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Abstract

Weakly supervised multi-label learning (WSML)
concentrates on a more challenging multi-label
classification problem, where some labels in the
training set are missing. Existing approaches make
multi-label prediction by exploiting the incomplete
logical labels directly without considering the rela-
tive importance of each label to an instance. In this
paper, a novel two-stage strategy named Weakly Su-
pervised Multi-label Learning via Label Enhance-
ment (WSMLLE) is proposed to learn from weakly
supervised data via label enhancement. Firstly, the
relative importance of each label, i.e., the descrip-
tion degrees are recovered by leveraging the struc-
tural information in the feature space and local cor-
relations learned from the label space. Then, a tai-
lored multi-label predictive model is induced by
learning from the training instances with the recov-
ered description degrees. To our best knowledge, it
is the first attempt to unify the complement of the
missing labels and the recovery of the description
degrees into the same framework. Extensive exper-
iments across a wide range of real-world datasets
clearly validate the superiority of the proposed ap-
proach.

1 Introduction

Multi-label learning (MLL) [Zhang and Zhou, 2014] frame-
work has been widely studied because of its success in fit-
ting multiple semantic meanings problems. In MLL, each
instance is associated with multiple labels simultaneously, so
it requires investigation of a large number of candidate labels
one by one, which is usually impracticable due to the high
cost of data labeling process. Thus, labels are usually missing
in the training set. To deal with the performance deterioration
of MLL caused by the missing labels, a paradigm which is
often called weakly supervised multi-label learning (WSML)
[Xu er al., 2018a] is proposed. It is worth mentioning that
semi-supervised MLL is a special case of WSML when the
observed label sets of some instances are empty. Figure 1
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Figure 1: The data setting of weakly supervised multi-label learning.
There may be five kinds of instances in the training set: (a) instances
with no missing labels; (b) instances with both relevant and irrele-
vant labels; (c) instances with only relevant labels; (d) instances with
only irrelevant labels; (e) instances with empty observed label set.

graphically illustrates the data setting of WSML studied in
this paper.

Formally speaking, let X = R¢ be the d-dimensional
feature space and ) = {1,—1}° be the c-dimensional
label space. Given the WSML training set D =
{(zs,y:) | 1 <i<n}, where x; € X is the d-dimensional
feature vector and y; € ) is the corresponding c-dimensional
binary label vector with some entries missing. The task of
WSML is to learn a predictive model h : X — ) from D,
which maps an instance to a relevant label set rather than a
single label.

There are some previous work studying the WSML prob-
lem. Some approaches formulate this task transductively,
i.e., assume the training instances with missing labels include
the test instances [Goldberg er al., 2010; Xu et al., 2013;
Wu et al., 2014], and others are inductive, i.e., try to assign a
set of proper labels for any unseen instance [Yu er al., 2014,
Wu et al., 2018; Dong et al., 2018; Zhu et al., 2018]. The
accessible labeling information of the training set is logical,
i.e., each label is either regarded to be relevant or irrelevant.
Accordingly, the previous approaches deal with the WSML
problem by exploiting such incomplete logical labels directly.

Nonetheless, logical label only reflects the absolute rela-
tionship between a label and an instance, but ignores the rel-
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ative importance of each label to an instance, i.e., logical la-
bel is essentially a simplification of the semantic information.
Furthermore, the missing labels worsen the inherent semantic
deficiency of the logical training set, i.e., the exploitable in-
formation becomes less. To handle such problem, we assign
description degrees to each label to enrich the information,
which is similar to label distribution learning (LDL) [Geng,
2016]. Moreover, we adopt generalized description degree
(GDD) [Xu et al., 2019] to accommodate more flexibility to
WSML data. The GDDs of all the labels constitute a data
form called generalized label distribution (GLD) for a partic-
ular instance. Specifically, GDD simulates the relative impor-
tance in two aspects:

e d;; € (0,1) represents the relevant degree, which varies
among the relevant labels. For example, a multi-scenery
image may exhibit different region size for each scenery,
so the relevant degree of each scenery label to the image
is different.

e d;; € (—1,0) denotes the irrelevant degree of the irrel-
evant label. For example, for an instance “chair”, the
irrelevant degree of label “television” is larger than the
label “sofa”.

A key yet under-addressed issue is that GLD is not explic-
itly available in the training set. It needs to be somehow
recovered from the training set, a process which is named
as Label enhancement (LE) [Xu et al., 2018b]. Accord-
ingly, a novel two-stage approach named Weakly Supervised
Multi-label Learning via Label Enhancement (WSMLLE) is
proposed under the inductive setting. The basic strategy of
WSMLLE is to recover GLDs by leveraging structural infor-
mation modeled by sparse reconstruction in the feature space,
where the local correlations in the label space are incorpo-
rated into an alternative optimization procedure. After that,
the multi-label predictive model is induced from the train-
ing instances with the GLDs based on tailored multivariate
regression techniques. To our best knowledge, it is the first
attempt to unify the complement of missing labels and the
recovery of GLDs into the same framework. Comprehen-
sive experimental studies clearly validate the effectiveness of
WSMLLE.

