectors of A are
the In-dimensional vectors obtained from A by varying index in
while keeping other indices fixed to certain values. A tensor A
can be flattened into matrices in different ways. The mode-n flat-
tened matrix ofA, denoted by A(n) ∈ RIn×(I1I2...In−1In+1...IN ),
is obtained by parallelly concatenating all the mode-n vectors of
A. The mode-n rank of A, denoted by Rn, is defined as the di-
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Figure 1: Tensor representation of a subset from the CMU PIE
database. Missing parts are labeled by ‘m’.

mensionality of the vector space generated by the mode-n vectors:
Rn = rankn(A) = rank(A(n)). A tensor can be multiplied by
a matrix. The mode-n product of a tensor A ∈ RI1×···×In×···×IN

and a matrix M ∈ RJn×In , denoted by B = A×n M, is a tensor
of dimensionality RI1×···×In−1×Jn×In+1×···×IN , whose entries
are Bi1...in−1jnin+1...iN =

∑
in

ai1...in−1inin+1...iN mjnin . Al-

ternatively, B can also be calculated by re-tensorizing the matrix
B(n) = MA(n).

3. MULTILINEAR SUBSPACE ANALYSIS
WITH MISSING VALUES

A tensor is a natural structure for data resulting from the inter-
action of multiple factors. Each mode of the tensor corresponds to
one factor. A typical tensor representation of a set of face images
is shown in Fig. 1. The face images are a subset of the CMU PIE
database [6], which vary in identity, pose and illumination, but not
all combinations of states of the three factors are available. They
are assembled into a fourth-order tensor, with three modes shown in
Fig. 1 corresponding to people, pose and illumination, respectively,
and the fourth mode corresponding to the features extracted from
the images (shown here as images for better display). The miss-
ing factor state combinations cause missing values in the tensor,
marked by ‘m’ in the figure. The goal of M2SA is to decompose
such incomplete tensors into a set of parsimonious features repre-
senting the semantic factors respectively.

3.1 N-Mode Dimensionality Reduction
Suppose a tensorD ∈ RI1×I2×···×IN×IN+1 consists of samples

formed from N factors. Note that the (N + 1)-th mode is used to
store the features extracted from the samples. The N -mode SVD
algorithm [9] can be used to decompose D as the mode-n product
of N orthogonal spaces:

D = Z ×1 U1 ×2 U2 · · · ×n Un · · · ×N UN , (1)

where Z is called the core tensor, and the mode matrices Un(n =
1, 2, . . . , N) contain the orthonormal vectors spanning the factor
spaces, one for each contributory factor. Basically, N -mode SVD
applies the matrix SVD to each of the mode-n flattened matrices
D(n)(n = 1, 2, . . . , N) of D, obtains the left matrix of the SVD



Algorithm 1: N -Mode Dimensionality Reduction
Input: D and the target rank (R1, R2, . . . , RN )
Output: Rank-reduced approximation D̂
Apply N -mode SVD algorithm to D;1
Truncate each mode matrix Un to Rn columns, obtain the2

initial mode matrices U0
1,U

0
2, . . . ,U

0
N ;

i ← 0;3
repeat4

i ← i + 1;5
for n ← 1 to N do6

Ũ i
n ← D ×1 (Ui

1)
T · · · ×n−1 (Ui

n−1)
T ×n+17

(Ui−1
n+1)

T · · · ×N (Ui−1
N )T ;

Mode-n flatten tensor Ũ i
n to obtain Ũi

n;8

Set Ui
n to the first Rn columns of the left matrix of the9

SVD of Ũi
n;

end10

until ‖(Ui
n)T Ui−1

n ‖ > (1− ε)Rn (n = 1, 2, . . . , N ) ;11

Ûn ← Ui
n (n = 1, 2, . . . , N );12

Ẑ ← Ũ i
N ×N ÛT

N ;13

D̂ ← Ẑ ×1 Û1 ×2 Û2 · · · ×N ÛN ;14

as Un for each n, and then computes the core tensor

Z = D ×1 UT
1 ×2 UT

2 · · · ×n UT
n · · · ×N UT

N . (2)

In order to get a compact representation of the contributory fac-
tors, the dimensionality of the decomposed orthogonal spaces can
be reduced. However, the optimal dimensionality reduction in mul-
tilinear analysis is not as simple as that in PCA by directly remov-
ing those eigenvectors associated with the smallest eigenvalues.
The N -mode dimensionality reduction algorithm [9] is summarized
in Algorithm 1. The goal is to find a best rank-(R1, R2, . . . , RN )
approximation D̂ = Ẑ×1Û1×2Û2 · · ·×N ÛN , with orthonormal
mode matrices Ûn of lower rank Rn < In for n = 1, 2, . . . , N .

