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Facial Age Estimation by Learning
from Label Distributions
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Abstract—One of the main difficulties in facial age estimation is that the learning algorithms cannot expect sufficient and complete
training data. Fortunately, the faces at close ages look quite similar since aging is a slow and smooth process. Inspired by this
observation, instead of considering each face image as an instance with one label (age), this paper regards each face image as
an instance associated with a label distribution. The label distribution covers a certain number of class labels, representing the degree
that each label describes the instance. Through this way, one face image can contribute to not only the learning of its chronological age,
but also the learning of its adjacent ages. Two algorithms named IIS-LLD and CPNN are proposed to learn from such label distributions.
Experimental results on two aging face databases show remarkable advantages of the proposed label distribution learning algorithms
over the compared single-label learning algorithms, either specially designed for age estimation or for general purpose.

Index Terms—Age estimation, face image, label distribution, machine learning

✦

1 INTRODUCTION

PEOPLE’S behavior and preferences are different at differ-
ent ages [2], which indicates vast potential applications

of automatic age estimation. Among many age-related traits,
facial appearance might be the most common one that people
rely on for age estimation in daily life. As the typical example
shown in Fig. 1, the appearance of human faces exhibits
remarkable changes with the progress of aging. However, the
human estimation of facial age is usually not as accurate as
other kinds of facial information, such as identity, expression
and gender. Hence developing automatic facial age estimation
methods that are comparable or even superior to the human
ability in age estimation has become an attractive yet chal-
lenging topic emerging in recent years [9].

One of the early works on exact age estimation was done
by Lanitis et al. [20], [19], where the aging pattern was
represented by a quadratic function called aging function.
Based on this, they proposed the WAS (Weighted Appearance
Specific) method [20] and the AAS (Appearance and Age
Specific) method [19]. Later, Geng et al. [12], [11] proposed
the AGES algorithm based on the subspace trained on a
data structure called aging pattern vector. After that, various
methods were developed for facial age estimation. For ex-
ample, Fu et al. [8], [10] proposed an age estimation method
based on multiple linear regression on the discriminative aging
manifold of face images. Guo et al. [14] used the SVR (Sup-
port Vector Regression) method to design a locally adjusted
robust regressor for the prediction of human ages. They later
proposed to use the Biologically Inspired Features (BIF) [16]
and the Kernel Partial Least Squares (KPLS) regression [15]
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Fig. 1. The aging faces of one subject in the FG-NET
Database [20]. The chronological ages are given under
the images.

for age estimation. Yan et al. [36] regarded age estimation as a
regression problem with nonnegative label intervals and solved
the problem through semidefinite programming. They also
proposed an EM algorithm to solve the regression problem and
speed up the optimization process [35]. By using the Spatially
Flexible Patch (SFP) as the feature descriptor, the age re-
gression was further improved with the patch-based Gaussian
mixture model [38] and the patch-based hidden Markov model
[41]. Noticing the advantages of personalized age estimation,
Zhang and Yeung [40] formulated the problem as a multi-
task learning problem and proposed the multi-task warped
Gaussian process to learn a separate age estimator for each
person. In order to build a robust facial age estimation system,
Ni et al. [22], [23] proposed a method based on the mining of
the noisy aging face images collected from the web images and
videos. One of the most recent progresses was made by Chang
et al. [3], who transformed an age estimation task into multiple
cost-sensitive binary classification subproblems, and solved the
problem with an ordinal hyperplane ranking algorithm.

Although a number of algorithms have been successfully
developed for facial age estimation, many challenges still
remain, among which perhaps the most prominent one is that
the learning algorithms cannot expect sufficient and complete
training data [11], [40]. Since different people age differently
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[11], a ‘sufficient and complete’ data set should contain the
complete aging patterns of as many people as are necessary to
represent the whole population. However, the aging progress
cannot be artificially controlled. The collection of the aging
images thus usually requires great effort in searching for
photos taken years ago, and future images cannot be acquired.
In practice, almost nobody can guarantee to have at least one
photo at each of his/her past ages. Consequently, it is very rare
that the complete aging pattern of a person can be successfully
collected. Moreover, age is a concept that can be gradually
refined from years to months, and even to days. It is practically
impossible to have one or more instances at each of these
aging points. Due to the above reasons, the aging data can
hardly be ‘sufficient and complete’. The available data sets
[20], [27] typically just contain a very limited number of aging
images for each person, and the images at the higher ages are
especially rare.

Without sufficient and complete training data, additional
knowledge about the aging faces can be introduced to reinforce
the learning process. By another close look at Fig. 1, one may
find that the faces at the close ages look quite similar. This
results from the fact that aging is a slow and gradual process.
For example, although a person on the day before his 26’th
birthday is still of the age 25, his facial appearance will be
almost exactly the same one day later when he turns 26 years
old. So, while his chronological age on the day is 25, the age
26 can also be used to describe his facial appearance. This
is consistent with the real life experience that people usually
predict another person’s facial age in the way like “around 25
years old”, which indicates using not only 25, but also the
neighboring ages to describe the appearance of the face. In
this sense, although the chronological age is unambiguous, the
facial appearance age is ambiguous, i.e., multiple age numbers
might be used to describe the appearance of one face.

Inspired by this observation, the basic idea behind this
paper is to utilize the images at the neighboring ages while
learning a particular age. This is achieved by introducing a
new labeling method, i.e., assigning a label distribution to
each image rather than a single label of the chronological age.
The label distribution covers a certain number of neighboring
ages, representing the degree that each age describes the facial
appearance. A suitable label distribution will make a face
image contribute to not only the learning of its chronological
age, but also the learning of its neighboring ages. Compared
with the traditional ways of labeling (e.g., single-label and
multi-label [32]) in supervised learning, label distribution
provides more flexibility in representing ambiguity, which is
further discussed in Section 2. Accordingly, the algorithms
learning from label distributions should be able to deal with
such ambiguity, which is further discussed in Section 3. In this
paper, two novel algorithms for label distribution learning are
proposed and applied to the problem of facial age estimation.