The rest of this paper is organized as follows. Firstly,
related works on WSML are briefly reviewed. Secondly,
the technical details of the proposed approach is presented.
Thirdly, the comparative experimental results on different
tasks are reported. Finally, we conclude this paper.

2 Related Work

This work is related to two branches of studies, WSML and
LE. WSML algorithms have been proposed in recent years,
which were pioneered by [Sun et al., 2010]. Then, many al-
gorithms are designed subsequently and they can be roughly
categorized into two groups based on the different assump-
tions about test data.

A straightforward strategy to this problem is formulating
it transductively, i.e., assuming the training data with miss-
ing labels include the test data. For example, Goldberg et al.
[Goldberg et al., 2010] concatenate features and labels and
apply the matrix completion technique to it. Xu et al. [Xu
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et al., 2013] utilize the side information to accelerate matrix
completion and develop strong theoretical guarantees. Wu et
al. [Wu er al., 2014] recover the missing labels through label
consistency and label smoothness.

For better generalization to unseen instances, algorithms
working in an inductive learning setting are also proposed,
i.e., the test data are unknown when learning the predictive
model. For example, Yu et al. [Yu er al., 2014] assume there
is a linear relationship between the feature and label matrices.
Wau et al. [Wu er al., 2018] decompose the whole label matrix
as the sum of a sparse matrix and a low-rank matrix. Dong
et al. [Dong et al., 2018] consider both instance similarity
and label similarity and further employ ensemble learning to
improve robustness. Zhu et al. [Zhu et al., 2018] exploit both
global and local label correlations through learning a latent
label representation.

LE aims at recovering the label distributions from the log-
ical labels in the training set, which is conceptualized by Xu
et al. [Xu er al., 2018b]. And they propose a dedicated al-
gorithm named GLLE. There are also other algorithms with
similar function to GLLE, such as FcM [El Gayar et al., 2006]
and KM [Jiang et al., 2006], which build the membership de-
grees for the labels, whereas LP [Li et al., 2015] and ML [Hou
et al., 2016] establish the relationship between instances and
labels by graph to enhance the label distributions.

3 The Proposed Approach

3.1 Problem Definition

As shown in Section 1, suppose X = [r1,%3,...,&,] €
RI*" is the feature matrix and Y = [y1,y2,...,Yn] €
{1,0,—1}°*" is the corresponding label matrix with ran-
domly missing entries. y;; = 1 indicates the ¢-th label is
relevant to the j-th instance and y;; = —1 otherwise. y;; = 0
means the relationship between i-th label and «; is unknown.
The task of WSML is to learn a predictive model i : X — Y
from the training set D = {(x;,y;) | 1 <i <n}. Y iscalled
observation matrix and D is the reasonable GLD matrix re-
covered from X and Y.

3.2 GLD Matrix Recovery

Our goal is to recover a complete GLD matrix D that satisfies
the following three properties simultaneously. (1) The infor-
mation in D is inherited from the observation matrix Y. (2)
The recovery of D leverages the structural information trans-
ferred from the feature space. (3) Label correlations conduce
to estimate a certain label.

Accordingly, we formulate this problem as

min £(D) + AR(D), (1)

where L is a loss function and R is the function to mine the
latent information from the feature space and the label space.
A is the parameter trading off the two terms.

Since the information in D is inherited from the observa-
tion matrix Y, the loss function is set as:

L(D) ==Y sign(Vy;Dy), 2)

i=1 j=1
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where the sign function sign(z) equals to 1 if x > 0, —1 if
z < 0 and 0 if z = 0, which enforces the sign consistency
of D with Y. We adopt the hyperbolic tangent function to
approximate the sign function for solvability:

- Z Z tanh(Yij Di]‘). (3)

i=1j=1

To characterize the underlying structure of the feature
space, a weighted graph G =< V, &, W > is constructed,
where V is the vertex set corresponding to the training in-
stances, &£ is the sparsely connected edge set, and W =
[wi,...,w,] is the weight matrix encoding the structural
information. According to the smoothness assumption that
instance can be reconstructed by a linear combination of its
neighboring instances, we instantiate W by modeling the re-
lationship between one instance and all the other instances
via sparse reconstruction, in which W;; is regarded as the in-
fluence of x; over ;. W can be obtained columnwisely by
solving the minimization problem:

H&,ln HX—z"wi*wiH%JFaniHla 4)
where X _; is the feature matrix excluding x;, i.e., X_; =
[T1,. .., @i 1, i1, .., Tp) € R The second term
guarantees the sparsity and « is the tradeoff parameter. Here
we solve Eq.(4) by Alternating Direction Method of Multi-
plier (ADMM) [Ghadimi et al., 2015].

