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ABSTRACT

Extreme multi-label learning (XML) works to annotate objects with
relevant labels from an extremely large label set. Many previous
methods treat labels uniformly such that the learned model tends
to perform better on head labels, while the performance is severely
deteriorated for tail labels. However, it is often desirable to pre-
dict more tail labels in many real-world applications. To alleviate
this problem, in this work, we show theoretical and experimen-
tal evidence for the inferior performance of representative XML
methods on tail labels. Our finding is that the norm of label clas-
sifier weights typically follows a long-tailed distribution similar
to the label frequency, which results in the over-suppression of
tail labels. Base on this new finding, we present two new modules:
(1) ReRankworks to re-rank the predicted score, which significantly
improves the performance on tail labels by eliminating the effect of
label-priors; (2) Taug augments tail labels via a decoupled learning
scheme, which can yield more balanced classification boundary.
We conduct experiments on commonly used XML benchmarks
with hundreds of thousands of labels, showing that the proposed
methods improve the performance of many state-of-the-art XML
models by a considerable margin (6% performance gain with re-
spect to PSP@1 on average). Anonymous source code is available
at https://github.com/ReRANK-XML/rerank-XML.

CCS CONCEPTS

• Machine learning → Multi-label learning; • Multi-label

learning→ Long tail label distribution.
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1 INTRODUCTION

Extreme multi-label learning (XML) aims to annotate objects with
relevant labels from an extremely large candidate label set. Recently,
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XML has demonstrated its broad applications. For example, in web-
page categorization [18], millions of labels (categories) are collected
in Wikipedia and one wishes to annotate new webpages with rele-
vant labels from a huge candidate set; in recommender systems [16],
one hopes tomake informative personalized recommendations from
millions of items. Because of the high dimensionality of label space,
classic multi-label learning algorithms, such as [24, 34], become
infeasible. To this end, a number of computational efficient XML
approaches are proposed [1, 4, 5, 9, 22, 28, 30, 31, 33].

In XML, one important statistical characteristic is that labels fol-
low a long-tailed distribution as illustrated in Figure 4 (left). Most
labels occur only a few times in the dataset. Infrequently occurring
labels (referred to as tail label) possess limited training samples
and are harder to predict than frequently occurring ones (referred
to as head label). Many existing XML approaches treat labels with
equal importance, such as [2, 15, 20], while [25] demonstrates that
most predictions of well-established methods are heads labels. How-
ever, in many real-world applications, it is still desirable to predict
more tail labels which are more rewarding and informative, such
as recommender systems [3, 12, 25, 27].

To improve the performance for tail labels, existing solutions
typically involve optimizing loss functions that are suitable for
tail labels [3, 12], leveraging the sparsity of tail labels in the anno-
tated label matrix [29], and transferring knowledge from data-rich
head labels to data-scarce tail labels [13]. These methods typically
achieve better performance on tail labels than standard XML meth-
ods which treat labels equally, while they usually involve high
computational costs. Moreover, previous studies do not explicitly
explain the underlying cause of the inferior performance of many
standard XML methods for tail labels.

In this work, we disclose theoretical and experimental evidence
for the inferior performance of previous XMLmethods on tail labels.
Our finding is that the norm of label classifier weights follows a long-
tailed distribution similar to the label frequency as shown in Figure 4
(middle), and the prediction score of tail labels thereby is underrated.
To alleviate this problem, we propose to rectify the classifier’s
outputs and training data distribution such that the prediction of
tail labels is enhanced. We present two general modules suitable
for any well-established XML methods: (1) ReRank works to re-
rank the predictions by eliminating the label-priors, which leads
to higher rank for tail labels; (2) Taug augments tail labels via a
decoupled learning scheme, which reduces the skewness of training
data and yields more balanced classification boundary.

We conduct experiments to verify the effectiveness of the afore-
mentioned instantiations. From our extensive studies across four
benchmark datasets, we make the following intriguing contribu-
tions:
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• We show that from both theoretical and experimental per-
spectives, the norm of label classifier weights follow a long-
tailed distribution, i.e., the norms of head label classifier
weights are considerably larger than that of tail label clas-
sifiers, which is a key cause of the inferior performance of
many XML methods on tail labels.

• We propose two general modules: ReRank for prediction
score re-ranking by optimizing a new population-aware loss,
and Taug for decoupled tail label augmentation. Both meth-
ods can be paired with any XML model without changing
the model.

• Experiments verify that our proposed modules achieve sig-
nificant improvements (6% w.r.t. PSP@1 on average) for well-
established XML methods on benchmark datasets.

• We provide an ablation study to highlight the effectiveness
of each individual factor.

2 PREVIOUS EFFORTS

Existing work on XML can be roughly categorized as three direc-
tions:

One-vs-all methods. This branch of work trains classifiers for
each label separately. Due to the huge size of label set, paralleliza-
tion [2], label partitioning [15], and label filter [17] techniques are
used to facilitate efficient training and testing. To alleviate memory
overhead, recent works restrict the model capacity by imposing
sparse constraints [9] or removing spurious parameters [2]. One
criticism of one-vs-all methods is that it fails to capture label corre-
lations.

Embedding-based methods. Along this direction, researchers
have proposed to embed the feature space and label space onto a
joint low-dimensional space, then model the correlation between
features and labels in hidden space [4, 7, 10, 22, 23, 33]. This method
can dramatically reduce the model parameters compared with the
one-vs-all methods, but involves solving complex optimization
problems.