The rest of the paper is organized as follows. First, the
concept of label distribution is introduced in Section 2. Then,
two label distribution learning algorithms are proposed in
Section 3. After that, the experiments on facial age estimation
are reported in Section 4. Finally, the conclusions are drawn
and some discussions of future work are given in Section 5.
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Fig. 2. Three cases of label distribution: (a) single label,
(b) multiple labels, and (c) a general case of label distri-
bution.

2 LABEL DISTRIBUTION

In the label distribution of an instance x, a real number
dyx ∈ [0, 1] called description degree is assigned to each
label y, representing the degree that y describes x. The
description degrees of all the labels sum up to 1, indicating a
full class description of the instance. Since age is essentially
a continuous time spectrum, the age label distribution can
be defined as a continuous distribution. But in practice, age
is usually measured in years, which is actually a discrete
sampling over the time spectrum. Thus the label distribution
is defined as a discrete distribution in this paper. Under this
definition, the traditional ways to label an instance with a
single label or multiple labels can all be viewed as special
cases of label distribution. Some typical examples of the label
distributions for five class labels are shown in Fig. 2. For case
(a), a single label is assigned to the instance, so dy2

x = 1 means
that the class label y2 fully describes the instance. For case
(b), two labels (y2 and y4) are assigned to the instance, so
each of them by default describes 50% of the instance, i.e.,
dy2
x = dy4

x = 0.5. Finally, case (c) represents a general case
of label distribution satisfying the constraints dy

x ∈ [0, 1] and∑
y d

y
x = 1.

Special attention should be paid to the meaning of dy
x,

which is not the probability that y correctly labels x, but
the proportion that y accounts for in a full class description
of x. Thus, all the labels with a non-zero description degree
are actually the ‘correct’ labels to describe the instance, but
just with different importance measured by dy

x. Recognizing
this, one can distinguish label distribution from the previous
studies on probabilistic labels [30], [5], [25], where the basic
assumption is that there is only one ‘correct’ label for each
instance. Probabilistic labels are mainly used in the cases
where the real label of the instance cannot be obtained with
certainty. In practice, it is usually difficult to determine the
probability (or confidence) of a label. In most cases, it relies
on the prior knowledge of the human experts, which is a highly
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Fig. 3. Typical label distributions for the image at the
chronological age α: (a) Gaussian distribution and (b)
triangle distribution.

subjective and variable process. As a result, the problem of
learning from probabilistic labels has not been extensively
studied to date. Fortunately, although not a probability by
definition, dyx still shares the same constraints with probability,
i.e., dyx ∈ [0, 1] and

∑
y d

y
x = 1. Thus many theories and

methods in statistics can be applied to label distributions.
It is also worthwhile to distinguish description degree from

the concept membership used in fuzzy classification [42].
Membership is a truth value that may range between com-
pletely true and completely false. It is designed to handle the
status of partial truth which often appears in the non-numeric
linguistic variables. For example, the age 25 might have a
membership of 0.7 to the linguistic category ‘young’, and 0.3
to ‘middle age’. But for a particular face, its association with
the chronological age 25 will be either completely true or
completely false. On the other hand, description degree reflects
the ambiguity of the class description of the instance, i.e.,
one class label may only partially describe the instance. For
example, due to the appearance similarity of the neighboring
ages, both the chronological age 25 and the neighboring ages
24 and 26 can be used to describe the appearance of a 25-
year-old face. For each of 24, 25, and 26, it is completely
true that it can be used to describe the face (in the sense
of appearance). Each age’s description degree indicates how
much the age contributes to the full class description of the
face.

The prior label distribution assigned to a face image at
the chronological age α should satisfy the following two
properties: 1) The description degree of α is the highest in
the label distribution, which ensures the leading position of the
chronological age in the class description; 2) The description
degree of other ages decreases with the increase of the distance
away from α, which makes the age closer to the chronological
age contribute more to the class description. While there are
many possibilities, Fig. 3 shows two kinds of prior label
distributions for the images at the chronological age α, i.e.,
the Gaussian distribution and the triangle distribution. Note
that the age y is regarded as a discrete class label in this
paper while both the Gaussian and triangle distributions are
defined by continuous density functions p(y). Directly letting
dyx = p(y) might induce

∑
y d

y
x �= 1. Thus a normalization

process dyx = p(y)/
∑

y p(y) is required to ensure
∑

y d
y
x = 1.

3 LEARNING FROM LABEL DISTRIBUTIONS

3.1 Problem Formulation

As mentioned before, many theories and methods from statis-
tics can be borrowed to deal with label distributions. First

of all, the description degree dy
x could be represented by the

form of conditional probability, i.e., dy
x = P (y|x). This might

be explained as that given an instance x, the probability of
the presence of y is equal to its description degree. Then, the
problem of label distribution learning can be formulated as
follows.

Let X = R
q denote the input space and Y =

{y1, y2, · · · , yc} denote the finite set of possible
class labels. Given a training set S = {(x1, D1),
(x2, D2), · · · , (xn, Dn)}, where xi ∈ X is an
instance, Di = {dy1

xi
, dy2

xi
, · · · , dyc

xi
} is the label

distribution associated with xi, the goal of label dis-
tribution learning is to learn a conditional probability
mass function p(y|x) from S, where x ∈ X and
y ∈ Y .

For the problem of age estimation, suppose the same shape
of prior label distribution (e.g., Fig. 3) is assigned to each face
image, then the highest description degree for each image will
be the same, say, pmax. Since the description degree of the
chronological age should always be the highest in the label
distribution, for a face image xα at the chronological age α,
the label distribution learner should output

p(α|xα) = pmax, (1)

p(α+Δ|xα) = pmax − pΔ, (2)

where pΔ ∈ [0, 1] is the description degree difference from
pmax when the age changes to a neighboring age α + Δ.
Similarly, for a face image xα+Δ at the chronological age
α+Δ,

p(α+Δ|xα+Δ) = pmax. (3)

As mentioned before, the faces at the close ages are quite
similar, i.e., xα+Δ ≈ xα, thus,

p(α+Δ|xα+Δ) ≈ p(α+Δ|xα). (4)

So, pΔ is a small positive number, which indicates that
p(α + Δ|xα) is just a little bit smaller than p(α|xα). Note
that the above analysis does not depend on any particular form
of the prior label distribution except that it must satisfy the
two properties mentioned in Section 2. This proves that when
applied to age estimation, label distribution learning tends to
learn the similarity among the neighboring ages, no matter
what the (reasonable) prior label distribution might be.