Suppose the structural information in the feature space is
preserved in the label space, i.e., the influence of x; over
x; can be transferred to d; over d;. Then the GLD matrix
can be learned through minimizing the reconstruction error
in the label space L(D) = Y., ||D_;w; — d;||3. This is
a standard quadratic programming problem which can be ef-
ficiently solved by any off-the-shelf QP toolbox. Thus, from
the perspective of feature structure, the recovered GLD is for-
mulated as d; ~ Dw;.

Moreover, the label correlations conduce to the recovery
of GLD matrix. Intuitively, the correlative labels tend to have
similar description degrees. However, estimating label cor-
relations from incomplete training set is noisy. Therefore,
instead of specifying any label correlation matrix, we opti-
mize the Laplacian matrices together with the GLD matrix
iteratively. Inspired by the investigation of [Zhu et al., 2018]
that label correlations may vary among regions, we partition
the whole training set into g regions { X', ..., X9} by clus-
tering, where X* € RYX™ has ny, instances. Let Y* and
DP be the observation submatrix and GLD submatrix corre-
sponding to X*, and R" be the Laplacian matrix of region k.
Also, W is calculated region by region. Accordingly, from
the perspective of label correlations, the GLD in region k can
be denoted as d¥ ~ R*d¥. Synthesizing the feature struc-
ture and label correlations, the GLD matrix is characterized
by D* ~ R*D*W¥*, which leads to the following function
to minimize:

R(D) = | D* — R*FD*W¥|%. (5)

Substituting Eq.(3) and Eq.(5) into Eq.(1), we have the fol-
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lowing objective function:

III)HE — i (i itanh(Y D

k=1 =1 j=1
A| D" — LkLkTDkaH%) (6)
s.t. diag(LkLkT) =1,k=1,2,...9
0<D§j<1,V1§i§n,\ﬂgjgc,

where RF is replaced by LFL*" and a constraint
diag(L*L*T) = 1 is added for avoiding the trivial solution
R* = 0 and guaranteeing R* to be a normalized Laplacian
matrix.

Eq.(6) can be solved by alternating minimization. In each
iteration, fix one of { D, L} and update the other with gradi-
ent descent. Specifically, with L*s (i.e., RFs) fixed, the target
function of DF yields:

- Z Z tanh(Y;; D) @)

=1 j=1
Atr [(D’f _RFDFWHYT(DF —R’“D’“W’“)} .
The gradient of the objective w.r.t. D¥ is
Vpr =(tanh(Y o D) otanh(Y o D) —1)oY + (8)
2\(D-RDW-R'DW'+R"RDWW "),
where o is the Hadamard product. The superscripts & of

{Y,D,W R} on the right-hand side of this equality are
omitted for brevity. When DFs are fixed, Eq.(6) reduces to:

T(L*) = tr[(Dk—L’“LkTD’“W’“)T )

(D" - LkLkTDka)} :
so the gradient w.r.t. L* is

Vi =4LL'DWW'DT -DW D)L,  (10)

where the superscripts & of {D, W, L} are also omitted. To
satisfy the constraint diag(L;L, ) = 1, each row of L; is
projected onto the unit norm ball after each update.

3.3 Predictive Model Induction

Replace the observed labels with the recovered GLDs, the

training set can be transformed into D = {(x;,d;)}. As the
output d; is real-valued, it is natural to induce the predic-
tive model by employing multi-output regression techniques.
Here we proposed a predictor based on multi-regression sup-
port vector machines. We tailor the following regression
problem:

Q(0,b)