Tree-basedmethods. In comparison to other types of approaches,
tree-based methods greatly reduce inference time, which gener-
ally scales logarithmically in the number of labels. There are typi-
cally two types of trees including instance trees [20, 21] and label
trees [8, 32], depending whether instance or label is partitioned in
tree nodes. Tree-based methods usually suffer from low prediction
accuracy affected by the cascading effect, where the prediction error
at the top cannot be corrected at a lower level.

These methods can readily scale up to problems with hundreds
of thousands of labels. However, [25, 26] claims that head labels
make a significantly higher contribution to the performance than
tail labels. Therefore, many work are conducted to improve the
performance for tail labels.

Optimization. [12] proposes propensity scored loss functions
that promote the prediction of tail label with high ranks. [29] de-
composes the label matrix into a low-rank matrix and a sparse
matrix. The low-rank matrix is expected to capture label correla-
tions, and the sparse matrix is used to capture tail labels. [3] views
tail label from an adversarial perspective and optimizes hamming
loss to yield a robust model.

Knowledge transfer. [13] trains two deepmodels on head labels
and tail labels. The semantic representations learned from head
labels are transferred to the tail label model.

These methods achieve better performance on tail labels than
standard XMLmethods which treat labels equally, while they do not
explicitly explain the underlying cause of the inferior performance
of many standard XML methods for tail labels. In this work, we
find that the classification boundary of existing XML methods is
skewed to head labels, causing the inferior performance.

3 METHODOLOGY

In XML, as we possess fewer data about tail labels, models learned
on long-tailed datasets tend to exhibit inferior performance on
tail labels [25]. However in practice, it is more informative and
rewarding to accurately predict tail labels than head labels [12]. In
this work, we attempt to alleviate this problem from the perspective
of the classification boundary. We make an observation that the
norm of label classifier weights follow a long-tailed distribution
similar to the label frequency, which means that the prediction of
tail labels is over-suppressed. This finding provides an evidence
for us to improve the prediction of tail labels. We present ways
of rectifying the classifier’s outputs and data distribution via re-
ranking and tail label augmentation, respectively.

Notations.We first describe notations used through the paper.
Let X = {x𝑖 }𝑁𝑖=1,Y = {y𝑖 }𝑁𝑖=1 be a training set of size 𝑁 , where y𝑖
is the label vector for data point x𝑖 . Formally, XML is the task of
learning a function 𝑓 that maps an input (or instance) x ∈ R𝐷 to
its target y ∈ {0, 1}𝐿 . We denote 𝑛 𝑗 =

∑𝑁
𝑖=1 y𝑖 𝑗 as the frequency

of the 𝑗-th label. Without loss of generality, we assume that the
labels are sorted by cardinality in non-increasing order, i.e., if 𝑗 < 𝑘 ,
then 𝑛 𝑗 ≥ 𝑛𝑘 , where 1 ≤ 𝑗, 𝑘 ≤ 𝐿. In our setting, we have 𝑛1 ≫ 𝑛𝐿 .
According to the label frequency, we can split the label set into
head labels and tail labels by a threshold 𝜏 ∈ (0, 1). We denote head
label set H = {1, . . . , ⌊𝜏𝐿⌋} and tail label set T = {⌊𝜏𝐿⌋ + 1, . . . , 𝐿}.
𝜏 is a user-specified parameter.

3.1 The Long-Tailed Distribution of Classifier

Weights Norm

We present a different perspective regarding XML model, showing
its inferior performance on tail labels is due to the imbalanced clas-
sification boundary. In Figure 4 (middle), we empirically observe
that the norm of label classifier weights follows a similar long-tailed
distribution as the label frequency. The results are produced on
EUR-Lex dataset using a representative one-vs-all method Bon-
sai [15]. A similar observation on Wiki10-31K dataset is presented
in the supplementary material. Since the norm of tail label classifier
weights is considerably smaller than that of head label classifier
weights, the predicted score of tail labels are typically underesti-
mated in inference. We further support our finding theoretically
and demonstrate the fact that the small norm of tail label classifier
weights is the root cause of inferior performance.

We make the following mild assumption on the data: every input
x is sampled from feature space completely at random, and there
exists a constant threshold 𝑡 > 0 for the input x, such that the top-𝑘
prediction for x is made as 𝛽 (𝑘) = {𝑦𝑙 | P̂(𝑦𝑙 | x) ≥ 𝑡, 1 ≤ 𝑙 ≤ 𝐿},
where P̂(𝑦𝑙 | x) denotes the estimated label distribution. We assume
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Figure 1: Left: Label frequency follows a long-tailed distribution. Middle: Norm of classifier weights of Bonsai models [15].

Right: Norm of classifier weights of Bonsai models when decoupled tail label augmentation is applied.

W = {w𝑗 }𝐿𝑗=1 be the weight matrix of a standard XML method. In
particular, for binary relevance and tree-based classifier, W can be
obtained by optimizing Eq. (1), where L denotes the loss function,
e.g., squared hinge loss, and constant 𝜆 is a trade-off parameter.
Note that for some tree-based methods, such as Bonsai [15] and
Parabel [19], we considerW be the label classifier weights in leaf
nodes, i.e., excluding meta-labels of internal tree nodes.

min
w𝑗



w𝑗



2
2 + 𝜆

𝑁∑︁
𝑖=1

L
(
Y𝑖, 𝑗 ,w𝑇

𝑗 x𝑖
)
,∀1 ≤ 𝑗 ≤ 𝐿 (1)

For deep learning methods, we denote W be the weights of the
last linear layer for classification by optimizing Eq. (2), where 𝜎
is the softmax function, 𝑓𝜃 is the feature extractor parameterized
by 𝜃 , and L denotes the selected loss function, e.g., binary cross
entropy. Note that this interpretation can also be adapted to typical
embedding-based methods, such as [33], where 𝑓𝜃 is linear and 𝜎 is
the identity function.

min
W

𝑁∑︁
𝑖=1

L
(
y𝑖 , 𝜎

(
W⊤ 𝑓𝜃 (x𝑖 )

) )
(2)

With the above setup, we summarize our findings in Theorem 1.