Suppose p(y|x) is a parametric model p(y|x; θ), where θ is
the vector of the model parameters. Given the training set S,
the goal of label distribution learning is to find the θ that can
generate a distribution similar to Di given the instance xi. If
the Kullback-Leibler divergence is used as the measurement of
the similarity between two distributions, then the best model
parameter vector θ∗ is determined by

θ∗ = argmin
θ

∑
i

∑
j

(
d
yj
xi ln

d
yj
xi

p(yj |xi; θ)

)

= argmax
θ

∑
i

∑
j

d
yj
xi ln p(yj|xi; θ). (5)

It is interesting to examine the traditional learning
paradigms under the optimization criterion shown in Eq. (5).
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For single-label learning (see Fig. 2(a)), dyj
xi = Kr(yj , y(xi)),

where Kr(·, ·) is the Kronecker delta function and y(x i) is the
single class label of xi. Consequently, Eq. (5) can be simplified
to

θ∗ = argmax
θ

∑
i

ln p(y(xi)|xi; θ). (6)

This is actually the maximum likelihood (ML) estimation of
θ. The later use of p(y|x; θ) for classification is equivalent to
the maximum a posteriori (MAP) decision.

For multi-label learning [32], each instance is associated
with a label set (see Fig. 2(b)). Consequently, Eq. (5) can be
changed into

θ∗ = argmax
θ

∑
i

1

|Yi|
∑
y∈Yi

ln p(y|xi; θ), (7)

where Yi is the label set associated with xi. Eq. (7) can
be viewed as a ML criterion weighted by the reciprocal
cardinality of the label set associated with each instance. In
fact, this is equivalent to first applying the Entropy-based Label
Assignment (ELA) [32], a well-known technique dealing with
multi-label data, to transform the multi-label instances into the
weighted single-label instances, and then optimizing the ML
criterion based on the weighted single-label instances.

It can be seen from the above analysis that with proper con-
straints, a label distribution learning model can be transformed
into the commonly used methods for single-label or multi-
label learning. On the one hand, label distribution learning
is a more general learning framework which includes single-
label learning as its special case. On the other hand, current
multi-label learning is mainly concerned with classification. If
we consider that one instance belongs to multiple labels with
description degrees, then this is equivalent to label distribution
learning. Thus, label distribution learning can be regarded as
a new branch of multi-label learning, being parallel to multi-
label classification. Accordingly, the algorithms that learn from
the label distributions should be designed within this new
learning framework. In the rest of this section, two different
label distribution learning algorithms will be proposed. The
first one is called IIS-LLD, which assumes the form of p(y|x)
to be the maximum entropy model [1]. The second one is called
CPNN, which models p(y|x) by a three layer neural network
without assumption of the form of p(y|x).

3.2 The IIS-LLD Algorithm

Suppose fk(x, y) is a feature function which depends on both
the instance x and the label y. Then, the expected value of
fk w.r.t. the empirical joint distribution p̃(x, y) in the training
set is

f̃k =
∑
y

∫
p̃(x, y)fk(x, y) dx. (8)

The expected value of fk w.r.t. the conditional model p(y|x; θ)
and the empirical distribution p̃(x) in the training set is

f̂k =
∑
y

∫
p̃(x)p(y|x; θ)fk(x, y) dx. (9)

One reasonable choice of p(y|x; θ) is the one that has the
maximum conditional entropy subject to the constraint f̃k =

f̂k. It can be proved [1] that such a model (a.k.a. the maximum
entropy model) has the exponential form

p(y|x; θ) = 1

Z
exp

(∑
k

θkfk(x, y)

)
, (10)

where Z =
∑

y exp (
∑

k θkfk(x, y)) is the normalization
factor and θk is the k-th model parameter in θ. In practice,
the features usually depend only on the instance but not on
the class label. Thus, Eq. (10) can be rewritten as

p(y|x; θ) = 1

Z
exp

(∑
k

θy,kgk(x)

)
, (11)

where gk(x) is a class-independent feature function.
Substituting Eq. (11) into Eq. (5) and recognizing

∑
j d

yj
xi =

1 yields the target function of θ

T (θ) =
∑
i,j

d
yj
xi ln p(yj |xi; θ)

=
∑
i,j

d
yj
xi

∑
k

θyj,kgk(xi)−

∑
i

ln
∑
j

exp

(∑
k

θyj ,kgk(xi)

)
. (12)

Directly setting the gradient of Eq. (12) w.r.t. θ to zero
does not yield a closed-form solution. Thus the optimization
of Eq. (12) uses a strategy similar to Improved Iterative
Scaling (IIS) [24], a well-known algorithm for maximizing
the likelihood of the maximum entropy model. IIS starts with
an arbitrary set of parameters. Then for each step, it updates
the current estimate of the parameters θ to θ + Δ, where
Δ maximizes a lower bound to the change in likelihood
Ω = T (θ + Δ) − T (θ). This iterative process, nevertheless,
needs to be migrated to the new target function T (θ). Further-
more, the constraint on the feature functions required by IIS,
fk(x, y) ≥ 0 (hence gk(x) ≥ 0) should be removed to ensure
the freedom in choosing any feature extractors suitable for the
data.

