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The increase of population causes the raise of security threat in crowed environment, which makes
crowd counting becoming more and more important. For common complexity scenes, existing crowd
counting approaches are mainly based on regression models which learn a mapping between low-level
features and class labels. One of the major challenges for generating a good regression function is the
insufficient and imbalanced training data. Observationally, the problem of crowd counting has the
characteristic that crowd images with adjacent class labels contain similar features, which can be
utilized to reduce the effect of insufficiency and imbalance by the strategy of information reuse.
Consequently, this paper introduces a label distribution learning (LDL) strategy into crowd counting,
where crowd images are labelled with label distributions instead of the conventional single labels. In this
way, one crowd instance can contribute to not only the learning of its real class label, but also the
learning of neighboring class labels. Hence the training data are increased significantly, and the classes
with insufficient training data are supplied with more training data, which belongs to their adjacent
classes. Experimental results prove the effectiveness and robustness of the LDL method for crowd

counting. We have also shown the outstanding performance of the approach in different dataset.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

With the increase of population, threats in crowded environ-
ment are rising, including fighting, rioting, and violent protest. The
most common indicator of these behaviors is the crowd size, and
its evaluation known as crowd counting or crowd density estima-
tion attracts more attentions.

Generally, when given a video captured by a static camera in
crowd situations, crowd counting approaches can estimate the
number of people or the level of crowd density. There are many
potential real-world applications in crowd counting [1,2], e.g.
surveillance in public for safety and security by detecting abnor-
mally large crowd, resource management in retail sectors for
optimizing floor plan or product display by quantifying the
number of people entering and existing at different times of the
day, and urban planning for developing long-term crowd manage-
ment strategies or designing evacuation routes in public spaces by
statistically analysing the flow rate of people around an area. In
other fields, crowd counting methods are also applicative. For
instance, animals pass through a particular boundary, blood cells
flow through a blood vessel under a microscope, and the rate of
car traffic.
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Existing methods for crowd counting could be roughly divided
into the following three categories: pedestrian detection based
approaches, trajectory clustering based approaches, and the
feature-based regression approaches [1]. The pedestrian detection
based approaches [3-6] estimate the number of people by detect-
ing the whole instances of people in a crowd image, using a
trained detector to scan the image with different scales. The
trajectory clustering based approaches [7,8] count the number of
people by analyzing the feature trajectory extracted from each
crowd frame. The approaches based on pedestrian detection and
trajectory clustering either rely on explicit object segmentation or
feature point tracking, which requires sufficient computational
expense and high frame rate video. Thus, they are not suitable to
crowd scenes with cluttered background and frequent occlusion.
In contrast, the feature-based regression approaches [9-13,2] aim
to learn a direct mapping between multi-dimensional features and
class labels, only depending on the low-level features extracted
from crowd frames with ordinary frame rate. Based on the above
analysis, the feature-based regression approaches are more appro-
priate to be adopted in real applications.

However, the feature-based regression approaches also have
inherent disadvantages. As we know, the performance of an
appropriate regression function always depends on the population
of training data. Existing benchmarking datasets for crowd count-
ing such as Mall and UCSD are insufficient and imbalanced, as
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Fig. 1. Both Mall dataset and UCSD dataset suffer from insufficient and imbalanced training data. (a) A sample of Mall dataset, (b) the distribution of Mall dataset,

(c) a sample of UCSD dataset, and (d) the distribution of UCSD dataset.

shown in Fig. 1. The insufficiency of the dataset reflects in its
limited number of samples belonging to certain classes, while the
imbalance of the dataset means the samples of different classes
have a great quantity variance. Both insufficiency and imbalance of
training data have significantly negative effect in crowd estima-
tion. To dispose this challenge, Chen et al. [12] propose a
cumulative attribute based ridge regression (CA-RR) method for
crowd counting. The experimental results of CA-RR on Mall
dataset show its superior performance to the state-of-the-arts,
but the solution seems complicated and not straightforward.
Besides the attribute based solution, we can consider a more
essential solution based on information reuse. According to the
discussions in [12], the problem of crowd counting has a char-
acteristic that features of crowd images which contain adjacent
number of people are strongly correlated. In another word, the
number of people varies continuously on features while discretely
on labels. For instance, the crowd image containing 30 people
shows the similar features to the one containing 29 people, while
is significantly different from the one with 10 people. As we can
see, apart from the real number of people, one crowd image can
also contribute to the learning of its neighboring people-count. In
this way, it can reuse the information of samples for insufficient
and imbalanced training data.

The most popular strategy to combine regression and informa-
tion reuse is label distribution learning [14], which learns a
regression function between multi-dimensional features and a
label distribution, instead of the conventional single label. Label
distribution learning has been successfully used in facial age
estimation, which has the same characteristic as the problem of

crowd counting that samples vary continuously on features while
discretely on labels. In our opinion, the label distribution learning
algorithm can also be employed for crowd counting, and dispose
the insufficiency and imbalance of training data by reusing the
information of samples.