Theorem 1. Let D = {(x𝑖 , y𝑖 )}𝑁𝑖=1 be a sample set and W, which

can be decomposed as {w𝑗 }𝐿𝑗=1, be the label classifier weights learned

on D by optimizing Eq. (1) and Eq. (2). For an uniformly sam-

pled point x which is i.i.d. with points in D, we have | |w𝑗 | | ∝
E
[
𝑦 𝑗 ∈ 𝛽 (𝑘)

]
,∀1 ≤ 𝑗 ≤ 𝐿, where 𝛽 (𝑘) denotes the 𝑘 top-ranked

indices of predicted labels in P̂(y | x).

Proof. Without loss of generality, we assume | |w1 | | ≥ | |w2 | | · · · ≥
| |w𝐿 | | > 0. For any input x, its prediction score is computed as
P̂(𝑦 𝑗 | x) = 𝑔(w⊤

𝑗
x) for the 𝑗-th label, where 𝑔(·) is a monotoni-

cally increasing link function, such as the exponential function, the
largest top-𝑘 prediction score will be selected as the final predic-
tions. For simplicity, we assume 𝑔(𝑧) = 𝑧 as an identical function
and our analysis can be easily extended to the exponential func-
tion. Suppose that 𝑡 ∈ (0, 1) is the threshold of input x, such that
the final prediction is 𝛽 (𝑘) = {𝑦 𝑗 | w⊤

𝑗
x ≥ 𝑡, 1 ≤ 𝑗 ≤ 𝐿}, where

|𝛽 (𝑘) | = 𝑘 . Here we assume there exists a small constant 𝑘 ≪ 𝐿

such that w⊤
𝑗
x ≥ 0,∀1 ≤ 𝑗 ≤ 𝑘 , which is reasonable in extreme

classification. Since w⊤
𝑗
x = | |w𝑗 | | · | |x| | cos𝜃 𝑗 , where 𝜃 𝑗 denotes

the included angle of classifier w𝑗 and sample x. Note that x is
usually normalized in advance and | |x| | can be considered as a con-
stant for different samples. In other words, the prediction can be
rewritten as 𝛽 (𝑘) = {𝑦 𝑗 | cos𝜃 𝑗 ≥ 𝑡

| |w𝑗 | | · | |x | | , 1 ≤ 𝑗 ≤ 𝐿}. This can
be considered as that x is sampled from a ball with radius equals
| |x| | in the feature space completely at random, which means that
𝜃 𝑗 is uniformly sampled from [0, 𝜋]. Note that we always have
| |w𝑗 | | ≥ 1,∀1 ≤ 𝑗 ≤ 𝐿 because the bias term of each label classifier
is set to be 1, which means 𝑡

| |w𝑗 | | < 1. Let 𝑏 = arccos 𝑡
| |w𝑗 | | · | |x | | ,

we have P(𝑦 𝑗 ∈ 𝛽 (𝑘) ) = 𝑏
𝜋 . By taking the expectation over 𝜃 𝑗 , we

have

E
[
𝑦 𝑗 ∈ 𝛽 (𝑘)

]
=

∫ 𝜋

0
P(𝑦 𝑗 ∈ 𝛽 (𝑘) ) 𝑑𝜃 𝑗 = 𝑏.

Since 𝑏 typically scales as | |w𝑗 | |, we conclude that the probabil-
ity of the 𝑗-th label is included in top-𝑘 predictions of input x, is
proportional to its classifier’s norm | |w𝑗 | |, or formally

| |w𝑗 | | ∝ E
[
𝑦 𝑗 ∈ 𝛽 (𝑘)

]
,∀1 ≤ 𝑗 ≤ 𝐿.

□

This theorem shows that the need for re-balancing the classifier
weights to improve the performance on tail labels. Motivated by
our finding, in the following we propose two new modules and
discuss their effectiveness on tail labels.

3.2 ReRank: Prediction Score Re-ranking

Module

We first introduce a novel re-ranking technique motivated by our
finding that the prediction score of tail labels are usually under-
estimated. Conventionally, the ranked list of predicted labels is
determined by sorting the prediction score of model 𝑓 . Formally,
the model 𝑓 is optimized to estimate the posterior probability of
each label given sample x, i.e., P(𝑦 | x). According to Bayesian
theorem, we know that P(𝑦 | x) ∝ P(𝑦) · P(x | 𝑦). The setting
of extreme multi-label learning is where the label-prior P(𝑦) is
highly skewed, so that many tail labels have a low probability of
occurrence. Here, direct use of the model 𝑓 which approximates
P(𝑦 | x) will attain a low accuracy on tail labels. To cope with this,
we propose to re-rank the prediction score as a post-processing
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step. We prioritize tail labels with higher propensities, which can
be viewed as magnifying norms of the tail label classifiers weights.
Formally, for a given instance x, the probability of 𝑙-th label𝑦𝑙 being
relevant to x is 𝑃 (𝑦𝑙 | x). We can form the rectified score 𝑃 ′(𝑦𝑙 | x)
after re-ranking as follows:

𝑃 ′(𝑦𝑙 | x) = 𝑟𝑙 · 𝑃 (𝑦𝑙 | x), 1 ≤ 𝑙 ≤ 𝐿. (3)

Here, 𝑟𝑙 represents the inverse propensity score for the 𝑙-th label,
which can be seen as a label-prior balancing parameter. By doing
this, we implicitly use a balanced label-probability function P(𝑦 |
x) ∝ 1

𝑟𝑦
·P(x | 𝑦) as opposed to the naive P(𝑦 | x) ∝ P(𝑦) ·P(x | 𝑦).