In detail, the change of T (θ) between adjacent steps is

T (θ +Δ)− T (θ) =
∑
i,j

d
yj
xi

∑
k

δyj,kgk(xi)−

∑
i

ln
∑
j

p(yj |xi; θ) exp

(∑
k

δyj,kgk(xi)

)
, (13)

where δyj,k is the increment for θyj ,k. Applying the inequality
− lnx ≥ 1− x yields

T (θ +Δ)− T (θ) ≥
∑
i,j

d
yj
xi

∑
k

δyj ,kgk(xi) + n−

∑
i,j

p(yj|xi; θ) exp

(∑
k

δyj ,kgk(xi)

)
. (14)

Differentiating the right side of Eq. (14) w.r.t. δyj,k yields
the coupled equations of δy,k which are hard to be solved.
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Algorithm 1: IIS-LLD

Input: The training set S = {(xi, Di)}ni=1, the feature
functions gk(x), and the convergence criterion ε

Output: p(y|x; θ)
1 Initialize the model parameter vector θ (0);
2 i← 0;
3 repeat
4 i← i+ 1;
5 Solve Eq. (18) for δy,k;
6 θ(i) ← θ(i−1) +Δ;
7 until T (θ(i))− T (θ(i−1)) < ε;

8 p(y|x; θ)← 1
Z exp

(∑
k θ

(i)
y,kgk(x)

)
;

To decouple the interaction among δy,k, Jensen’s inequality is
applied here, i.e., for a probability mass function p(x),

exp

(∑
x

p(x)q(x)

)
≤
∑
x

p(x) exp (q(x)) . (15)

The last term of Eq. (14) can be rewritten as

∑
i,j

p(yj|xi; θ) exp

(∑
k

δyj ,ks(gk(xi))g
#(xi)

|gk(xi)|
g#(xi)

)
, (16)

where g#(xi) =
∑

k |gk(xi)| and s(gk(xi)) is the sign of
gk(xi). Since |gk(xi)|/g#(xi) can be viewed as a probability
mass function, Jensen’s inequality can be applied to Eq. (14)
to yield

T (θ +Δ)− T (θ) ≥
∑
i,j

d
yj
xi

∑
k

δyj,kgk(xi) + n−

∑
i,j

p(yj |xi; θ)
∑
k

|gk(xi)|
g#(xi)

exp(δyj ,ks(gk(xi))g
#(xi)). (17)

Denote the right side of Eq. (17) as A(Δ|θ), which is a lower
bound to T (θ+Δ)−T (θ). Setting the derivative of A(Δ|θ)
w.r.t. δyj ,k to zero gives

∂A(Δ|θ)
∂δyj ,k

=
∑
i

d
yj
xigk(xi)−

∑
i

p(yj|xi; θ)gk(xi) exp(δyj ,ks(gk(xi))g
#(xi)) = 0. (18)

What is nice about Eq. (18) is that δy,k appears alone,
and therefore can be solved one by one through nonlinear
equation solvers, such as the Gauss-Newton method. This
algorithm is named as IIS-LLD (i.e., IIS - Learning from Label
Distributions) and summarized in Algorithm 1.

3.3 The CPNN Algorithm

One of the main assumptions made in the IIS-LLD algorithm
is the derivation of p(y|x) as the maximum entropy model
[1]. While it is a reasonable assumption without additional
information, there is no particular evidence supporting it in
the problem of age estimation. Alternatively, using a three
layer neural network to approximate p(y|x) is one approach

to removing this assumption. A natural design of such a neural
network would have q (the dimensionality of x) input units
which receive x, and c (the number of different labels) output
units each of which outputs the description degree of a label
y. However, for the problem of age estimation, the number of
ages c is usually large (e.g., c = 70 in the FG-NET database
[20]), which results in many weights between the hidden layer
and the output layer. With limited training samples, it will be
difficult for the learning algorithm to converge if there are too
many weights in the neural network.

Fortunately, since age is a totally ordered label (i.e., a non-
negative integer), it can be regarded as a special numerical
input into the neural network. Thus the input of the network
includes both x and y, and the output of the network is a
single value which is expected to be p(y|x). The network
is therefore called Conditional Probability Neural Network
(CPNN). Sarajedini et al. [29] once proposed an unsupervised
learning algorithm for conditional probability density function
(pdf) estimation, which is based on Modha’s neural network
pdf estimator [21]. The CPNN proposed in this paper has a
similar network structure but is trained in a supervised manner,
i.e., the true label distributions are known when training the
neural network.

In Modha’s pdf estimator [21], the input of the neural
network is x and the output is p(x). The activation function
for the hidden and output layers are the sigmoid function and
the exponential function, respectively. The output of the neural
network can be written as

p(x; θ) = exp(c(θ) + f(x; θ)), (19)

where θ is the weight vector. The net activation of the output
unit f(x; θ) is

f(x; θ) =

M2∑
m=1

θ31mG

(
M1∑
k=0

θ2mkxk

)
, (20)

where G is the sigmoid activation function, M l is the number
of units on the l-th layer, and θ lmk is the weight of the m-th
unit on the l-th layer associated with the output of the k-th
unit on the (l − 1)-th layer. The input vector x is augmented
with the bias input x0 ≡ 1. The bias c(θ) in Eq. (19) ensures
that

∫
p(x)dx = 1.

When the input includes both x and a discrete y, the output
becomes

p(x, y; θ) = exp(c(θ) + f(x, y; θ)). (21)

Thus the conditional probability can be calculated as

p(y|x; θ) =
p(x, y; θ)

p(x; θ)
=

p(x, y; θ)∑
y
p(x, y; θ)

=
exp(c(θ) + f(x, y; θ))∑
y
exp(c(θ) + f(x, y; θ))

=
exp(f(x, y; θ))∑
y
exp(f(x, y; θ))

. (22)
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As suggested by Sarajedini et al. [29], p(y|x; θ) can be
regarded as the output of another neural network:

p(y|x; θ) = exp(b(x; θ) + f(x, y; θ)). (23)

Comparing Eq. (23) with (22), the new bias should be

b(x; θ) = − ln

(∑
y

exp(f(x, y; θ))

)
. (24)

Recall Eq. (5), then the target function to minimize is

T (θ) = −
∑
i

∑
j

d
yj
xi ln p(yj |xi; θ)

= −
∑
i

∑
j

d
yj
xi(b(xi; θ) + f(xi, yj; θ)). (25)

The gradient of Eq. (25) w.r.t. θ is

∂T (θ)

∂θ
= −

∑
i

∑
j

d
yj
xi

(
∂b(xi; θ)

∂θ
+

∂f(xi, yj; θ)

∂θ

)
,

(26)
where

∂b(xi; θ)

∂θ
= −

∑
j

(
exp(f(xi, yj; θ))× ∂f(xi,yj;θ)