In this paper, we assign a label distribution to each crowd
image rather than a traditional single label. The label distribution
of each crowd instance covers numerous class labels with a
probability model, which is utilized to represent the degree that
each class label describes the instance. In this way, a crowd
instance will contribute to not only the learning of its real class,
but also the learning of its neighboring classes. Hence the training
data are increased significantly, and the classes with insufficient
training data are supplied with more training data, which belong
to their adjacent classes. Then, a regression function between
feature set and label distributions is learned by the IIS-LDL
algorithm, where the optimization uses a strategy similar to
Improved Iterative Scaling (IIS). The IIS is a well-known algorithm
for maximizing the likelihood of the maximum entropy model,
which makes the IIS-LDL be an iterative optimization process.
Finally, given an unseen instance, the regression function will
generate a label distribution. The predicted value is estimated by
the weighted average of the label distribution.

When designing the label distribution of the training instance,
the real class label must be the leading description. In other words,
the highest probability in the label distribution is assigned to the
real class label, which ensures its leading position in the class
description. While the probability of other class labels decreases
with the distance from the real class label, which makes the
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classes closer to the real class contribute more to the class
description. Consequently, in the process of prediction, labels in
a predicted distribution are also correlative, which proves the
theory evidence to synthetically use the predicted distribution for
estimating results.

Our frameworKk is illustrated in Fig. 2. Firstly, the label set of a
dataset is transformed into label distributions by allocating differ-
ent probabilities to each label within a certain range. Secondly, the
normalization is adopted to remove the effect of perspective
before extracting features from dataset. Thirdly, three types of
features are extracted, including the global features and the local
texture features. In the end, a regression function utilized to
predict is learned by the IIS-LDL algorithm. Experimental results
on benchmarking datasets show that label distribution learning
for crowd counting can effectively reduce the effect caused by the
insufficient and imbalanced training data, thus improving the
accuracy generally over the state-of-the-arts.

2. Related work

Existing crowd counting techniques are classified into three
categories: counting by pedestrian detection, counting by trajec-
tory clustering, and counting by feature-based regression. Various
approaches for crowd counting have been proposed [1].

Counting by detection detects the instances of pedestrian by
using a trained detector to scan the image space. This paradigm
includes several different detection methods.

Monolithic detection method [3,15,16] is a typical pedestrian
detection approach. In this method, a pedestrian classifier is
trained by the full-body appearance extracted from a set of
pedestrian training images. The full-body appearance is repre-
sented by some common features, such as Haar wavelets [17],
gradient-based features (e.g. histogram of oriented gradient (HOG)
feature) [3], edgelet [18], and shapelet [19]. The choice of classifier
often requires a balance between the speed and quality of
detection. It commonly used linear classifiers such as boosting
[20], linear SVM, or Random/Hough Forests [21] rather than non-
linear classifiers such as RBF Support Vector Machines (SVM) since
non-linear classifiers offer a good quality but suffer from a low
speed. A trained classifier is then applied in a sliding window style
across the whole image space, which aims to detect pedestrian
candidates. Monolithic detector can generate reasonable detec-
tions in sparse scenes, but suffers from crowd scenes with the
frequent occlusion.

Part-base detection method [4,22,23] is proposed to handle the
partial occlusion problem. Even in the occlusion situation, some
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specific body parts such as head and shoulder can easily appear in
the video. Consequently, boosted classifiers are constructed for
these body parts to estimate the number of people in a monitored
area [24]. It is found that the head region alone is not sufficient for
reliable detection because of its shape and appearance variations.
While adding the shoulder region to form an omega-like shape
pattern, it tends to perform better in real-world scenes.

Shape matching method [5,25] employs shape prototypes to
describe and detect the pedestrians. A set of parameterized body
shapes composed of ellipses is defined to represent the pedes-
trians [5], then applied in a stochastic process to estimate the
number and shape configuration that explains a given foreground
mask greatly in a scene. This idea is extended by using more
flexible and realistic shape prototypes in [25], where it learns a
mixture model of Bernoulli shapes from a set of training images to
search for maximum a posteriori shape configuration of fore-
ground objects. And it reveals not only the count and location, but
also the pose of pedestrians in a scene.

Multi-sensor detection methods are based on multiple cam-
eras, and can further incorporate multi-view information to
resolve visual ambiguities caused by the inter-object occlusion.
For instance, the foreground human silhouettes are extracted from
a network of cameras to establish bounds on the number and
possible locations of people in [6]. Similarly, the multi-view
geometric constrains are utilized to estimate the number of people
and their spatial locations in [26]. Benefitting from the multi-
sensors, these approaches improve the accuracy and speed of
detection. However, they are restricted since a multi-camera setup
with overlapping views is not always available in many cases.

Counting by trajectory clustering counts people by tracking visual
features over time. A crowd can be regarded as a mixture composed
of many individual entities, each of which has its own feature
trajectory. These trajectories which exhibit coherent motion are
clustered, and the number of clusters approximates the number of
moving people. Typical examples include [7], which uses a Kanade-
Lucas-Tomasi (KLT) tracker to extract the low-level tracked features,
and clusters the trajectory to estimate the number of pedestrians.
Another example is proposed in [8], which relies on an unsupervised
Bayesian approach. Such a trajectory clustering based algorithm
works well with the video that has enough high frame rate, in order
to extract the trajectory information reliably. Otherwise, it will suffer
from an unsatisfied result. In addition, this paradigm assumes the
coherence of pedestrian motion. Hence the false estimation may
arise when pedestrians remain static in a scene, or two objects
sharing common feature trajectories over time.