A natural setup of 𝑟𝑦 is 𝑟𝑦 = 1
P(𝑦) . While the underlying label-

prior P(𝑦) is unknown, it can be estimated by counting the label
frequencies in training data. More generally, any monotonically
decreasing function can be used to set 𝑟𝑦 . For instance, we can
define 𝑟𝑙 as:

𝑟𝑙 = 1 +𝐶 (𝑛𝑙 + 𝐵)−𝐴 . (4)

and 𝑝𝑙 is the propensity score for the 𝑙-th label,𝐴, 𝐵,𝐶 are constants
and are set as recommended in paper [12]. In experiments, we
evaluate different instantiations of 𝑟𝑙 . Finally, the top-ranked labels
in {𝑃 ′(𝑦𝑙 | x)}𝑙=1,2,...,𝐿 , rather than {𝑃 (𝑦𝑙 | x)}𝑙=1,2,...,𝐿 , are selected
as final predictions. As one can expect, it increases the propensities
of tail labels in inference, thereby more tail labels are shortlisted in
the final predictions. Unlike existing re-ranking methods [12, 13],
the proposed technique does not need any additional retraining
and can be applied to any well-established XML methods without
introducing any computation and memory overheads.

3.3 Taug: Decoupled Learning Scheme and Tail

Label Augmentation

From another point of view, since the root cause of the imbalance of
classifier norms, which is caused by the long-tailed data distribution,
we propose to resolve this problem by reducing the skewness of
training data.

Decoupling the learning of head label and tail label. We
propose to decouple the learning of head labels and tail labels,
instead of learning models jointly. This has two main benefits: (1)
decoupled learning scheme helps prevent from modeling highly
imbalanced data, i.e., the data distribution within head labels and
tail labels are relatively less imbalanced; (2) head label model and
tail label model can be trained in a parallel manner which reduces
the training time. Recall thatH and T denote head label set and tail
label set, respectively. We split the training set D = {(x𝑖 , y𝑖 )}𝑁𝑖=1
into two parts: Dℎ = {(x𝑖 , y𝑖 ) | 𝑦𝑖 𝑗 = 1,∀𝑗 ∈ H} and D𝑡 =

{(x𝑖 , y𝑖 ) | 𝑦𝑖 𝑗 = 1,∀𝑗 ∈ T }. Models are then respectively learned
on Dℎ and D𝑡 . In inference, the prediction score of models are
integrated.

Tail Label Augmentation. To better explore the data distribu-
tion of tail labels, we consider two data augmentation techniques,
Input dropout and Input swap.

(1) Input dropout: For a selected keep probability 𝜌 ∈ [0, 1]
and an input sample x, it produces an augmented input
x′ = x ⊙ Bernoulli(𝜌, 𝐷), where ⊙ denotes element-wise
multiplication.

(2) Input swap: For each instance x, two activated features are
randomly identified and their values are swapped. This pro-
cedure can repeat multiple times. Formally, for a pair of
feature coordinates 𝑖, 𝑗 , where 1 ≤ 𝑖, 𝑗 ≤ 𝐷 , we swap their
values 𝑥𝑖 and 𝑥 𝑗 .

Note that both data augmentation methods are label-invariant. In
other words, for a given sample (x, y) and its augmented instance
x′, we take y′ = y as the corresponding label vector of x′. Impor-
tantly, it is observed that there is a significant variation in the input
features of tail labels from training set to test set [3], by generating
more similar samples, it discourages the model from fitting spu-
rious patterns in input features when training data is scarce and
it also promotes the model to be robust to the corruption of the
input features. The proposed decoupled learning scheme and tail
label augmentation methods are observed to yield more balanced
classification boundary as demonstrated in Figure 4 (right).

4 EXPERIMENTS

Datasets.We perform experiments on four XML datasets which
are publicly available from the XML repository. Detailed statistics
are summarized in Table 1, where 𝐿 denotes average labels per
sample and 𝑁 denotes average sample per label.1

Table 1: Statistics of datasets.

Dataset # Train # Features # Labels # Test 𝐿 𝑁

EUR-Lex 15,539 5,000 3,993 3,809 5.31 25.73
AmazonCat 1,186,239 203,882 13,330 306,782 5.04 448.57
Wiki10 14,146 101,938 30,938 6,616 18.64 8.52
Amazon 490,499 135,909 670,091 153025 3.9 5.4

Implementation. Without further specification, we set the
label splitting threshold 𝜏 = 0.1 for EUR-Lex, and 𝜏 = 0.01 for
AmazonCat-13K, Wiki10-31K, and Amazon-670K. For tail label aug-
mentation, we fix n_aug = 4, which means four auxiliary data
points are generated for each sample. Recommended settings are
used for all XML algorithms as specified in their paper.