§Z||9j||§+mz'ﬂl<ui>+ (1
622292 Vij +ﬁBZQB wz

=1 j=1
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Datasets Fcm Km Lp ML GLLE WSMLLE Datasets Fcm Km Lp ML GLLE WSMLLE
SJAFFE 0.154(2) 0.465(6) 0.178(4) 0.211(5) 0.174(3) 0.107(1) SJAFFE 0.866(3) 0.680(6) 0.865(4) 0.836(5) 0.874(2) 0.943(1)
Natural Scene 0.363(5)  0.463(6)  0.320(2)  0.330(3)  0.311(1)  0.343(4) Natural Scene 0.588(6)  0.671(5)  0.745(2)  0.7183)  0.752(1)  0.671(4)
Yeast-spoem 0.181(3)  0.482(6)  0.411(5)  0.280(4)  0.136(2)  0.084(1) Yeast-spoem 0.916(3)  0.876(5)  0.803(6)  0.878(4)  0.951(2)  0.981(1)
Yeast-spoS 0.161(3) 0.465(6) 0.294(4) 0.403(5) 0.121(2) 0.092(1) Yeast-spoS 0.931(3) 0.781(6) 0.853(4) 0.784(5) 0.957(2) 0.975(1)
Yeast-dtt 0.105(2) 0.492(6) 0.278(4) 0.442(5) 0.112(3) 0.070(1) Yeast-dtt 0.938(3) 0.687(6) 0.808(4) 0.692(5) 0.950(2) 0.981(1)
Yeast-cold 0.127(2)  0.487(6)  0.291(4)  0438(5)  0.1283)  0.076(1) Yeast-cold 0.944(2)  0.701(6)  0.809(4)  0.706(5)  0.942(3)  0.977(1)
Yeast-heat 0.1093)  0.426(6)  0.1834)  0.398(5)  0.081(2)  0.056(1) Yeast-heat 0.940(3)  0.639(6)  0.835(4)  0.646(5)  0.956(2)  0.979(1)
Yeast-spo 0.1143)  0.425(6)  0.174(4)  0.401(5)  0.089(2)  0.069(1) Yeast-spo 0913(3)  0.655(6)  0.853(4)  0.661(5)  0.947(2)  0.968(1)
Yeast-diau 0.087(2)  0.373(6)  0.146(4)  0.351(5)  0.1003)  0.046(1) Yeast-diau 0.944(2)  0.635(6)  0.862(4)  0.642(5)  0.921(3)  0.983(1)
Yeast-elu 0.046(3)  0.210(6)  0.0734)  0.195(5)  0.046(2)  0.022(1) Yeast-elu 0.951(2)  0.580(6)  0.855(4)  0.588(5)  0.949(3)  0.988(1)
Yeast-cdc 0.048(3)  0.199(6)  0.0704)  0.184(5)  0.044(2)  0.021(1) Yeast-cdc 0.946(3)  0.578(6)  0.850(4)  0.595(5)  0.950(2)  0.988(1)
Yeast-alpha 0.038(2)  0.163(6)  0.055(4)  0.147(5)  0.0403)  0.014(1) Yeast-alpha 0.948(3)  0.575(6)  0.865(4)  0.584(5)  0.949(2)  0.992(1)
SBU_3DFE 0.158(3)  0.467(6)  0.1834)  0.359(5)  0.144(2)  0.118(1) SBU_3DFE 0.855(3)  0.677(6)  0.849(4)  0.744(5)  0.890(2)  0.935(1)
Movie 0.221(4)  0462(6)  0.1843)  0419(5)  0.167(2)  0.141(1) Movie 0.789(4)  0.757(6)  0.896(3)  0.761(5)  0.899(2)  0.921(1)

Table 1: Recovery results (value(rank)) of each comparing algorithm
with 60% M.Ratio on Cheb |.

where ® = [64,...,60.] is weight matrix and b =
[b1,...,bc] " is bias vector. 31, 32 and 33 balance the model
complexity (the first term) and the empirical regression loss
(the rest of terms). Specifically, the second term penalizes the
case where the model predictions do not fit the GLDs:

0, U; < €

(UZ' — 6)2, U Z € (12)

Oy (u;) = {

u; = ||e;]| = Vel e; withe; = d;— O T p(x;) —b. e creates
an insensitive zone around the estimate where the loss u less
than € is ignored. The third term restricts the sign consistency:

O, Vij > 0

. 13
vij<0 (13)

Qa(vij) = {

—Vij,

Here, v;; = D;; (8 ¢(x;) + b;). The last term ensures the
average output from relevant labels to be larger than the aver-
age output from irrelevant ones, which has been widely used
in inexact MLL algorithms [Cour et al., 2011]:

1 1
Q3(w;)=— (|S_| . 1;_® : 1;) (©"p(z:)+b), (14)

where S; and S; are the relevant and irrelevant label set of x;
respectively. lgi (lg ) corresponds to a c-dimensional vector

whose k-th entry equals to 1 if Dy; > 0 (Dg; < 0) and O
otherwise.

To minimize 2(®, b), we use an iterative quasi-Newton
method called Iterative Re-Weighted Least Square [Tuia et
al., 2011]. According to the Representer Theorem [Smola
and Scholkopf, 1998], under fairly general conditions, a
learning problem can be expressed as a linear combination
of the training examples in the feature space, i.e., 8; =
> ¢(x;)kij, and then kernel trick can be applied.

4 Experiments

To evaluate the effectiveness of WSMLLE, extensive exper-
iments are conducted on 14 LDL datasets and 10 MLL
datasets compared with several state-of-the-art LE algorithms
and WSML algorithms respectively.
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Table 2: Recovery results (value(rank)) of each comparing algorithm
with 60% M.Ratio on Cosine 7.