Counting by regression avoids explicit segmentation or feature
point tracking but estimates the crowd density based on the
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Fig. 2. The processing pipeline of our framework: perspective normalized features are extracted from segmentation, then the label distribution associated with an instance is
transformed by a probability model, finally, the IIS-LDL algorithm is utilized to train a regression function for prediction.
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holistic description of crowd instances. Consequently, this para-
digm becomes a feasible method for crowded environments
where detection and tracking are severely limited. In detail,
feature-based regression methods aim to learn a direct mapping
between multi-dimensional features and class labels, which is
used to predict the number of pedestrian. One of the earliest
regression algorithms for crowd counting is proposed by Davies
et al. [9]. They first extract low-level features such as foreground
segmentation and edge features from each video frame. Then the
holistic properties such as foreground area and edge count are
generated from these raw features. Finally, a linear regression
model is used to establish a mapping between the holistic proper-
ties and the actual people-count. In this way, when given the
feature set extracted from an unseen video frame, conditional
expectation of the people-count can be predicted. This work opens
up a new path in crowd counting, and various algorithms follow-
ing this idea have been proposed. These algorithms present either
the improved feature set or more sophisticated regression models,
but still share a similar processing pipeline as in [9]. A few popular
regression models are shown as follows.

Linear regression is first used in crowd counting, and the
simplest approach is to form a linear regression function that
involves a linear combination of the input variables. In a sparse
scene with smaller crowd size and fewer inter-object occlusion,
the aforementioned linear regressor [27,9,28] may suffice since the
mapping between the observations and class labels presents a
linear relationship. However, when given a more crowded envir-
onment with severe inter-object occlusion, it has to employ a
nonlinear regressor to capture the nonlinear trend in the feature
space adequately [29]. A special example of this model is poly-
nomial regression function considered in [30], which uses a form
of powers of input variables to structure the basis functions.
Gaussian basis function and sigmoidal basis function are other
possible choices of basis functions. One of the key limitations of
linear model is that the model will get unnecessarily complex
high-dimensional observed data, some of which are useless for
prediction. Furthermore, part of the extracted data may be highly
co-linear, which may lead to an unstable estimation [31] and cause
the severe over-fitting.

Partial least squares regression is a way to dispose the multi-
collinearity problem [10], by projecting both input variables and
target variables to a latent space. In this space, the lower-
dimensional latent variables explain the covariance between input
variables and target variables as much as possible.

Ridge regression (RR) is another method for mitigating the
multicollinearity problem [13]. A regularization term is added to
the error function of the ridge regression, which is used to
estimate the sum of squared errors. Chen et al. [11] present a
multi-output ridge regression (MORR) for crowd counting, which
is based on a multivariant ridge regression. Later, they map low-
level visual features onto a cumulative attribute space where each
dimension has clearly defined a label that captures how the scalar
output value changes continuously and cumulatively, named as
cumulative attribute based ridge regression (CA-RR) [12]. A non-
linear version of the ridge regression is the kernel ridge regression
(KRR) [32], which can be achieved by a kernel trick [33]. In detail, a
linear ridge regression model is constructed in a higher dimen-
sional feature space induced by a kernel function defining the
inner product. The kernel function has several typical choices of
linear, polynomial, and radial basis function (RBF) kernels.

Support vector regression (SVR) is used for crowd counting in
[34]. In contrast to KRR, the SVR utilizes the concept of support
vectors to determine the solution, which can lead to a faster
testing speed than the KRR that sums over the entire training set.

Gaussian process regression (GPR) is one of the most popular
nonlinear methods for crowd counting, which benefits from its

pivotal properties, e.g. it allows a possibly infinite number of basis
functions driven by the data complexity, and it models the
uncertainty in regression problems elegantly. Based on the con-
ventional GPR, various extended approaches have been proposed.
For example, Chan et al. [29] propose a generalized Gaussian
process model, which allows a different parameterization of the
likelihood function, such as a Poisson distribution for prediction in
[35]. Lin et al. [36] utilize two GPR in their framework, one for
learning the mapping between features and classes, and the other
for deducing the mismatch between the predicted label and the
actual label caused by the occlusion. The flexibility of kernel
algorithms such as KRR, SVR, and GPR makes it possible to design
different assumptions about the function we wish to learn. This
property is exploited in [2] by combining a linear and a squared-
exponential (RBF) covariance function, which captures both the
linear trend and local non-linearities in the crowd feature space.

Random forests regression (RFR) is able to achieve the scalable
nonlinear regression modelling [37]. A random forest composed of
randomly trained regression trees can achieve a better generalization
than a single over-trained tree [38]. Each tree in the forest splits a
complex nonlinear regression problem into a set of subproblems,
which can be more easily addressed by simple learners such as a linear
model. And the forest is trained by optimizing an energy over a given
training set and label set.

Semi-supervised regression is proposed for crowd counting
when only given insufficient labelled data. Loy et al. [39] develop a
unified framework for the active and semi-supervised learning of a
regression model with transfer learning capability, and the frame
work is formulated based on exploiting the underlying manifold
structure of unlabelled crowd data to facilitate counting when the
labelled samples are insufficient.