Evaluation. We evaluate XML models on the test set and re-
port results with respect to the commonly used evaluation metrics,
i.e., P@𝑘 , nDCG@𝑘 , PSP@𝑘 , and PSnDCG@𝑘 (PSN@𝑘), where
𝑘 ∈ {1, 3, 5}. We apply the proposed tail label preferable techniques,
including re-ranking and data augmentation on existing XML al-
gorithms and compare with models without using the proposed
techniques. P@𝑘 . Top-𝑘 precision is a commonly used ranking
based performance measure in XML and has been widely adopted
for ranking tasks. In Top-𝑘 precision, only a few top predictions
of an instance will be considered. For each instance x, the Top-𝑘
precision is defined for a predicted score vector ŷ ∈ R𝐿 and ground
truth label vector y ∈ {−1, 1}𝐿 as

P@𝑘 :=
1
𝑘

∑︁
𝑙 ∈rank𝑘 (ŷ)

y𝑙 ,

where rank𝑘 (ŷ) returns the indices of 𝑘 largest value in ŷ ranked
in descending order.

1Datasets are available at the Extreme Classification Repository.
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nDCG@𝑘 . nDCG@𝑘 is another commonly used ranking based
performance measure:

nDCG@𝑘 :=
DCG@𝑘∑min(𝑘, ∥y∥0)

𝑙=1
1

log(𝑙+1)

,

where DCG@𝑘 :=
∑
𝑙 ∈rank𝑘 (ŷ)

y𝑙
log(𝑙+1) and | |y| |0 returns the 0-

norm of the true-label vector.
PSP@𝑘 . Propensity scored variants of such losses, including pre-

cision@k and nDCG@k, are developed and proved to give unbiased
estimates of the true loss function even when ground-truth labels
go missing under arbitrary probabilistic label noise models.

PSP@𝑘 :=
1
𝑘

∑︁
𝑙 ∈rank𝑘 (ŷ)

y𝑙
𝑝𝑙

.

Here, 𝑝𝑙 is the propensity score for label 𝑙 which helps in making
metrics unbiased.

PSnDCG@𝑘 . Similar to nDCG@𝑘 , its propensity scored variant
is defined as

PSnDCG@𝑘 :=
PSDCG@𝑘∑𝑘
𝑙=1

1
log(𝑙+1)

,

where
PSDCG@𝑘 :=

∑︁
𝑙 ∈rank𝑘 (ŷ)

y𝑙
𝑝𝑙 log(𝑙 + 1)

4.1 How Does the Prediction Score Re-ranking

Affect the Results

We evaluate the effectiveness of the proposed score re-ranking
method ReRank. We run three popular XML algorithms, including
FastXML [20], Bonsai [15], and Parabel [19] for comparisons.

From Table 2, it is effortless to observe that in all cases, three
XML methods employing prediction score re-ranking achieve sig-
nificantly higher PSP@𝑘 and PSnDCG@𝑘 compared with their
baselines. In particular, FastXML respectively achieves as much as
5.81%, 8.4%, 0.94%, and 2.39% overall improvement on four datasets
across PSP@𝑘 and PSnDCG@𝑘 . In comparison, Bonsai outperforms
its baseline by a larger margin, i.e., 5.31%, 7.49%, 5.84%, and 2.64% on
four datasets, respectively. Similarly, Parabel achieves performance
gains comparable to Bonsai, i.e., 5.31%, 7.51%, 5.26%, and 2.66%. This
demonstrates that ReRank provides an effective way to rectify the
predictions for existing XML models, by which the predicted score
of tail labels are indeed over-suppressed.

4.2 How Does the Decoupled Tail Label

Augmentation Affect the Results

In the following, we verify the effectiveness of the decoupled tail
label augmentation. We choose Bonsai [15] as our base model for
its appealing performance as shown in Table 2.

Bag-of-Words (BOW) vs. Dense Embedding. Since many bench-
mark datasets for XML are text data, we find that the dense embed-
ding used in [6] achieves significant gains over BOW. We compare
the results on EUR-Lex, and find that dense embedding respectively
achieves 2.87% and 3.13% higher performance w.r.t. PSP@𝑘 and
PSnDCG@𝑘 on average. We conduct experiments using dense em-
bedding in the rest of this paper except for Amazon-670K, which is
not available.

Classifier Weights Normalization. As a straightforward way of
balancing the norm of classifier weights [14], we examine the ef-
fectiveness of weights normalization. It does not show significant
effect on the performance. In particular, it improves the perfor-
mance by 0.63% w.r.t. PSnDCG@𝑘 , but drops the performance with
0.57% w.r.t. PSP@𝑘 , on EUR-Lex. This suggests that weights nor-
malization, which equalizes the propensity of labels, is undesirable
for XML.

Tail Label Augmentation. To justify our claim that it is beneficial
to decouple the learning of head labels and tail labels, and aug-
ment the tail label, which generate more balanced classification
boundaries. The results are reported in Table 3. Since the focus of
this paper is the performance improvement for tail label, we report
and compare the results in terms of PSP@𝑘 and PSnDCG@𝑘 . As
we can see from the results, Taug achieves averagely 3%, 1.06%,
1.59%, 7.42% improvement w.r.t. PSP@𝑘 , and 3.5%, 1.08%, 1.41%,
7.54% w.r.t. PSnDCG@𝑘 , on four datasets. This demonstrates that
the investigated two data augmentation techniques via decoupled
learning scheme can help the learning of tail labels, by yielding
more balanced classification boundary which predicts tail labels
with relatively larger score compared with the baseline. In com-
parison with prediction score re-ranking, the performance gain is
relatively smaller on three relatively small datasets because there is
a trade-off between the performance and training efficiency when
applying data augmentation. We believe that, by employing deep
learning methods facilitated by GPUs, decoupled tail label augmen-
tation can achieve better results.