3.2 Dealing with Missing Values
The missing values in the tensorD prevent the direct application

of Algorithm 1. To deal with this problem, here we propose the
M2SA algorithm. Suppose the index for the available values in
D is I, which is also a tensor of the same size. Ii1i2...iN = 1
if Di1i2...iN is available, otherwise, Ii1i2...iN = 0. Instead of
finding a best approximation forD, the goal is changed into finding
a best approximation for the available values, i.e., finding a low-
rank D̂ which minimizes the reconstruction error of the available
values

∆a = ‖(D − D̂).×I‖, (3)

where .× represents the element-wise multiplication, and ‖ · ‖ rep-
resents the Frobenius norm of a tensor. M2SA uses an iterative
process to gradually reduce ∆a. When initializing, each missing
value is filled by the mean over all the available values sharing
some contributory factors with the missing value. Then the N -
mode dimensionality reduction algorithm is applied to the fulfilled
tensor to obtain the initial mode matrices Û0

n (n = 1, 2, . . . , N )
and the core tensor Ẑ0. The initial reconstruction of D is therefore
D̂0 = Ẑ0×1 Û0

1×2 Û0
2 · · ·×N Û0

N . In the iteration i, the missing
values of D are updated by the corresponding reconstructions:

Di = D.×I + D̂i−1.×(∼ I), (4)

where ∼ is the boolean NOT operator. After that, the N -mode
dimensionality reduction algorithm is applied to the updated tensor

Algorithm 2: M2SA
Input: D, I, and the target rank (R1, R2, . . . , RN )
Output: Rank-reduced approximation D̂
Fill each missing value in D with the mean over all the1
available values sharing some contributory factors to obtain
the initialized training tensor D0;
Apply Algorithm 1 to D0 to get the initial low-rank2

approximation D̂0 = Ẑ0 ×1 Û0
1 ×2 Û0

2 · · · ×N Û0
N ;

i ← 0;3
repeat4

i ← i + 1;5

Di ← D.×I + D̂i−1.×(∼ I);6

Apply Algorithm 1 to Di to obtain the new low-rank7

approximation D̂i = Ẑi ×1 Ûi
1 ×2 Ûi

2 · · · ×N Ûi
N ;

∆i
a ← ‖(Di − D̂i).×I‖;8

until ∆i
a < ε or i > τ ;9

D̂ ← Ẑi ×1 Ûi
1 ×2 Ûi

2 · · · ×N Ûi
N ;10

Di to obtain the new mode matrices Ûi
n and the new core tensor

Ẑi. The whole procedure repeats until ∆a becomes smaller than a
predefined threshold ε or the time of iteration reaches a maximum
number τ . The whole process is summarized in Algorithm 2.

As can be seen, the missing values are reconstructed by those
available values sharing some factor values in the multilinear way.
Technically speaking, a missing value can be reconstructed as long
as there is one available value sharing one factor with it. This means
the algorithm can work even when the majority of the tensor are
missing values. However, too few available values will induce a
poor approximation of the missing value. A relatively good ap-
proximation needs some available values on each sharing factor.
According to the later experimental results, the algorithm can work
well on the tensor with up to 70% missing values.