3. Feature extraction
3.1. Perspective normalization

Before extracting features from datasets, the effects of perspec-
tive cannot be neglected. Perspective makes objects closer to the
camera appear larger in frames. Thus, it is important to normalize
the features for reducing the effects of perspective. Since perspec-
tive conforms to linear variation, feature extracted from each pixel
could be weighted by the relative location of the pixel in a frame.
The weight of a pixel is dependent on the depth of object which
contains the pixel. That is to say, the weight is bigger when the
object is farther.

In this work, weights are computed with the proportion of depth
in the scene. For the UCSD dataset, a ground plane is first marked by
determining two vanishing lines ac and bd, as in Fig. 3(a). The
bottom horizontal line ab is assumed as the standard and weights
of the pixels on ab are set to 1. Next, the lengths of ab and cd are
manually measured. The length of any line ef parallel to ab can be
computed by the linear interpolation, where the length represents
the interpolant. Finally, each pixel on the line ef is given a weight of
labl/lef].

Different from the UCSD dataset, the region of interest (ROI) of
the scene in Mall dataset is curve, as shown in Fig. 3(b), which may
lead to a noticeable deviation in the process of perspective
normalization. Observationally, the ellipse on the ground appears
larger in the scene when it is closer to the camera. However, all the
ellipses are equirotal in reality. Consequently, we define two sets
of vanishing lines based on the three ellipses, one for the normal-
ization of the front scene, marked as ae and bf. The other is used
to the normalization of the back scene, marked as ¢e and df. The
rest of work is the same as aforementioned processes.
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In addition, the aforementioned horizontal vanishing line is
assumed to be parallel to the image horizontal scan lines. How-
ever, we think that the effect of perspective normalization will be
better if employing an automatic approach instead of these
manual processes.

In this way, objects generated by these pixels are projected
onto a flat, and then features can be extracted away from the
influence of perspective. When applying the weights to feature
extraction, it is assumed that the foreground area changes quad-
ratically, whilst the total edge pixels change linearly. As a con-
sequence, each foreground segment pixel is weighted by the
original weight and the edge features are weighted by square-
roots of the weights. For the features based on the gray-level co-
occurrence matrix (GLCM) [40], we normalize them by weighting
the occurrence of each pixel pair when accumulating the co-
occurrence matrix.

3.2. Feature extraction

As the pivotal part of input for a regression model, feature
representation concerns the extraction, selection, and transforma-
tion of low-level visual properties in the frame. A ROI is manually
selected in two datasets in order to exclude spurious foreground
segments from other regions, as shown in Fig. 4. A popular
approach as in [2] is to combine several features to form a large
bank of features.

Foreground segment features: The foreground segment is the
most common or arguably descriptive representation for crowd
counting, which is obtained by the background subtraction. The
sample of foreground segment is shown in Fig. 5. Various holistic
features can be derived from the extracted foreground segment,
for example

® Area - the total number of pixels in the foreground segment.

a

a

® DPerimeter - the total number of pixels belong to the foreground
segment perimeter, computed with the dilation and erosion in
morphological operators.

® Perimeter edge orientation - the orientation histogram of the
foreground segment perimeter, generated by finding the max-
imum response to a set of Gabor filters at that point.

® Perimeter-area ratio - the ratio between the foreground
segment perimeter and area, which approximates the complex-
ity of the foreground segment shape.

Edge features: Foreground features capture the global proper-
ties of the segment, while edge features inside the segment
abstract complementary information about the local and internal
patterns. Intuitively, the low-density crowds tend to present
coarse edges, while the high-density crowds tend to present
complex edges. We employ the Canny edge detector [41] to extract
the edges from the segment. Fig. 5 shows the sample of the edge
image. Some common edge-based features are listed as follows:

® Total edge pixels - the total number of pixels in the edge image.

® Edge orientation - the orientation histogram of edges, gener-
ated in the same way as the perimeter edge orientation.

® Minkowski dimension - the Minkowski fractal dimension or
box-counting dimension of the edges, which counts how many
predefined structuring elements such as square are required to
fill the edges.

Texture features: The crowd texture contains significant infor-
mation about the number of people in a scene. Compared with the
low-density region, the high-density crowd region tends to exhibit
a stronger texture response, which has a distinctive local structure.
One of the common texture features is based on GLCM. A typical
process to obtain GLCM is that first quantizing the image into 8
gray-levels and using the foreground segment to mark it. The joint

Fig. 4. The regions of interest in two datasets. (a) The ROI of UCSD dataset and (b) the ROI of Mall dataset.
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probability or co-occurrence of neighboring pixel values, p(i,j| 0),
is then estimated for four orientations, @ € {0°,45°,90°, 135°}. After
extracting the co-occurrence matrix, a set of features can be
derived, including

® Homogeneity - the smoothness of texture, measured by
>2i;p(J10) /(A +1i—j]).

® Energy - the quadratic sum of GLCM element, which reflects
the uniformity and thickness degree of instances, measured by
>oip(A.j1 ).

® Entropy - the measure of information contained in the image,
representing the non-uniformity and complexity degree of
texture, measured by >=;;p(i. j| €)log p(i, j| 6).

Methodology

4.1. Label distribution

In this subsection, we cite the discussion in [14] to illustrate the
formulation of label distribution, and explain how to utilize it in
our framework.