4.3 Comparison with the State of the Arts

In Table 4, we compare the performance of the proposed modules
with recent XML methods, including PfastreXML [12], ProXML [3],
AttentionXML [32], and GLas [11], that report state-of-the-art re-
sults on tail labels. Since PSnDCG@𝑘 is unavailable for Atten-
tionXML and GLaS, we report and compare the results w.r.t. PSP@𝑘

in this part. We apply the proposed prediction score re-ranking
module (ReRank) individually and jointly with the decoupled tail
label augmentation module (Taug) for comparison. Though both
AttentionXML and GLaS are carefully designed deep learning meth-
ods, it is surprising to see that our Bonsai based variants achieve the
best results in 8 out of 12 cases, and the second-best results in other
cases. Apart from deep learning methods, PfastreXML and ProXML
are two leading approaches which achieve good performance on tail
labels, while they are outperformed by our methods in most cases.
In comparison with the baselines in Table 2, ReRank+Taug demon-
strates more than 6% performance gains w.r.t. PSP@1 on average.2
We believe that by choosing more powerful base models, such as
AttentionXML, it could achieve even better performance.

4.4 How Does the Strength of Data

Augmentation Matter

We are interested in how would the strength of data augmentation
affects the classifier weights and the model performance. In Figure 2
(left), we illustrate the norm of classifier weights by choosing n_aug
∈ {0, 1, 4, 8}, where n_aug indicates the number of augmented
samples to generate for each data point. Note that when n_aug = 0,

2Our anonymous code is available in the supplementary material.
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Table 2: Comparison between well-established XMLmethods with (w/) and without (w/o) ReRank w.r.t. PSP@𝑘 and PSnDCG@𝑘

(PSN@𝑘). The biggest improvements are in bold.

Dataset Method w/o ReRank Improvement w/ ReRank

PSP@1 PSP@3 PSP@5 PSP@1 PSP@3 PSP@5 Average

FastXML 26.29 33.57 37.80 +7.78 +5.60 +3.94 +5.25

Bonsai 36.91 44.89 49.46 +8.15 +4.59 +2.36 +5.03EUR-Lex
Parabel 36.42 44.08 48.46 +7.79 +4.68 +2.17 +4.88

FastXML 48.06 59.25 66.70 +12.31 +7.62 +3.10 +7.68

Bonsai 51.07 62.37 68.84 +11.76 +6.15 +2.32 +6.74AmazonCat-13K
Parabel 49.52 61.13 67.87 +11.62 +6.34 +2.37 +6.78

FastXML 9.76 10.31 10.64 +0.95 +0.90 +0.98 +0.94
Bonsai 11.79 13.44 14.71 +8.17 +5.10 +3.29 +5.52Wiki10-31K
Parabel 11.68 12.72 13.69 +6.52 +4.71 +4.01 +5.08

FastXML 18.69 21.87 24.44 +3.44 +2.49 +1.63 +2.52

Bonsai 27.10 30.69 33.91 +3.84 +2.45 +1.12 +2.47Amazon-670K
Parabel 26.35 29.94 33.16 +3.74 +2.48 +1.27 +2.50

Dataset Method PSN@1 PSN@3 PSN@5 PSN@1 PSN@3 PSN@5 Average

FastXML 26.29 31.59 34.40 +7.78 +6.23 +5.14 +6.38

Bonsai 36.91 42.43 45.23 +8.15 +4.91 +3.74 +5.60EUR-Lex
Parabel 36.42 41.99 44.90 +7.79 +5.53 +3.90 +5.74

FastXML 48.06 56.13 61.00 +12.31 +8.99 +6.09 +9.13

Bonsai 51.07 59.25 63.53 +11.76 +7.73 +5.23 +8.24AmazonCat-13K
Parabel 49.52 57.92 62.38 +11.62 +7.84 +5.26 +8.24

FastXML 9.76 10.17 10.41 +0.95 0.91 +0.96 +0.94
Bonsai 11.79 13.03 13.92 +8.17 +5.85 +4.54 +6.17Wiki10-31K
Parabel 11.68 12.47 13.13 +6.52 +5.15 +4.62 +5.43

FastXML 18.69 22.05 23.58 +3.44 +1.81 +1.52 +2.26
Bonsai 27.10 29.74 31.94 +3.84 +2.83 +1.92 +2.86Amazon-670K
Parabel 26.35 29.01 31.20 +3.74 +2.81 +1.99 +2.85

Table 3: Comparison between methods with (w/) and without (w/o) Taug w.r.t. PSP@𝑘 and PSnDCG@𝑘 (PSN@𝑘). The biggest

improvements across four datasets are in bold.

Dataset w/o Taug Improvement w/ Taug

PSP@1 PSP@3 PSP@5 PSP@1 PSP@3 PSP@5 Average

EUR-Lex 39.66 47.92 52.28 +4.64 +2.69 +1.67 +3.00
AmazonCat-13K 49.41 60.39 66.49 +2.22 +0.73 -0.24 +1.06
Wiki10-31K 12.41 14.13 15.52 +0.75 +1.91 +2.12 +1.59
Amazon-670K 27.10 30.69 33.91 +10.21 +7.18 +4.87 +7.42

Dataset PSN@1 PSN@3 PSN@5 PSN@1 PSN@3 PSN@5 Average

EUR-Lex 39.66 45.81 48.48 +4.64 +3.14 +2.72 +3.50
AmazonCat-13K 49.41 57.36 61.41 +2.22 +0.75 +0.27 +1.08
Wiki10-31K 12.41 13.69 14.68 +0.75 +1.65 +1.83 +1.41
Amazon-670K 27.10 29.74 31.94 +10.21 +7.99 +4.43 +7.54

models are learned on the initial training data with augmentation.
It can be noted that the norms of the tail label classifiers become
larger as n_aug increases. In Figure 2 (right), the performance tends

to improve as n_aug increases w.r.t. PSP@𝑘 . As one can expect,
P@𝑘 drops with a narrow margin. These results suggest that data
augmentation can help re-balance the norm of classifier weights,
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Table 4: Comparison with state-of-the-art methods w.r.t. PSP@𝑘 . Bold numbers are the best and underlined numbers are the

second-best. ReRank and ReRank+Taug are our proposed methods.