∂θ

)
∑

j exp(f(xi, yj ; θ))
. (27)

The partial derivative of f(xi, yj ; θ) in Eq. (26) and (27) can
be calculated by backpropagation [21], i.e.,

∂f(xi, yj; θ)

∂θlmk
= zi(l−1)kδ

i
lm, (28)

where zi(l−1)k is the output of the k-th unit on the (l − 1)-th
layer, and δilm is the partial derivative of f(xi, yj; θ) w.r.t. the
net activation of the m-th unit on the l-th layer I i

lm. For the
output layer (l = 3),

δi31 =
∂f(xi, yj ; θ)

∂Ii31
= 1. (29)

For the hidden layer (l = 2),

δi2m =
∂f(xi, yj ; θ)

∂Ii2m
= G′(Ii2m)δi31θ31m

= G′(Ii2m)θ31m. (30)

Finally, after ∂T (θ)/∂θ is obtained, the weights are updated
by the RPROP algorithm [28]. The CPNN algorithm is sum-
marized in Algorithm 2.

3.4 Classifiers based on Label Distribution Learning

After p(y|x) is learned from the training set, either through
IIS-LLD or CPNN, the label distribution of any new instance
x′ can be generated by p(y|x′). The availability of the
explicit label distribution for x′ provides many possibilities
in classifier design. To name just a few, if the expected
class label for x′ is single, then the predicted label could be
y∗ = argmaxy p(y|x′), together with a confidence measure
p(y∗|x′). If multiple labels are allowed, then the predicted
label set could be L = {y|p(y|x′) > ξ}, where ξ is a
predefined threshold. Moreover, all the labels in L can be
ranked according to their description degrees. For the problem

Algorithm 2: CPNN

Input: The training set S = {(xi, Di)}ni=1, the number
of hidden layer units M2, and the convergence
criterion ε

Output: p(y|x; θ)
1 Initialize the weights of the neural network θ (0);
2 i← 0;
3 repeat
4 i← i+ 1;
5 Calculate ∂T (θ)/∂θ by Eq. (26);
6 Get θ(i) by updating θ(i−1) with RPROP;
7 until T (θ(i))− T (θ(i−1)) < ε;
8 p(y|x; θ)← the output of the neural network;

of exact age estimation, the predicted age could be the one
with the maximum description degree. For the problem of age
range estimation, the predicted age range could be the one
with the maximum sum of description degrees of all the ages
within an age range.

4 EXPERIMENTS

4.1 Methodology

Two data sets are used in the experiments. The first is the FG-
NET Aging Database [20]. There are 1, 002 face images from
82 subjects in this database. Each subject has 6-18 face images
at different ages. Each image is labeled by its chronological
age. The ages are distributed in a wide range from 0 to
69. Besides age variation, most of the age-progressive image
sequences display other types of facial variations, such as
significant changes in pose, illumination, expression, etc. A
typical aging face sequence in this database is shown in Fig. 1.

The second data set is the much larger MORPH database
[27]. There are 55, 132 face images from more than 13, 000
subjects in this database. The average number of images per
subject is 4. The ages of the face images range from 16 to
77 with a median age of 33. The faces are from different
races, among which the African faces account for about 77%,
the European faces account for about 19%, and the remaining
4% includes Hispanic, Asian, Indian, and other races. Some
typical aging faces in this database are shown in Fig. 4.

The feature extractor used for the FG-NET database is the
Appearance Model [6]. The main advantage of this model is
that the extracted features combine the shape and intensity
of the face images, both of which are important in the aging
progress. In this experiment, the first 200 model parameters
are used as the extracted features. The features used for
the MORPH database are the Biologically Inspired Features
(BIF) [16]. By simulating the primate visual system, BIF has
shown good performance in facial age estimation [16]. The
dimensionality of the BIF vectors is further reduced to 200
using Marginal Fisher Analysis (MFA) [37].

According to the chronological age of each face image, a
label distribution is generated using the Gaussian or triangle
distribution shown in Fig. 3. Then the label distribution learn-
ing algorithms (IIS-LLD and CPNN) are applied to the image
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TABLE 1
Human Tests on Age Perception

# Testees Testees’ Age MAE (HumanA) MAE (HumanB)
Data Set # Samples

Males Females Total Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

FG-NET 51 24 5 29 22 44 25 4.88 15.67 8.13 4.14 8.33 6.23
MORPH 60 28 12 40 16 64 26 5.47 13.28 8.24 4.78 11.03 7.23
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Fig. 4. Typical aging faces of two subjects in the MORPH
database [27]. The chronological ages are given under
the images.

set with the generated label distributions. The predicted age
for a test image x′ is determined by y∗ = argmaxy p(y|x′).
To study the usefulness of the adjacent ages, IIS-LLD and
CPNN are also applied to the special label distribution of
the single-label case shown in Fig. 2(a). The three kinds of
label distributions are denoted by “Gaussian”, “Triangle”, and
“Single”, respectively. Several existing algorithms specially
designed for the problem of facial age estimation are compared
as the baseline methods, which include OHRank [3], AGES
[11], WAS [20], and AAS [19]. Some conventional general-
purpose classification methods for single-label data are also
compared, which include kNN (k-Nearest Neighbors), BP
(Backpropagation neural network), C4.5 (C4.5 decision tree),
SVM (Support Vector Machine), and a fuzzy classifier ANFIS
(Adaptive-Network-Based Fuzzy Inference System) [17]. For
all of these general-purpose methods, age estimation is for-
mulated as a standard multi-class classification problem, i.e.,
each face is labeled by its chronological age, and the number
of classes is equal to the number of possible ages.