Each label y in a label distribution is assigned a real number
P(y) <[0,1], which represents the degree that describes the
instance. The sum of these numbers assigned to all labels is 1,
meaning the full description of the instance. In traditional ways, an
instance is labelled with a single label or multiple labels, which

Z. Zhang et al. /| Neurocomputing 166 (2015) 151-163

can be viewed as several special cases of the label distribution.
However, by the definition of the label distribution given in
Section 1, the general case is considered to be the most effective
representation of an instance. Fig. 6 shows some examples of
typical label distributions for five class labels, including single-
label, multi-label and general case. For the single-label case (a), the
instance is fully described by the label y;, so P(y;)=1. For the
multi-label case (b), the instance is described by labels y, and y4
together, so P(y,)=P(y,)=1/2. Finally, (c) represents a general
case of the label distribution, which only restrained by »-,P(y) = 1.

It is necessary to emphasize the meaning of P(y), which is not
the probability that the class y labels the instance correctly, but the
degree that the class y describes the instance. Thus, any label with
a non-zero P(y) is a correct label to describe the instance but just
with the different importance valued by P(y). Based on this
difference, it can be clearly distinguished the label distributions
from the possible labels, where the basic assumption is that each
instance only has one correct label. Obviously, P(y) is not a
probability by definition, but they have something in common, i.
e. P(y) €[0,1] and >°,P(y)=1. So many theories and methods in
statistics can be applied to label distribution.

Furthermore. both the label distribution and the category
membership used in fuzzy classification utilize the ambiguity of
the instance, but they are different in principle. In fuzzy classifica-
tion, the category membership aims to express an objective
measure (e.g., ‘the height of people=185 cm’) of the instance by
a subjective category (e.g., ‘tall’), which is a conceptual

Fig. 5. Some samples of the foreground segment, the edge image of foreground segment, and the edge image on two datasets. (a) An original image in Mall dataset, (b) a
sample of foreground segment in Mall dataset, (c) a sample of foreground edge image in Mall dataset , (d) a sample of edge image in Mall dataset, (e) an original image in
UCSD dataset, (f) a sample of foreground segment in UCSD dataset, (g) a sample of foreground edge image in UCSD dataset, and (h) a sample of edge image in UCSD dataset.
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Fig. 6. Three cases of the label distribution.



Z. Zhang et al. /| Neurocomputing 166 (2015) 151-163

characteristic of the instance. Thus the ambiguity embodied by the
category membership is in the features of the instance, while the
final class label of the instance is unambiguous. On the contrary,
the ambiguity represented by the label distributions is in the class
label of the instance, while the features of the instance are
unambiguous. According to the comparison, it appears that pure
fuzzy methods are usually based on the setting of the designer,
while the label distribution is suitable to adopt the learning from
samples.

In this work, Gaussian distribution and triangle distribution are
applied to transform the label of an instance into a label distribu-
tion, due to their significant properties. As shown in Fig. 7, the
concentricity of Gaussian and triangle distribution makes it
possible to assign the highest probability in the distribution to
real label a, in order to ensure the leading position of « in the class
description. The monotonicity and symmetry allow us to decrease
the probabilities of other labels with the distance away from «,
which makes the label closer to the real label & contribute more to
the class description. In this way, it takes full advantage of the
similarity among the instances have adjacent class labels.

4.2. Label distribution learning

According to the methodology in [14], the process of label
distribution learning is summarized as using a training set
composed of feature set and label distributions to learn a regres-
sion function, which can generate a label distribution similar to
the input label distribution given a instance. Let X =R¢ denote
the input space and Y ={y;.,y,,....y.} denote the finite set of
possible class labels. The process of label distribution learn-
ing can be formally described as utilizing the training set
S={(x1,P1(¥)), (X2, P2(¥)), ..., (Xn, Pn(¥))}, where x; e X is an instance
and P;(y) is the distribution of all class labels y € Y corresponds to
X;, to learn a conditional p.d.f. p(y|x), where xe X and y € ).

In order to realize the learning process, a parametric model
p(y|x;6) is converted from the p(y|x) and the @ is the vector of
model parameters. In this way, the goal of LDL translates into
finding the @ that can generate a distribution similar to P{y) from
the training set S. And the similarity between two distributions is
measured by the Kullback-Leibler divergence, then, the best
model parameter vector #* can be computed by

P;
6" =arg mmzz <P (y)logp(y| iy)g)>

=arg gnaXZZPi(y)logp(yl xi: 0). M
iy

It is necessary to examine that the optimization criterion
shown in Eq. (1), which is based on the traditional learning

paradigms. For the supervised learning, an instance is associated
with a single label, thus P;(y)=04(y,y;), where &(a,b) is the
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Kronecker function and y; is the class label of x;. Consequently,
Eq. (1) can be simplified to the maximum likelihood criterion.
According to the maximum conditional entropy of p(y|x; @), it can
be proved that such a maximum entropy model has the exponen-
tial form:

1
pYIx;0) = Zexp <29kfk(& J’)> . 2
k

where f(x,y) is a feature function which depends on both the
instance x and the label y, Z =37, exp(3_,0if(x,y)) is the normal-
ization factor, and 6,'s are model parameters. In practice, the

features usually depend on the instance but not the class label,
thus Eq. (2) can be rewritten as