Criterion Fcm KM Lp ML GLLE WSMLLE
Cheb 4.14/2.86 5.86/6.00 2.86/3.86 4.64/4.79 2.14/2.29 1.36/1.21
Clark 3.64/2.64 5.79/6.00 3.57/4.07 4.71/4.64 1.93/2.43 1.36/1.21
Canber 3.43/2.64 5.93/6.00 3.71/4.07 4.71/4.64 1.93/2.43 1.29/1.21
KL 3.86/2.71 5.86/5.93 3.21/3.86 4.71/4.79 2.00/2.43 1.36/1.29
Cosine 3.93/3.07 5.80/5.86 3.00/3.93 4.64/4.79 2.212.14 1.43/1.21
Intersec 3.60/2.93 5.93/5.93 3.47/3.86 4.73/4.79 1.87/2.29 1.40/1.21
Average 3.77/2.81 5.86/5.95 3.30/3.94 4.69/4.74 2.01/2.34 1.37/1.22

Table 3: Average ranks (with 0% M.Ratio/with 60% M.Ratio) of
each comparing algorithm on 14 datasets.

4.1 LE with Full Labels and Missing Labels

Experimental Setup

A total of 14 real-world LDL datasets are employed for per-
formance evaluation '. The binarization method [Xu et al.,
2018b] is adopted to get the logical labels from the real la-
bel distributions. Considering the missing ratio (M.Ratio) by
randomly dropping {0%, 60%} logical labels, we recover the
label distributions and compare them with the ground-truth
label distributions. As mentioned in Section 3, in the training
sets, Y;; € {1,0, —1} where the missing labels are set to 0.
The label distributions recovered by all algorithms are nor-
malized before evaluation. All algorithms use the same data
setting for each dataset.

According to [Geng, 2016], we choose 6 LDL evalua-
tion metrics, i.e., Chebyshev distance (Cheb), Clark distance
(Clark), Canberra metric (Canber), Kullback-Leibler diver-
gence (KL), cosine coefficient (Cosine) and intersection sim-
ilarity (Intersec). The first four are distance measures and the
last two are similarity measures.

WSMLLE is compared with 5 LE approaches reviewed in
Section 2, including FcM, KM, Lp, ML and GLLE. The pa-
rameter A in WSMLLE is chosen among {0.01, 0.1, 1} and the
number of clusters g is chosen among {1,2,---,10}. The
kernel function is Gaussian kernel. The clustering algorithm
is k-means. The parameters of the comparing algorithms are
the suggested configuration in [Xu er al., 2018b].

Results

For quantitative analysis, Table 1 and Table 2 tabulate the re-
covery results on Cheb and Cosine with 60% M.Ratio, and
The best results are highlighted in bold face. For each evalua-
tion metric, | indicates the smaller the better while 1 indicates