When generating the label distributions, the standard devia-
tion of the “Gaussian” distribution varies within four different
values 1, 2, 3 and 4. The bottom length of the “Triangle”
distribution also varies within four different values 4, 6, 8,
and 10. All of these label distribution settings are tested and
the best results are reported. For all the compared algorithms,
several parameter configurations are tested and the best results
are reported. For CPNN, the number of hidden layer units is
set to 400. For OHRank, the absolute cost function and the
RBF kernel are used. For AGES, the aging pattern subspace
dimensionality is set to 20. In AAS, the error threshold in
the appearance cluster training step is set to 3. For kNN,
k is set to 30 and Euclidean distance is used to find the
neighbors. The BP neural network has a hidden layer of 100

neurons with sigmoid activation functions. The parameters of
C4.5 are set to the default values of the J4.8 implementation
(i.e., the confidence threshold 0.25 for pruning and minimum
2 instances per leaf). SVM is implemented as the ‘C-SVC’
type in LIBSVM using the RBF kernel with the inverse width
of 1. Finally, the number of membership functions in ANFIS
is set to 2.

The performance of the age estimators is evaluated by MAE
(Mean Absolute Error), i.e., the average absolute difference
between the estimated age and the chronological age. The
algorithms are tested through the LOPO (Leave-One-Person-
Out) mode [12] on the FG-NET database, i.e., in each fold,
the images of one person are used as the test set and those
of the others are used as the training set. After 82 folds, each
subject has been used as test set once, and the final results are
calculated from all the estimates. Since there are more than
13, 000 subjects in the MORPH database, the LOPO test will
be too time-consuming. Thus the algorithms are tested through
the 10-fold cross validation on the MORPH database.

As an important baseline, the human ability in age percep-
tion is also tested. About 5% of the images from the FG-
NET database (i.e., 51 face images) and 60 images from the
MORPH database are uniformly sampled from the age ranges
shown in Table 4. These images are used as the test samples
presented to the human testees. All the testees are Chinese
students or staff members from the authors’ universities. Some
other ground truth of the human tests, including the number
of test samples, the number of testees, and the testees’ own
age, is shown in Table 1.

There are two stages in the human tests. In each stage, the
images are randomly presented to the testees, and the testees
are asked to choose one age from a given range (0-69 for FG-
NET and 16-77 for MORPH) for each image. The difference
between the two stages is that in the first stage (HumanA), only
the gray-scale face regions (i.e., the color images are converted
to the gray-scale images and the background of the images is
removed) are shown, while in the second stage (HumanB),
the whole color images are shown. Fig. 5 gives an example of
the same face shown in the HumanA test and HumanB test,
respectively. HumanA intends to test the age estimation ability
purely based on the intensity of the face image, which is also
the input to the algorithms, while HumanB intends to test the
age estimation ability based on multiple traits including face,
hair, skin color, clothes, background, etc.

In both the HumanA and HumanB tests, each testee is re-
quired to label all the test samples, and the MAE of each testee
is recorded. The minimum, maximum, and average MAE of
all the testees involved in each test are given in Table 1. The
average MAE can be regarded as a measurement of the human
accuracy in age estimation. As can be seen, the testees perform
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(a) (b)

Fig. 5. An example of the same face shown in (a) the
HumanA test, and (b) the HumanB test.

TABLE 2
MAE (in Years) of Different Age Estimators

Data SetMethod
FG-NET MORPH

Gaussian 5.77 (1, 1) 5.67±0.15 (1, 1)
IIS-LLD Triangle 5.90 (1, 0) 6.09±0.14 (1, 1)

Single 6.27 (1, 0) 6.35±0.17 (1, 1)

Gaussian 4.76 (1, 1) 4.87±0.31 (1, 1)
CPNN Triangle 5.07 (1, 1) 4.91±0.29 (1, 1)

Single 5.31 (1, 1) 6.59±0.31 (1, 1)

OHRank 6.27 (1, 0) 6.28±0.18 (1, 1)

AGES 6.77 (1, 1) 6.61±0.11 (1, 1)

WAS 8.06 (0, 1) 9.21±0.16 (1, 1)

AAS 14.83 (1, 1) 10.10±0.26 (1, 1)

kNN 8.24 (0, 1) 9.64±0.24 (1, 1)

BP 11.85 (1, 1) 12.59±1.38 (1, 1)

C4.5 9.34 (1, 1) 7.48±0.12 (1, 0)

SVM 7.25 (1, 1) 7.34±0.17 (1, 0)

ANFIS 8.86 (0, 1) 9.24±0.17 (1, 1)

Human HumanA 8.13 8.24
Tests1 HumanB 6.23 7.23
1 The human tests are performed on 5% samples from the FG-

NET database and 60 samples from the MORPH database.

remarkably better in the HumanB test than in the HumanA
test, which indicates that the additional information (hair, skin
color, clothes, background, etc.) provided in the HumanB test
is helpful to improve the human accuracy in age estimation.

4.2 Results

The MAEs of all the age estimators are tabulated in Table 2.
The standard deviations on the MORPH database are also giv-
en in the table. Note that the number of images for each person
in the FG-NET database varies dramatically. Consequently, the
standard deviation of the LOPO test on the FG-NET database
becomes unstable. So it is not shown in Table 2. The MAEs of
the algorithms higher than that of HumanA are highlighted by
boldface and those higher than that of HumanB are underlined.
Since the results of the human tests are the mean MAEs of
multiple testees, the two-tailed t-tests at the 5% significance
level are performed to see whether the differences between the
results of the human tests and the algorithms are statistically
significant. The results of the t-tests are given in the brackets
right after the MAE of each algorithm in Table 2. The number
‘1’ represents significant difference, ‘0’ represents otherwise.
The first number is the t-test result on HumanA, the second
is that on HumanB.

As can be seen, the overall performance of the label distribu-
tion learning algorithms (IIS-LLD and CPNN) is significantly
better than that of the single-label based algorithms, either
specially designed for age estimation (OHRank, AGES, WAS,
and AAS) or for general-purpose classification (kNN, BP,
C4.5, SVM, and ANFIS). There are mainly two reasons for the
good performance of the label distribution learning algorithms.
Firstly, the prior label distributions of the training samples
make it possible that one instance contributes to the learning
of multiple classes. Secondly, as discussed in Section 3.1,
the label distribution learning algorithms tend to learn the
similarity among the neighboring ages, no matter what the
(reasonable) prior label distribution might be. The second
reason also explains why the “Single” case of IIS-LLD or
CPNN can achieve state-of-the-art results even when the prior
label distribution in this case is equivalent to single label. Refer
back to Eq. (6), the learning target of the “Single” case is
to ensure the dominating position of the chronological age
in the label distribution. Although no prior knowledge about
the neighboring ages is given, the label distribution learning
algorithms can learn it based on the similarity of the face
images at the close ages.