Dataset Metric PfastreXML ProXML GLaS AttentionXML ReRank ReRank+Taug

PSP@1 43.53 45.20 49.77 44.97 48.44 51.86

PSP@3 45.38 48.50 51.05 51.91 52.94 54.29EUR-Lex
PSP@5 47.02 51.00 53.82 54.86 55.69 55.45

PSP@1 63.51 61.92 47.53 53.76 62.83 63.45
PSP@3 68.71 66.93 62.74 68.72 68.52 69.96AmazonCat-13K
PSP@5 71.21 68.36 71.66 76.38 71.17 70.88

PSP@1 18.75 17.17 - 15.57 20.16 23.06

PSP@3 18.47 16.07 - 16.80 19.65 21.60Wiki10-31K
PSP@5 18.50 16.38 - 17.82 20.48 21.66

PSP@1 29.28 30.31 38.94 30.29 30.94 40.41

PSP@3 30.79 32.31 39.72 33.85 33.14 39.63Amazon-670K
PSP@5 32.40 34.43 41.24 37.13 35.04 39.54

which is beneficial to tail labels. In addition, we conduct ablation
studies to compare two data augmentation techniques, i.e., input
dropout and input swap, in the supplementary material. We also
demonstrate the effect of different label splitting threshold 𝜏 .
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Figure 2: Left: Norms of classifier weights with varying n_aug.

Right: The performance w.r.t. P@5 and PSP@𝑘 as a function

of n_aug. Results in both figures are produced using Bonsai

on EUR-Lex.

4.5 Results of Re-ranking w.r.t. P@𝑘 and

nDCG@𝑘

As shown in Table 5, performancewith respect to P@𝑘 and nDCG@𝑘

usually deteriorates. By using ReRank,more tail labels are predicted
with higher confidence than head labels, which would introduce
more false-positive predictions. This shows that there is a trade-off
between propensity scored measures and vanilla measures accord-
ing to specific demands in applications.

4.6 How Does the Label Splitting Threshold

Matter

In Figure 3, we demonstrate how the splitting threshold affects the
results. We experiment with 𝐿ℎ = ⌊𝜏𝐿⌋ and 𝐿𝑡 = 𝐿 − ⌊𝜏𝐿⌋, where
𝜏 ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 1} for EUR-Lex and 𝜏 ∈ {0.01, 0.02, 0.03, 0.04,
0.05, 1} for Wiki10. Note that, when 𝜏 = 1, all labels are considered
as the head label and no data augmentation is conducted. As 𝐿𝑡
decreases (i.e., 𝜏 increases), performance in terms PSP@𝑘 typically

Table 5: Comparison between methods with and without re-

ranking in terms of P@𝑘 and nDCG@𝑘 (N@𝑘).

Dataset Method P@1 P@3 P@5 N@3 N@5

FastXML 70.64 59.20 49.41 62.23 57.16
+ ReRank 72.40 60.26 50.20 63.42 58.20

Bonsai 82.75 69.44 58.25 72.84 67.26
+ ReRank 81.46 68.53 56.79 71.80 65.87

Parabel 82.20 68.70 57.53 72.16 66.53

EUR-Lex

+ ReRank 80.67 68.34 56.29 71.56 65.34

FastXML 92.78 77.38 62.25 86.37 84.12
+ ReRank 90.69 76.75 62.38 85.29 83.60

Bonsai 91.59 76.92 62.21 85.56 83.54
+ ReRank 88.47 75.85 61.89 83.84 82.35

Parabel 92.06 76.81 62.05 85.62 83.54

AmazonCat

+ ReRank 88.23 75.83 61.50 83.81 82.03

FastXML 82.93 68.01 57.98 71.41 63.58
+ ReRank 84.23 69.46 59.21 72.84 64.85

Bonsai 84.58 73.72 64.44 76.25 69.19
+ ReRank 82.58 71.86 63.67 74.31 68.02

Parabel 84.18 72.46 63.37 75.21 68.21

Wiki10

+ ReRank 83.26 71.33 62.82 74.08 67.50

FastXML 35.89 31.80 28.58 34.03 32.79
+ ReRank 34.13 31.18 28.47 33.20 32.39

Bonsai 45.48 40.22 36.37 42.64 40.85
+ ReRank 43.96 39.32 35.77 41.66 40.11

Parabel 44.91 39.76 35.98 42.11 40.33

Amazon

+ ReRank 43.85 39.19 35.57 41.48 39.85

drops slightly suggesting most labels are should be considered as
the tail label and in the need for data augmentation.
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Table 6: Comparison between re-ranking (ReRank), tail la-

bel augmentation (Taug) using dense embedding representa-

tions.