'http://palm.seu.edu.cn/xgeng/LDL/index.htm#data
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Dataset Measure M.Ratio WSMLLE GLOCAL MLML- SswL WELL MAX.4+RANK- MAX.+ML-
APPROX SVM kNN
0.2 0.21340.011 0.284+0.019¢  0.271£0.010e  0.2074-0.013 0.4224+0.020e  0.461£0.020e  0.45640.015e
Ranking Loss) 0.4 0.2204-0.008 0.298+0.028¢  0.285+0.010e  0.22640.015 0.4261+0.018¢  0.447+0.027¢  0.43540.029e¢
Emotions 0.6 0.23840.017 0.325+0.029¢  0.306+0.018¢  0.2601-0.010e  0.428+0.019e¢  0.46440.021e  0.4481+0.019e
0.2 0.7544-0.009 0.679+0.017e¢  0.704£0.011e  0.75340.015 0.567+0.015e¢  0.561£0.012¢  0.56940.011e
AveragePre. 1 0.4 0.74740.008 0.666+0.021e  0.692+0.014e¢  0.73840.018 0.566+0.014e  0.571£0.022e¢  0.578+0.018e
0.6 0.7244-0.016 0.6411+0.025¢  0.674£0.012e¢  0.7061+0.013@¢  0.566+£0.015e¢  0.55540.018¢  0.570+£0.014e
0.2 0.0254-0.003 0.053+0.009¢  0.065+0.010e  0.28440.037¢  0.266+0.025e¢  0.10740.011e  0.05810.008e
Ranking Loss| 0.4 0.0261-0.004 0.054+0.009¢  0.075+0.010e  0.3331+0.021e¢  0.288+0.060e¢  0.1094+0.011e  0.0611-0.008e
Medical 0.6 0.0314-0.006 0.071+0.012e¢  0.093+0.011e  0.365+0.023e¢  0.271£0.032e¢  0.1144+0.010e  0.067£0.010e
0.2 0.869+0.012 0.834+0.016e  0.749+0.028e¢  0.37940.051e  0.370+0.024e  0.503+0.031@¢  0.76910.019e
AveragePre.T 0.4 0.86040.010 0.8094+0.0160  0.723+£0.025e¢  0.3411+0.027¢  0.323+£0.070e  0.5004-0.031e  0.762+0.020e
0.6 0.838+0.009 0.73940.024e  0.698+0.019e¢  0.32540.029¢  0.275+0.066e  0.49140.032¢  0.74610.025e
0.2 0.0724-0.004 0.1004+0.004e  0.0730.006 0.126+0.005e¢  0.404£0.012e¢  0.08540.005¢  0.09940.006e
Ranking Loss| 0.4 0.078+0.003 0.103+0.003e  0.080+0.006 0.1444+0.006e  0.421£0.009e¢  0.08740.005¢  0.10110.007e
Scene 0.6 0.083+-0.004 0.110+0.006e  0.088+0.010 0.175+0.008¢  0.437+£0.013e¢  0.088+0.006e  0.10240.008e
0.2 0.8724-0.005 0.8334+0.0060  0.870£0.009 0.795+0.007e¢  0.488+0.014e¢  0.8434+0.007¢  0.83410.006e
AveragePre.T 0.4 0.8631-0.006 0.828+0.005¢  0.86240.009 0.77240.007e  0.475£0.009¢  0.84040.008e  0.83210.008e
0.6 0.8544-0.006 0.819+0.008¢  0.855+0.011 0.734+0.011e  0.465+0.012¢  0.83940.011e¢  0.83010.009e
0.2 0.1724-0.004 0.358+0.003e  0.17240.004 0.201+0.004e  0.201£0.005¢  0.1914+0.004e  0.19010.005e
Ranking Loss]. 0.4 0.17640.003 0.362+0.006e  0.179£0.004e¢  0.2031+0.010e  0.204+0.006e  0.19240.004e  0.19310.005e
Yeast 0.6 0.168+0.002 0.368+0.006e  0.189+0.004e¢  0.21440.009¢  0.211+£0.006e  0.19340.004e  0.19740.005e
0.2 0.7561-0.006 0.596+0.004e  0.75640.005 0.709+0.006e  0.721£0.006e  0.73240.004e  0.73510.006e
AveragePre. T 0.4 0.75140.005 0.590+0.006e  0.750+40.005 0.707+0.017e¢  0.718+£0.006e  0.73140.005¢  0.73110.007e
0.6 0.7661-0.005 0.580+0.006e  0.74240.005¢  0.69010.017¢  0.714£0.007e¢  0.73140.006e  0.72440.008e
0.2 0.1234-0.003 0.161+£0.004e  0.185+0.009e¢  0.17440.003e¢  0.189+0.007¢  0.15840.004e¢  0.15310.002e
Ranking Loss) 0.4 0.1331-0.002 0.161+£0.006e  0.203+0.007¢  0.19240.005e  0.185+0.002e¢  0.15940.004e¢  0.15510.003e
Arts 0.6 0.14740.003 0.164+0.005e¢  0.229+0.008¢  0.22540.007e  0.192+0.004e  0.15940.004e  0.15740.003e
0.2 0.62240.007 0.594+0.006e  0.507+0.008¢  0.5574-0.007e¢  0.418+0.007e¢  0.48340.010e  0.49240.007e
AveragePre. 1 0.4 0.609+4-0.005 0.5861+0.007¢  0.489+0.009e¢  0.5344+0.005¢  0.431+£0.015e¢  0.4754+0.012¢  0.490+0.007e
0.6 0.5894-0.005 0.5704+0.007e  0.464+£0.010e  0.4961+0.007¢  0.418+£0.009e¢  0.4794+0.011e  0.484+0.007e
0.2 0.0474-0.001 0.061+0.002e¢  0.133+0.007¢  0.0754-0.002e¢  0.165+0.003e / 0.12740.004e
Ranking Loss| 0.4 0.0504-0.002 0.062+0.002e¢  0.150+0.006e  0.0914-0.002e¢  0.169+0.003e / 0.12940.004e
Revlsubset] 0.6 0.0594-0.002 0.067+0.002e¢  0.185+0.008¢  0.1234+-0.003e¢  0.172+0.003e / 0.13540.003e
0.2 0.6011-0.005 0.575+0.004e  0.494+0.005¢  0.55940.005¢  0.268+0.003e / 0.45040.009e
AveragePre.T 0.4 0.59240.005 0.5704+0.004e  0.467+£0.006e¢  0.5294+0.005¢  0.266+0.003e / 0.44140.010e
0.6 0.57610.006 0.560+0.004e  0.423+0.007e¢  0.48440.005¢  0.262+0.003e / 0.43040.008e
0.2 0.0574-0.001 0.065+0.002e¢  0.134+0.008¢  0.0754-0.002e¢  0.166+0.002e / 0.12740.003e
Ranking Loss]. 0.4 0.0621-0.001 0.066+0.001e  0.153+0.008e¢  0.0924-0.002e¢  0.169+0.002e / 0.13040.003e
Revlsubset2 0.6 0.063+0.001 0.0714+0.002e  0.185£0.009e¢  0.1204+0.003e¢  0.173+£0.002e¢ / 0.13440.002e
0.2 0.60340.002 0.5661+0.0060  0.500£0.006e  0.5694+0.005¢  0.313+£0.003e¢ / 0.46240.005e
AveragePre.T 0.4 0.59340.003 0.5641+0.006e  0.474+0.009e¢  0.54140.005e¢  0.312+0.003e / 0.45610.0060
0.6 0.5814-0.004 0.551+0.008¢  0.438+0.008e¢  0.4984+0.007e¢  0.310+0.003e / 0.44440.0040
0.2 0.049+-0.002 0.066+0.002e  0.125+0.008¢  0.07740.002e¢  0.166+£0.005¢  / 0.12940.003e
Ranking Loss] 0.4 0.0524-0.002 0.068+0.002¢  0.147+£0.005e¢  0.0941+0.003e¢  0.168+0.006e / 0.13310.003e
Revlsubset 0.6 0.05940.002 0.072+0.002e¢  0.177£0.006e  0.12240.004e  0.170+0.008¢  / 0.13940.003e
0.2 0.5954-0.004 0.562+0.004e  0.514£0.006e  0.5601-0.003e¢  0.315+0.005¢ / 0.46810.007e
AveragePre. T 0.4 0.5904-0.003 0.557+0.004e  0.488+0.004e¢  0.53540.005e¢  0.313+0.005¢ / 0.46110.007e
0.6 0.57940.003 0.5444+0.006e  0.451£0.008e¢  0.49310.005e¢  0.311+0.005¢ / 0.44610.007e
0.2 0.0441-0.000 0.061+0.001e  0.115£0.006e  0.0681+0.002e¢  0.141+0.002e / 0.11140.002e
Ranking Loss) 0.4 0.0474-0.001 0.062+0.001e  0.135+0.012¢  0.0844-0.003e¢  0.144+0.001e / 0.11540.003e
Revlsubsetd 0.6 0.0534-0.001 0.066+0.002e¢  0.160+0.006e  0.1131+0.004e  0.147+0.002e / 0.12140.002e
0.2 0.6271-0.004 0.584+0.006e  0.536+0.004e¢  0.58540.005e¢  0.361+0.003e / 0.495+0.005e
AveragePre.T 0.4 0.6154-0.002 0.582+0.006e  0.509+0.012¢  0.55940.005e¢  0.359+0.002e¢ / 0.48940.008e
0.6 0.0531-0.004 0.570+£0.009¢  0.474£0.011e  0.5184+0.0068  0.356+0.003e / 0.47610.008e
0.2 0.0494-0.002 0.067+0.002e¢  0.124+0.007¢  0.07240.003e¢  0.158+0.002e / 0.12540.004e
Ranking Loss| 0.4 0.0534-0.002 0.068+0.002e¢  0.145+0.005¢  0.088+0.002e¢  0.161+0.003e / 0.12940.004e
Revlsubsets 0.6 0.0611-0.002 0.073+0.004e  0.174£0.005¢  0.1184+0.004e  0.163+0.004e / 0.13540.004e
0.2 0.60110.005 0.569+0.007e¢  0.518+0.008¢  0.5704-0.004e  0.333+0.006e / 0.47140.009e
AveragePre.T 0.4 0.5954-0.005 0.566+0.007e  0.4924+0.008¢  0.54440.005e¢ 0.3324+0.006e / 0.46410.010e
0.6 0.5784-0.005 0.550+0.009¢  0.455+0.006e  0.50140.005¢  0.329+0.005¢ / 0.45540.010e