1
pYIx;0) = Zexp (Zﬁy,kgk(X)> , 3)
k
where gi(x) is a class-independent feature function.
Substituting Eq. (3) into the optimization criterion used in Eq.
(1) and considering the constraint >- P;(y) = 1, the target function
of 0 can be written as

T(0) = Pi(y)logp(y|x;; )
iy
=Y P> _Oyigix))
iy k

=Y log> “exp (Zay,kgk(xi)> : 4

i y k

Because it cannot generate a closed form solution by directly
setting the gradient of Eq. (4) w.r.t. @ to zero, the optimization of
Eq. (4) uses a strategy similar to improved iterative scaling (IIS), a
well-known algorithm for maximizing the likelihood of the max-
imum entropy model. IIS starts with an arbitrary set of parameters,
then for each step, it updates the current estimate of the
parameters & with €+A, where A maximizes a lowerbound of
the likelihood changes between the adjacent steps. This iterative
process, nevertheless, needs to be migrated to the new target
function T(#). Furthermore, the constraint needed for IIS on the
feature functions f(x,y) > 0 (hence g;(x) > 0) should be removed
to ensure the freedom in choosing any feature extractors suitable
for the data.

In detail, the change of T(0) between the adjacent steps is

TO+4)-T©O)=> Pi (y)Zéykgk(xl

iy
- Zlog Zp(yl Xi: 0)exp (Z KEk(X) >

where 6, is the increment of 6,,. Applying the inequation

()
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Fig. 7. Typical label distributions for people-count « used in this work. (a) Gaussian distribution and (b) triangle distribution.
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—logx>1—x yields

TO+A)—TO) = > Pi(y)> Sy rgXi)+n

iy k

- pIxi; O)exp (Zéy,kgk(xi)> : (6)
k

iy
Differentiating the right side of Eq. (6) w.r.t. 5, yields coupled
equations of &, which are hard to be solved. To decouple the

interaction between d,, Jansen's inequality is applied here, i.e., for
a p.d.f. p(x):

exp (Zp(x)q(x)) <> pX)expq(). @)
The last term of Eq. (6) can then be written as

Sp(y1x: Oexp <25y,ks<gk<xi)>g#<xi>'§§(&’ﬂ))'>, ®)

Ly k 1

where g#(x;) = >, 1gk(x)| and s(gi(x;)) is the sign of g (x;). Since
| 2k(x:)| /g% (x;) can be viewed as a p.d.f., Eq. (6) can be rewritten as

TO+4)—-T©O)= > P> Sygux)+n
iy k

~S i S LB a5, si@xngt o). ()
o = &)
Denote the right side of Eq. (9) as A(A|#) which is a lower-
bound of T(@+A4)—T(0). Setting the derivative of A(A|0) w.r.t. 6,
to zero gives

0A(A | 0)
aéyk

= ZPiW)glc(Xi)
- ZPO’ | Xi; )1 (X)eXP(8y kS(,(x)))g" (%)) = 0. (10

The advantage of about Eq. (10) is that 6, appears alone, and
therefore can be solved one by one through nonlinear equation
solvers, such as the Gauss-Newton method. This algorithm is
called IIS-LDL and summarized in Algorithm 1.

Algorithm 1. [IS-LDL.

Input: The training set S = {(x;.Pi(y))}{_ ;, the feature
functions gi(x)
Output: The conditional p.d.f. p(y|x; )
Initialize the model parameter vector 6°;
i<0;
repeat

i—i+1;

Solve Eq. (10) for dy;

0 —6""+A;
until TO)-TO' M <e;
P x: 0) — Lexp(3" 0, 8k (X)).

0 NSO BAWN =

After p(y|x) is learned from the training set, given a new
instance x/, its label distribution p(y|x’) can be first calculated.
The availability of the explicit label distribution for X' provides
many possibilities in classifier design. To name just a few, if the
expected class label for x' is single, then the predicted label
could be y*=argmax,p(y|x’), together with an confidence
measure p(y*|x’). If multiple labels are allowed, then the pre-
dicted label set could be L=y|p(y|x) > & where & is a prede-
fined threshold. Moreover, all the labels in L can be ranked
according to their probabilities.

5. Experiments
5.1. Datasets and evaluation settings

Datasets: Experiments are conducted on two benchmarking
datasets: the UCSD dataset and the Mall dataset which represent
the outdoor and the indoor scene respectively. The UCSD dataset
was collected from a stationary digital camcorder overlooking a
pedestrian walkway at University of California, San Diego (UCSD).
The Mall dataset was captured using a publicly accessible surveil-
lance camera in a shopping mall. There are some detailed
information of the two datasets in Table 1. As shown in Fig. 8,
both of these datasets contain the perspective distortion, the
objects occlusion, and the objects shadow. Specifically, the abnor-
mal pedestrians have more effect in the UCSD dataset, while the
challenging lighting condition and the glass surface reflection
influence more in the Mall dataset.

Evaluation protocol: For the UCSD dataset, we employed Frames
601-1400 for training and the rest for testing. For the Mall dataset,
the first 800 frames are used to train and the remaining 1200
frames to test. The above settings follow the same training and
testing partition as in [12].