Dataset Method P@1 P@3 P@5 N@3 N@5

baseline 83.05 71.05 59.47 74.31 68.82
ReRank 83.26 71.40 59.72 74.58 69.08
Taug 83.20 69.88 58.00 73.39 67.58

EUR-Lex

Both 76.58 67.34 56.54 69.93 64.99
baseline 91.87 76.26 61.34 85.13 82.86
ReRank 88.97 75.73 61.46 83.92 82.16
Taug 91.09 73.19 59.11 82.02 79.77AmazonCat

Both 81.78 70.83 58.30 77.74 76.64
baseline 83.82 73.81 64.89 76.19 69.41
ReRank 83.11 72.54 62.77 75.02 67.64
Taug 83.56 74.74 64.48 76.92 69.29Wiki10

Both 76.25 64.86 55.57 67.53 60.42
baseline 45.48 40.22 36.37 42.64 40.85
ReRank 43.96 39.32 35.77 41.66 40.11
Taug 43.24 38.69 35.18 41.00 39.49Amazon

Both 42.80 38.42 34.99 40.67 39.21
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Figure 3: The performance in terms of PSP@𝑘 as a function

of splitting thresholds on EUR-Lex (left) and Wiki10 (right).

Results are produced using Bonsai method.

4.7 Ablations on the Input Dropout and Input

Swap

We conduct ablation studies to compare the effectiveness of the
proposed two tail label data augmentation strategies. We compare
four methods using Bonsai as the base model:

• baseline: this method does not use any data augmentation
techniques.

• Taug-d: this method uses input dropout only with n_aug =
4.

• Taug-s: this method uses input swap only with n_aug = 4.
• Taug-ds: this method uses both input dropout and input swap
with n_aug = 4.

We report the results in Table 7. On EUR-Lex dataset, it is effortless
to see that both input dropout and input swap achieve perfor-
mance gains, i.e., respectively 2.67% and 2.06% on average, against
the baseline method. It further improves the performance when
both techniques are incorporated into the Bonsai, i.e., Taug-ds. On

Wiki10-31K dataset, it shows a relatively smaller margin of im-
provement. Nevertheless, Taug-ds still improves the performance
with 1.65% on average.

Table 7: Comparison between input dropout (-d) and input

swap (-s) using dense embedding representations on EUR-Lex

and Wiki10 datasets. The best results are in bold.

.
Dataset Method PSP@1 PSP@3 PSP@5 PSN@3 PSN@5

baseline 40.10 47.91 51.85 45.81 48.48
Taug-d 43.52 50.45 53.94 48.63 50.99
Taug-s 42.81 49.94 53.27 48.09 50.35EUR-Lex

Taug-ds 44.20 50.58 53.97 48.91 51.19

baseline 12.41 14.13 15.52 13.69 14.68
Taug-d 13.14 15.94 17.60 15.26 16.46
Taug-s 12.99 15.70 17.26 15.03 16.17Wiki10

Taug-ds 13.18 16.05 17.63 15.34 16.50

4.8 Ablations on Different Rerank Strategies

We implement the re-rank module using several different strategies
based on inverse propensity score, imbalance ratio, and frequency.
For inverse propensity score, we use 𝑟𝑙 = 1 + 𝐶 (𝑛𝑙 + 𝐵)−𝐴 . For
imbalance ratio, 𝑟𝑙 = 1+ log 𝐼𝑅𝑙 where 𝐼𝑅𝑙 =

𝑚𝑎𝑥𝑘𝑛𝑘
𝑛𝑙

. For frequency
based strategy, we set 𝑟𝑙 = 1

𝑛𝑙
. From Table 8, it can seen that inverse

propensity score based strategy attain the best performance for
PSP@k and PSnDCG@k because it is demonstrated to be a better
estimation of the marginal label propensity [12]. In terms of P@k
and nDCG𝑘 , other strategies, except the frequency based one, dete-
riorate the performance. This can be seen as a trade-off between
accuracy on head labels and tail labels.

Table 8: Comparison of different rerank strategies on EUR-

Lex and Wiki10 datasets. The best results are in bold.

.

Method PSP@1 PSP@3 PSP@5 PSN@3 PSN@5

baseline 36.89 45.11 49.54 42.88 45.85
propensity score 45.21 49.44 51.32 48.27 49.56

imbalance ratio 43.78 48.99 51.76 47.59 49.44
frequency 38.05 45.92 50.11 43.77 46.58

Method P@1 P@3 P@5 N@3 N@5

baseline 82.64 69.65 58.20 73.04 67.28
propensity score 81.49 68.53 56.51 71.87 65.68
imbalance ratio 81.86 68.72 57.40 72.14 66.42
frequency 82.70 69.74 58.24 73.12 67.32

4.9 Virtualization of the Norms of Classifier

Weights on Wiki10-31K

In Figure 4, we visualize that the norm of classifier weights norm on
a larger dataset, i.e., Wiki10-31K, which is coincide with our previ-
ous observation on Eurlex. We also conduct tail label augmentation
and see its influence on classifier weights.
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Figure 4: The norm of classifier weights of Bonsai models

before (blue) and after (red) applying data augmentation for

tail label. Results are produced on Wiki10 dataset.

5 CONCLUSION

In this paper, we show that from both theoretical and empirical
perspectives, norm of label classifier weights follows long-tailed
distribution, if labels are treated uniformly, which is a key cause of
the inferior performance for tail labels. To alleviate this problem, we
explore the re-ranking module that aims to eliminate the influence
of label-priors, and tail label augmentation module that decouples
head labels and tail labels. Through extensive studies, our proposed
two modules achieve significant performance gains. Moreover, both
modules can be readily applied to any well-established XML meth-
ods without changing their models. We believe that our findings not
only contribute to a deeper understanding of the tail label problem,
but can offer inspiration for future work.
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