Table 4: Predictive results of each comparing algorithm (mean=£std). The best results are highlighted in bold face, and the e indicates whether
WSMLLE is statistically superior to the comparing algorithm.
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the larger the better. The results on other evaluation metrics
are similar and are not shown due to page limitation. The
tables show that WSMLLE achieves the best performance in
most cases excluding Natural Scene. This is because GDDs
of relevant labels are very close and the GDDs of irrelevant
labels are almost equal, but WSMLLE cannot exert its advan-
tage fully.

The average rank of each algorithm on all datasets is shown
in Table 3. As can be seen that WSMLLE achieves opti-
mal (lowest) average rank in terms of all evaluation metrics.
WSMLLE ranks 1st in 81.0% cases across all evaluation met-
rics with 0% M.Ratio, while ranks 1st in 92.9% cases with
60% M.Ratio. The success of WSMLLE can be attributed
to the loosened contraint and simultaneous learning of the
recovered label distributions, weighted graph encoding the
structural information and Laplacian matrices encoding the
label correlations. Specifically, WSMLLE loosens the least
squares loss constraint to sign constraint, which accommo-
dates more flexibility to description degrees. The weighted
graph utilizes the topological structure of the feature space.
And the learning of Laplacian matrices circumvents the diffi-
culty of specifying label correlations manually. Overall, the
above experimental results clearly show that WSMLLE can
effectively recover the label distributions from the logical la-
bels.