In all cases, IIS-LLD and CPNN perform significantly
better than HumanA. Except for the “Triangle” and “Single”
cases of IIS-LLD on FG-NET, IIS-LLD and CPNN perform
even significantly better than HumanB. Considering that more
information is actually provided to the human testees in the
HumanB test, it can be concluded that under the experimental
settings of this paper, IIS-LLD and CPNN can both achieve
better performance than that of the human testees. However,
it would be too optimistic to claim that the algorithms can
outperform humans in general. The main reason is that people
usually perform better for faces belonging to their own race
than for those belonging to another race [4]. While most
images in the FG-NET and MORPH databases are Caucasian
and African faces, the testees involved in the human tests are
all Chinese. Thus the results of the human tests are actually
biased toward a more difficult task: estimate the age of the
faces from a different race.

The comparison between IIS-LLD and CPNN in Table 2
shows clear advantage of CPNN. There are mainly two
reasons why CPNN performs better. Firstly, CPNN learns
p(y|x) without prior assumptions of its form, while IIS-LLD
assumes p(y|x) to be the maximum entropy model, which
does not necessarily match the problem of age estimation well.
Secondly, all the class labels share the same set of model
parameters in CPNN while IIS-LLD learns the parameters for
each class label separately, i.e., the θy,k in Eq. (11) can be
learned separately for each y. Thus CPNN can better utilize the
correlation among the class labels. Nevertheless, there are also
at least two disadvantages of CPNN compared to IIS-LLD.
Firstly, relying more on the training data than IIS-LLD makes
CPNN more vulnerable to overfitting, which can be evidenced
by its higher standard deviations in Table 2. Secondly, in IIS-
LLD, the difference of the target function values between the
adjacent steps is maximized, and the parameter increment δyj,k

in Eq. (18) appears alone. So, IIS-LLD runs faster than CPNN.
The pros and cons of these two label distribution learning
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Fig. 6. The performance on different “Gaussian” distributions (with different σ) and different “Triangle” distributions
(with different l): (a) IIS-LLD on FG-NET, (b) IIS-LLD on MORPH, (c) CPNN on FG-NET, and (d) CPNN on MORPH.

TABLE 3
Pros and Cons of IIS-LLD and CPNN

Pros Cons

IIS-LLD

• Faster
• Less vulnerable to over-

fitting

• Prior assumption of max-
imum entropy model

• Separate model parame-
ters for each label

CPNN

• No assumption of the
form of p(y|x)

• The labels share the
same model parameters

• Slower
• More vulnerable to over-

fitting

algorithms are summarized in Table 3.
Further looking into the three label distribution cases reveals

that the MAE of both IIS-LLD and CPNN can be ranked
as: “Gaussian” < “Triangle” < “Single”. The “Gaussian”
distribution utilizes all the neighboring ages, the “Triangle”
distribution utilizes those ages within the triangle, and the
“Single” distribution only utilizes the chronological age. This
supports the idea to use suitable label distributions to cover as
many as possible correlated class labels.

In addition to the coverage of the distribution, the perfor-
mance of label distribution learning may also be affected by
how the related labels are covered, which is determined by
the parameters of the label distributions. Fig. 6 shows the
MAEs of IIS-LLD and CPNN on the FG-NET and MORPH
databases with different standard deviations σ = 0, 1, 2, 3, 4
for the “Gaussian” distribution, and different bottom length

l = 2, 4, 6, 8, 10 for the “Triangle” distribution. Note that both
σ = 0 and l = 2 correspond to the “Single” distribution. Fig. 6
reveals that too concentrative (small σ or l) and too dispersive
distributions (large σ or l) could both lead to performance
deterioration. This is consistent with the intuition that the
related classes are helpful but should not threaten the priority
of the original class. A proper setting of the scale of the
distribution is important to achieve a good performance. But
generally speaking, σ = 2 and l = 6 are good choices in most
situations.

Among the baseline methods, the AGES algorithm [11]
relies on the data structure aging pattern vector, which is
composed by all the aging faces of one person. Thus, AGES
is a typical algorithm that is sensitive to the quantity of the
training samples. To reveal the effectiveness of using label
distribution learning to deal with the ‘insufficient training
data’ problem, IIS-LLD and CPNN are compared in differ-
ent age ranges with AGES on the FG-NET database. The
results are tabulated in Table 4. The performance worse than
that of the reference method AGES in the same age range
are underlined. As can be seen, the number of samples in
different age ranges decreases rapidly with increasing age.
Samples in the higher age groups (e.g., 60-69) are especially
rare. It is interesting to find that in the age ranges with
relatively sufficient training data, the performance of the label
distribution learning algorithms could be worse than that of
AGES. For example, in the age ranges 0-9 and 10-19, all
the three cases of IIS-LLD perform worse than AGES. The
“Triangle” case of CPNN is also worse than AGES in the
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TABLE 4
MAE in Different Age Ranges on the FG-NET Database

IIS-LLD CPNN
Range # Samples

Gaussian Triangle Single Gaussian Triangle Single
AGES

0-9 371 2.83 2.83 3.06 2.04 2.41 2.16 2.30
10-19 339 5.21 5.17 4.99 3.38 3.30 3.55 3.83
20-29 144 6.60 6.39 6.72 5.73 6.33 6.56 8.01
30-39 79 11.62 11.66 12.10 10.51 10.71 12.62 17.91
40-49 46 12.57 15.78 18.89 14.74 14.83 15.89 25.26
50-59 15 21.73 22.27 27.40 22.00 26.33 25.73 36.40
60-69 8 24.00 26.25 32.13 25.50 28.75 31.50 45.63
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Fig. 7. MAE of IIS-LLD, CPNN, OHRank, and AGES while
the MORPH training data are exponentially reduced.

age range 0-9. This is because that both IIS-LLD and CPNN
are based on the general-purpose models, i.e., the maximum
entropy model or the multi-layer neural network, while AGES
builds on the problem-specific data structure aging pattern
vector. The advantage of the problem-specific model generally
becomes more apparent when there are sufficient training data.
Another more important fact revealed by Table 4 is that the
main advantage of label distribution learning comes from the
classes with insufficient training samples. The less training
samples there are, the more apparent the superiority of label
distribution learning becomes. For example, in the age range
0-9 with maximum number of training samples, the MAE of
the “Gaussian” case of CPNN is 6% lower than that of the
“Single” case, and 11% lower than that of AGES, while in the
age range 60-69 with minimum number of training samples,
the advantages increase to 19% and 44%, respectively. This
may be seen as evidence supporting the idea put forward in
this paper, i.e., that label distribution learning is an effective
way to relieve the ‘insufficient training data’ problem.