3.3 Test Sample Modeling
Given a previously unseen test sample b. It can be modeled by

the mode-n product of a set of coefficient vectors:

bT = Z ×1 cT
1 ×2 cT

2 · · · ×N cT
N , (5)

where Z is the core tensor obtained by applying Algorithm 2 to
the incomplete training tensor D, and cn(n = 1, 2, . . . , N) is the
coefficient vector corresponding to the state of factor n associated
to the test sample. Note that bothD and Z are of order N +1, with
the (N + 1)-th mode corresponding to the image features. Then
the response tensor R can be calculated by

R = Z+(N+1) ×(N+1) bT

= cT
1 ◦ cT

2 · · · ◦ cT
N , (6)

where Z+(N+1) is the mode-(N+1) pseudo-inverse tensor of Z ,
which can be obtained by re-tensorizing the matrix P = Z+T

(N+1)

(the transpose of the pseudo-inverse of the mode-(N +1) flattened
matrix of Z , please refer to [10] for more details). Thus R is the
outer product of all factor coefficient vectors associated with b, and
therefore is of rank-(1, . . . , 1). Then Algorithm 1 is used to find a
best rank-(1, . . . , 1) approximation of R, which leads to

R̂ = T̂ ×1 ĉ1 ×2 ĉ2 · · · ×N ĉN , (7)

where ĉn is the approximation of cn.
For classification, the coefficient vector ĉt corresponding to the

target factor is compared with each row vector of Ut, which cor-
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Figure 2: Face recognition rate with different percentage of
missing values in the training tensor.

responds to one state of the t-th factor, and the most similar row
vector will then indicate the predicted state of the target factor for
the test sample. In this paper, the similarity between the coefficient
vectors is measured by the angle between them.

4. EXPERIMENT
The experimental data is the ‘illum’ subset of the the CMU PIE

database [6]. There are 68 individuals with 13 different poses and
21 different illumination conditions in this data set. The faces are
normalized by fixing the positions of the two eyes (for those profile
faces, the positions of one eye and the nose tip are used). The
normalized face image has 67× 47 pixels.

The face models are tested in the scenario of face recognition,
i.e., the target factor is the identity. The 10-fold cross validation is
used to evaluate the performance of the face models. In each fold,
10% of the images are randomly selected as the test set, the remain-
ing are used as the training set. The final result is the average over
the 10 folds. The training images are organized into a fourth-order
tensor D ∈ R68×13×21×3149, where the four modes correspond
to people, pose, illumination, and image pixels, respectively. Re-
moving the test images leaves 10% missing values in D. A typical
portion of D is shown in Fig. 1. In order to test the capability of
M2SA to deal with missing values, the images in D are gradually
reduced from 90% to only 10% of the total data set with the step
10%, while the test set remains the same 10% of the total data set.

The compared baseline methods are the standard MSA and two
linear methods: Eigenface [8] and Fisherface [2]. For M2SA and
MSA, if not specified, the rank Rn of the mode-n subspace is set
to 2/3 of that of the original space In. In order to apply the stan-
dard MSA, the missing values in the tensor are filled with the mean
of available values sharing some contributory factors. For Eigen-
face and Fisherface, there is no missing value problem, but just a
decrease of the number of training samples. The subspace in Eigen-
face is set to explain 95% of the variance. Fisherface uses the same
settings as in [2].

The face recognition rates of the algorithms are compared in
Fig. 2. M2SA achieves the best performance in all cases. It keeps
relatively steady at a high level above 80% while the missing values
in the training tensor gradually increase from 10% to 70%. Only
when the missing values account for 80% or higher of the train-
ing tensor, the performance of M2SA starts to notably deteriorate.
The standard MSA performs better than the linear methods (Eigen-
face and Fisherface), but this superiority rapidly shrinks when the

missing values become dominating. Note that even when 90% of
the tensor are missing values, the recognition rate of M2SA is still
significantly higher than that of the linear methods.

5. CONCLUSION
Every face image is the result of the interaction of multiple fac-

tors. Therefore, the key issue of face image modeling is to explic-
itly and independently represent these contributory semantic fac-
tors. To this end, Multilinear Subspace Analysis (MSA) provides
a promising way by decomposing a well organized training tensor
with each mode corresponding to one contributory factor. Unfor-
tunately, such a ‘complete’ training set is usually unavailable in
many real applications. The M2SA algorithm proposed in this pa-
per makes it possible for MSA to work on the tensors with a large
amount of missing values. Experiments on face recognition reveal
that M2SA can perform stably with massive missing values ac-
counting for up to 70% of the total data. Besides face recognition,
M2SA can also be applied to many other multimedia applications,
such as image reconstruction, facial age estimation, etc.
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