Evaluation metrics: We utilized three evaluation metrics as in
[11], namely mean absolute error (MAE) €455, mean squared error
(MSE) &sqr, and mean deviation error (MDE) &gey:

N N N >
Eaps = S IVi- Vil =i S, g = S VY
abS_N,] i ils Sqr—N' « i i) dev—I\L1 v; >
i= i= i=

where N is the total number of test frames, v; is the actual number
of people, and v; is the predicted number of people in ith frame.

5.2. Comparison among different distributions

Three types of distribution models are employed in our
experiments. In detail, the single distribution only utilizes the real
label, the triangle distribution utilizes these class labels within a
triangle, and the Gaussian distribution utilizes all class labels. In
addition to the coverage types of distributions, the performance of
LDL method can also be affected by the parameters of label
distributions. Fig. 9 shows the MAE of IIS-LDL on the Gaussian
distribution with different standard deviations ¢ =0,1,...,4, the
triangle distribution with different bottom lengths [=2,4,...,16,
and the single distribution expressed by 6=0 or [=2. Furthermore,
looking into the three distributions that IIS-LDL works on, the MAE
can be ranked as triangle < Gaussian < single. The comparison
between the ground truth and the optimal prediction is shown
in Fig. 10.

The MAE associated with different distributions and para-
meters in Fig. 9 proves that different datasets have various optimal
parameters, according to the insufficiency and imbalance degree of
training data. In detail, with the number of people growing, the
number of training samples in Mall dataset varies more smoothly
than the one in UCSD dataset, as shown in Fig. 11. Whilst, the
optimal parameters of Mall dataset is more concentrative than the
one of UCSD dataset. For instance, the experimental results on the
Mall dataset obtain the best performance when o=1 in the

Table 1

Dataset properties: Nyis the number of frames, R is the resolution, FPS is the frame
per second, D is the density (minimum and maximum number of people in the
ROI), and T, is the total number of pedestrian instances.

Data N¢ R FPS D T,
uUcCsD 2000 238%158 10 11-46 49 885
Mall 2000 640:480 <2 13-53 62325
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Fig. 8. (a) and (b) are example samples in the UCSD dataset, and (c) and (d) are example samples in the Mall dataset.

Gaussian distribution and [=4 in the triangle distribution. How-
ever, the optimal parameters for the UCSD dataset are 6=3 and
[=12. Consequently, it is obvious that the optimal distribution will
be more dispersive when the insufficiency and imbalance of
training data appear more serious. For a certain dataset, too
concentrative or too dispersive distribution would lead to the
performance deterioration, which is consistent with our imagine
that the related classes are helpful but should not threaten the
priority of the real class. Thus, the scale of the distribution is
crucial to achieve a good performance.

5.3. Comparison with state-of-the-arts

Table 2 compares the performances of seven methods, all based
on regression and using the two benchmarking datasets. For
experimental results on the UCSD dataset, the MAE decreases to
2.08 when the regression function is generated by the IIS-LDL
method. For the Mall dataset, the MAE further decreases to 2.69
when employing the IIS-LDL method, which is a significant
improvement compared with other methods.

As for the feature-based regression approaches, a major chal-
lenge for generating a satisfactory regression function is insuffi-
cient and imbalanced training data. IIS-LDL method reuses the
information of training data in the learning process, which aims to
reduce the effect of insufficiency and imbalance of training data.
Compared with other six methods, IIS-LDL method is able to
increase the training data significantly. By labelling training
samples with label distributions, the information of a training
sample contributes to not only the learning of its real class, but
also the learning of its neighboring classes. Because of the IIS-LDL
method, the classes with insufficient training data are supplied
with more training data, which belong to their adjacent classes.
Thus, the IIS-LDL method can generate a better regression func-
tion, which leads to an excellent performance.

Specifically, the CA-RR method performs slightly better than
the IIS-LDL method on UCSD dataset, but far less than that on Mall
dataset. The result proves that both label distributions and

cumulative attributes are suitable to the problem of crowd count-
ing, however, the IIS-LDL method is more robust than CA-RR
method due to its steady performance on two datasets.

5.4. Against insufficient and imbalanced training data

According to the discussion in Section 1, the insufficient and
imbalanced training data is one of the major challenges for
learning a good regression function. The insufficiency of training
data reflects in its little number of samples belonging to some
classes, while the imbalance means the samples of different
classes have a great quantity variance. The utilization of label
distribution learning for crowd counting aims to reduce the effect
of insufficiency and imbalance, then generates an adequate regres-
sion function.

In this subsection, we conduct two extra experiments to verify
the effect of label distributions against the insufficiency and
imbalance of training data. The first experiment aims to confirm
the effect of label distributions against the insufficiency of training
data, in other words, it will show that label distributions indeed
perform better than single label on insufficient training data.

In the first experiment, it picks up the most insufficient 10
classes from training data in two datasets, then abstracts the
predicted results associated with these classes in testing data from
aforementioned experimental results. Finally, evaluation of these
extracted results and comparison of the performance of three
distributions are shown in Tables 3 and 4.