4.2 WSML with Missing Labels

Experimental Setup

To thoroughly evaluate the classification performance of
learning from weakly supervised data, we conduct compar-
isons across 10 real-world datasets 2 * with {20%, 40%, 60% }
M.Ratio. Half of the instances in each dataset are randomly
chosen as the training set while the other half as the test set.
To reduce statistical variability, the mean results and the stan-
dard deviation over 10 independent repetitions are recorded.
All algorithms use the same data setting for each dataset.

7 widely-used multi-label measures are employed for eval-
vating from various aspects, including one-error, cover-
age, ranking loss, average precision, instance-AUC, macro-
averaging F1 and micro-averaging F1.

WSMLLE is compared with 4 state-of-the-art WSML al-
gorithms described briefly in Section 2: GLOCAL [Zhu et al.,
2018], MLML-APPROX [Wu et al., 2014], SSWL [Dong et al.,
2018], WELL [Sun ez al., 2010], and 2 representative MLL al-
gorithms: RANK-SVM [Elisseeff and Weston, 2002] and ML-
kNN [Zhang and Zhou, 2007]. The setting in the first stage of
WSMLLE is in accordance with Section 4.1, and 3;, 82 and
B3 chosen among {0.1, 1, 10}. For the comparing algorithms,
parameter configurations suggested in the literatures are used,
i.e., GLOCAL: tradeoff parameter A = 1; MLML-APPROX:
class similarity parameter = 10, sample similarity parame-
ters k = 20 and h = 7; SSWL: tradeoff parameters «, 8 and
¢ chosen among {1072, .. 10%}; WELL: tradeoff parame-
ters a = 100, 8 = 10, and ~y chosen among {100, . ,104};
RANK-sVM: RBF kernel with h = 0.01; ML-kNN: neighbor
size k = 10, smoothing parameter s = 1. What needs to be

2http://mulan.sourceforge.net/datasets-mlc.html
3http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.tar
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pointed out is that RANK-SVM and ML-kNN cannot handle
the missing labels directly, so the missing labels must be re-
covered at first, here we use MAXIDE [Xu ef al., 2013] and
the resultant combinations are represented as MAX.+RANK-
SVM and MAX.+ML-kNN.

Results

We roughly organize the 10 datasets with 5 being regular-
scale (the first five in Table 4, each of which includes no more
than 5000 instances) and 5 being large-scale (the last five in
Table 4, each of which includes more than 5000 instances).
RANK-SVM has difficulty in large-scale datasets so it is not
applied to the large-scale datasets. Due to page limitation,
only parts of the most representative evaluation metrics are
listed in Tabel 4 while other results are similar.

The two-tailed #-tests at the 5% significance level are per-
formed. Based on the experimental results of comparative
studies, it is impressive to observe that:

e Among these 1155 statistical tests (5 regular-scale
datasetsx3 kinds of M.Ratiox7 evaluation metricsx6
comparing algorithms + 5 large-scale datasets x3x7x5
comparing algorithms excluding RANK-SVM), WSM-
LLE achieves superior performance against the compar-
ing approaches in 95.2% cases.

e On regular-scale datasets, WSMLLE is significantly bet-
ter in 93.3% cases, and on large-scale datasets, WSMLLE
is signficiantly better in 97.5% cases.

e On large-scale datasets, WSMLLE significantly outper-
forms all the comparing algorithms in terms of rank-
ing loss, average precision, instance-AUC and macro-
averaging F1, and is comparable to all the comparing
algorithms in terms of other evaluation metrics.

Across all the datasets, WSMLLE performs better against
other WSML algorithms, especially on large-scale datasets.
It is because that the structural information and label corre-
lations on large-scale datasets are easier to be fully utilized.
These results further demonstrate that WSMLLE has strong
capability to recover the missing labels and enhances the rea-
sonable GLDs, and verify the effectiveness of these enhanced
GLDs, which can offer richer labeling information to the sub-
sequent learning process. Thus, the proposed approach can
make more accurate multi-label predictions.

5 Conclusion

In this paper, the problem of WSML is studied where an inno-
vative two-stage approach named WSMLLE is proposed. Dif-
ferent from existing approaches, WSMLLE considers GLDs
which are not explicitly available in the training sets. WSM-
LLE recovers the missing labels and enhances the GLDs from
the logical labels simultaneously through utilizing the struc-
tural information in the feature space and label correlations
learned from the label space. Then a tailored predictive model
is induced to make multi-label prediction. Comprehensive
experiments over a range of tasks clearly validate the reason-
ability of the recovered GLDs and the effectiveness of these
GLDs for weakly supervised multi-label learning.
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