To further verify this idea, the training data from the
MORPH database are gradually reduced while the test data
remain the same. To make the results more obvious, the
training data are exponentially reduced, i.e., half of the current
training data are randomly removed each time. The MAE
curves of the “Gaussian” case of the label distribution learning
algorithms (IIS-LLD and CPNN) and the best two baseline
methods (OHRank and AGES) are compared in Fig. 7. As
can be seen, the MAEs of OHRank and AGES increase rapidly
with the decrease of the training data. Insufficient training data

greatly affect their performance. On the contrary, both IIS-
LLD and CPNN perform relatively steadily even when the
training data are exponentially reduced. The MAE of CPNN
using as few as 3% ((1/2)5) of the original training data is
only 19% higher than that using all the MORPH training data.
The performance of IIS-LLD is even better: only 12% higher
MAE is observed while 97% (1 − (1/2)5) of the training
data are removed. This illustrates the effectiveness of label
distribution learning on insufficient training data. Moreover,
although the MAE of IIS-LLD is generally higher than that of
CPNN, it appears more steady than CPNN with the decrease
of the training data. This is mainly because that IIS-LLD is
based on the presumed maximum entropy model while CPNN
learns the model from the training data. Consequently, IIS-
LLD relies less on the training data than CPNN does.

5 CONCLUSION AND DISCUSSION

This paper proposes a novel approach to facial age estima-
tion based on label distribution learning, which extends our
preliminary research [13], [39]. By exchanging the single
label of an instance for a label distribution, one instance can
contribute to the learning of multiple classes. It is particularly
useful when dealing with the problems where the classes
are correlated, and the training data for some classes are
insufficient. Two algorithms named IIS-LLD and CPNN are
proposed in this paper to learn from such label distributions.
They are tested on two aging face databases. Experimental
results show the advantages of utilizing the correlated classes
via label distribution learning.

While achieving good performance on the problem of facial
age estimation, label distribution learning might also be useful
to other problems. Generally speaking, there are at least three
scenarios where label distribution learning could be helpful:

1) There is a natural measurement of description degree
that associates the class labels with the instances. For
example, it was found [34] that one kind of protein might
be related to several kinds of cancer, and the expression
levels of the protein are different in different related
cancer cells. Thus, the expression level (after proper
normalization) can be regarded as the description degree
of the cancer to the protein.

2) When there are multiple labeling sources (e.g., multiple
experts) for one instance, it is usually better for the
learning algorithm to integrate the labels from all the
sources rather than to decide one or more ‘winning
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TABLE 5
AKLD Comparison Results on the Yeast Gene Data Sets

Data Set (# labels) kNN-LD IIS-LLD (imp.) CPNN (imp.)

cold (4) .4697 .3812 (19%) .3214 (32%)
heat (6) .3546 .3313 (7%) .3112 (12%)
spo (6) .3997 .3259 (18%) .3127 (22%)
spo5 (5) .5616 .5042 (10%) .4910 (13%)

label(s)’ via majority voting [26]. One good way to
incorporate all the labeling sources is to generate a
label distribution for the instance: the label favored by
more sources is given a higher description degree, while
that chosen by fewer sources is assigned with a lower
description degree.

3) Some classes are highly correlated with other classes
(e.g., the neighboring ages). Utilizing such correlation
is one of the most important approaches to improve
the learning process [33], [18], [31]. Label distribu-
tion learning provides a new way toward this purpose.
The key step is to transform a single-label or multi-
label learning problem into a label distribution learning
problem. This can be achieved by generating a label
distribution for each instance according to the correlation
among the classes.

The methods proposed in this paper for facial age estimation
are typical examples of scenario 3). We are also working on
applications in other scenarios, and the preliminary results
show a favorable prospect. For example, we have applied label
distribution learning to several data sets from the bioinformat-
ics field which match scenario 1). The data sets were collected
from a series of experiments (i.e., ‘cold’, ‘heat’, ‘spo’, and
‘spo5’) on the budding yeast Saccharomyces cerevisiae [7].
There are in total 2, 465 yeast genes included, each of which
is represented by an associated phylogenetic profile of length
24. The labels correspond to the time points in different
experiments. The gene expression level (after normalization)
at each time point provides a natural measurement of the
description degree of the corresponding label. Since there are
no other label distribution learning algorithms except for the
ones proposed in this paper, we extend the standard kNN
algorithm to a label distribution version named kNN-LD, and
use it as the baseline method. For a given instance x, kNN-
LD first finds its k nearest neighbors in the training set, and
then calculates the mean of the label distributions of the k
neighbors as the label distribution of x. The performance of
the algorithms are measured by the Average Kullback-Leibler
Divergence (AKLD) between the predicted label distribution
and the real label distribution. Table 5 lists the 10-fold cross
validation results of kNN-LD, IIS-LLD, and CPNN on the
four data sets. The number of labels in each data set is
given in the brackets after the name of the data set. The
improvements (percentage decrease of AKLD) of IIS-LLD
and CPNN over kNN-LD are given in the brackets after the
AKLD values. As can be seen, the more sophisticated IIS-
LLD and CPNN can remarkably improve the performance
of the simple extension method kNN-LD. While this is only
an initial result, it reveals the exciting potentials of label

distribution learning in applications other than facial age
estimation. Further investigation of label distribution learning
in the aforementioned three scenarios would be an interesting
and promising future work.
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