Observably, the performances of Gaussian distribution and
triangle distribution are better than that of single distribution,
which successfully evidences the effect of label distributions on
insufficient training data. Based on the theory of label distribution
learning, a training sample contributes to not only the learning of
its real label but also the learning of its neighboring labels. Thus,
the insufficient training data can be supplied by the samples
belonging to neighboring classes in the learning process. In this
way, it reduces the effect of insufficiency and generates a better
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Table 2
Performances comparison.

Methods UCSD Mall

MAE MSE MDE MAE MSE MDE
KRR 2.16 7.45 0.107 3.51 18.1 0.108
RFR 242 8.47 0.116 3.91 215 0.121
GPR 2.24 7.97 0.112 3.72 20.1 0.115
RR 2.25 7.82 0.110 3.59 19.0 0.110
MORR 2.29 8.08 0.109 3.15 15.7 0.097
CA-RR 2.07 6.86 0.102 343 17.7 0.105
IIS-LDL 2.08 7.25 0.098 2.69 121 0.082

Table 3

Performances comparison of three distributions against insufficient training data in
the UCSD dataset (Ngqin is the number of training data associated with the label,
and N, is the number of testing data).

Label Ntrain Ntest MAE
Single Gaussian Triangle

24 7 144 532 2.04 1.88
26 8 68 6.74 1.62 1.31
27 5 28 7.46 1.50 1.46
28 4 10 9.00 2.20 2.00
29 2 19 9.79 2.84 2.84
30 7 28 8.86 2.39 2.54
41 2 4 4.00 4.00 4.00
42 6 12 5.00 5.00 5.00
44 7 7 7.00 6.86 6.86
46 2 0 - - -

regression function, which makes the performance better than
single label learning.

Furthermore, the effect of label distributions against insuffi-
cient training data is different in degree due to the distribution of
training data. For instance, label distribution learning has an
unsatisfied performance on the minimum classes and maximum
classes in the dataset, due to the lack of adjacent classes and the
corresponding training data. As shown in Tables 3 and 4, the
comparison result indicates that label distribution learning has an
outperformance on classes far from the boundary classes (the
distributions of training data in Mall dataset and UCSD dataset are
shown in Fig. 11), i.e. classes from 24 to 30 in Table 3. However,
label distribution learning has a poor performance on classes near

Table 4
Performances comparison of three distributions against insufficient training data in
the Mall dataset.

Label Ntrain Ntest MAE
Single Gaussian Triangle

13 2 0 - - -

14 3 0 - - -

15 6 0 - - -

44 6 21 438 348 314
47 6 9 6.00 5.68 5.78
49 4 1 8.00 7.00 7.00
50 2 1 9.00 8.00 8.00
51 0 0 - - -

52 0 0 - - -

53 0 1 12.00 11.00 11.00

the boundary classes, i.e. classes from 41 to 46 in Table 3 and from
47 to 53 in Table 4.

The other experiment evaluates the effect of label distributions
against the imbalance of training data. In the experiment, training
data are approximately divided into seven groups according to
their labels, namely, a label group is composed of each five
adjacent labels. In order to make the training data more imbal-
anced, the label-based group is removed from training data one by
one (one removed group represents 12% missing label percentage).
Obviously, the performances of three distributions degrade when
more training data are removed, as shown in Fig. 12. However, the
Gaussian distribution and triangle distribution perform better than
single label. As a result of the LDL method, even training data are
removed, the corresponding classes can be learned from the
training data with neighboring labels. For instance, when the label
group which contains the training samples with labels 15-20 is
removed, the training samples with labels 21-30 can contribute to
the learning of classes 15-20 because of the label distributions. In
this way, the insufficient training data can be supplied signifi-
cantly, which reduce the imbalance of training data.

In a word, the insufficiency and imbalance of training data are
correlative. Supplying training data for the classes which have
insufficient training data reduces the imbalance of training data.
Thus, the LDL method could handle the imbalance of training data
effectively by increasing training data significantly in the learning
process.

In addition, according to the insufficiency and imbalance degree of
training data, the label distribution has various optimal parameters.
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dataset.

The more serious the insufficiency and imbalance of training data
appear, the more dispersedly the label distribution covers class labels.
Because more class labels can be covered if it uses a more dispersive
label distribution to describe the class of a training sample, and the
corresponding training data are supplied in the learning process.
Experimental results verify our aforementioned ratiocination that
label distributions are able to address the challenge of insufficient
and imbalanced training data, and label distribution learning method
is suitable for crowd counting.

6. Conclusions

This paper adopts the label distribution learning method into
the problem of crowd counting, where it labels training data with
label distributions and makes a training sample to contribute to
not only the learning of its real class but also the learning of its
neighboring classes. In this way, the training data are increased
significantly, and the classes with insufficient training data are
supplied with more training data, which belong to their adjacent
classes. As for the label distribution, apart from the type of
coverage, the parameters can also affect the performance of LDL
method. The optimal distribution for a dataset will be more
dispersive when the insufficiency and imbalance of training data
appear more serious. Experimental results confirm the effective-
ness of LDL method for crowd counting, and the strong robustness
to different datasets contain insufficient and imbalanced training
data. Though in this paper, we mainly focus on the crowd counting
problem, the LDL method could be also applied to other problems
which have the following two characteristics: (1) instances with
adjacent classes are correlative and (2) the training data is
insufficient and imbalanced.
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