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Abstract
Tail label data (TLD) is prevalent in real-world tasks,
and large-scale multi-label learning (LMLL) is its
major learning scheme. Previous LMLL studies
typically need to additionally take into account ex-
tensive head label data (HLD), and thus fail to guide
the learning behavior of TLD. In many applications
such as recommender systems, however, the predic-
tion of tail label is very necessary, since it provides
very important supplementary information. We call
this kind of problem as tail label learning. In this
paper, we propose a novel method for the tail label
learning problem. Based on the observation that
the raw feature representation in LMLL data usu-
ally benefits HLD, which may not be suitable for
TLD, we construct effective and rich label-specific
features through exploring labeled data distribution
and leveraging label correlations. Specifically, we
employ clustering analysis to explore discrimina-
tive features for each tail label replacing the original
high-dimensional and sparse features. In addition,
due to the scarcity of positive examples of TLD, we
encode knowledge from HLD by exploiting label
correlations to enhance the label-specific features.
Experimental results verify the superiority of the
proposed method in terms of performance on TLD.

1 Introduction
Tail label data (TLD) is prevalent in real-world applications.
It follows a power-law distribution (as illustrated in Figure 1),
and provides irreplaceable information in comparison with
head label data (HLD). For instance, in web page categoriza-
tion [Partalas et al., 2015], there are thousands of labels from
Wikipedia and more than 70% of them occur in at most 15
web pages. Little information is gained by predicting popu-
lar labels such as “Poems” for the Divine Comedy article as
compared to predicting relatively infrequent labels such as
“Epic poems in Italian” (which implies “Poems” and more); in
recommender systems [McAuley et al., 2015], popular items
are well-known by users and recommending long-tailed items
can delight users and boost the sales. Similar applications
can be found in image annotation [Deng et al., 2009], video
classification [Abu-El-Haija et al., 2016] and so on.
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Figure 1: The number of examples for each label is presented
on Wiki10 data set. The horizontal axis indicates the indices
of labels, while the vertical axis indicates the number of as-
sociated examples in the training data. The vertical red line
indicates that labels to the left of it (more than 70%) occur in
at most 15 examples.

The major learning scheme to model TLD is large-scale
multi-label learning (LMLL) [Zhang and Zhou, 2014; Yu et
al., 2014]. It attempts to annotate unseen data with the most
relevant subset of labels out of a huge collection including both
head labels and tail labels. In the past few years, LMLL has
attracted considerable attention and a large number of LMLL
algorithms have been proposed, such as FastXML [Prabhu and
Varma, 2014], LEML [Yu et al., 2014] and so on.

Previous LMLL studies need to additionally take into ac-
count extensive HLD, and fail to directly guide the learning
of TLD. Specifically, existing approaches train models lever-
aging the entire label set and evaluate their learning perfor-
mance considering both head labels and tail labels. Due to the
large population of HLD, the learning performance is primar-
ily dominated by HLD rather than TLD [Wei and Li, 2018;
2019]. In many applications, however, the prediction of tail
label is very necessary, since it provides very important sup-
plementary information. The question on accurately build
models for TLD has not been thoroughly studied, though it
is widely stated that tail labels are informative and rewarding
if predicted correctly [Bhatia et al., 2015; Jain et al., 2016;
Xu et al., 2016].



In this work, focusing on the learning performance of TLD,
we evaluate LMLL approaches explicitly on TLD rather than
HLD. That is, during the inference phase, only tail labels with
the top-ranked predictive score for each unseen instance are
predicted as relevant. We call this kind of learning problem as
tail label learning. The main difficulty lies in the scarcity of
positive examples of TLD. That is, only a handful of examples
are positive for each tail label and the rest are negative exam-
ples. Moreover, the raw feature representation in LMLL data
is usually high-dimensional and sparse [Prabhu and Varma,
2014], which usually benefits HLD and may not be suitable
for TLD (as illustrated in Figure 2).

To alleviate these issues, in this paper, we present an ef-
ficient algorithm named TAIL, i.e., learning for TAIL label
data. Inspired by [Zhang and Wu, 2015], we consider con-
structing discriminative features specific to every tail label,
i.e., label-specific features, with a low-dimensional feature
space. Our basic idea is that different class labels usually
carry specific characteristics of their own, and it could be ben-
eficial to exploit different feature sets for the discrimination
of different labels. Based on this recognition, TAIL induces
classification learners TLD based on generated label-specific
features rather than the original input features. Specifically, we
construct label-specific features from two perspectives. First,
to explore discriminative features, we construct label-specific
features w.r.t instances through clustering analysis on its pos-
itive and negative instances for each tail label. Second, on
the aspect of label correlations, we encode knowledge from
HLD by exploiting the relationship between head labels and
tail labels, i.e., label-specific features w.r.t labels, to enhance
label-specific features. Concretely, we build a k-NN graph
which characterizes the affinity among labels and aggregate
the predictive information from head label classifiers into gen-
erated features for each tail label. Furthermore, to mitigate the
class-imbalance problem, we leverage the negative sampling
strategy to balance the population of positive and negative
instances. Extensive experimental comparisons and studies
verify the effectiveness of the proposed method.

The rest of this paper is organized as follows. We start by a
brief review of related work. Then we present the proposed ap-
proach. After that, experimental results are reported followed
by the conclusion of this work.

2 Related Work
This work is mostly related to tail label problem and feature
construction in LMLL.

Tail Label in LMLL
Recently, there are some discussions on the power law dis-
tribution in LMLL. Bhatia et al. [2015] represented tail la-
bels by learning an embedding, which captures non-linear
label correlations by preserving the pairwise distances be-
tween label vectors. Jain et al. [2016] explained that infre-
quently occurring tail labels are harder to predict than fre-
quently occurring ones since they have little training examples.
Xu et al. [2016] treated tail labels as outliers and decom-
posed the label matrix into a low-rank matrix which depicts
label correlations and a sparse one capturing the influence
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Figure 2: Performance (P@1) of Binary Relevance approach
on Bibtex and Delicious data sets with the raw feature represen-
tation and the constructed label-specific features respectively.
As can be seen, raw features usually benefit HLD rather than
TLD. With label-specific features, the performance on TLD is
clearly increased.

of tail labels. Wang et al. [2017] cast the tail label prob-
lem as transfer learning by transferring knowledge from the
data-rich head to the data-poor tail class labels. Babbar and
Schölkopf [2018] viewed the tail label problem as a setup
in which an adversary is generating test examples such that
the features of the test set instances are quite different from
those in the training set. The tail label problem is also re-
lated to weakly supervised learning [Li and Liang, 2019;
Li et al., 2016]. Most of these studies, learn from LMLL
data by manipulating with the identical feature set, which may
be not suitable for TLD, i.e., the original high-dimensional
and sparse features are employed in training and inference
processes of the entire label set.

LMLL Feature Construction
There are some studies about multi-label feature selection.
For example, Zhang et al. [2009] adapted the classical naive
Bayes classifiers. Ma et al. [2012] proposed to learn a feature
subspace that is shared among multiple different classes. Jian
et al. [2016] introduced a principled way of exploiting label
correlations for feature selection in the presence of noisy and
incomplete label information.

Existing approaches need to additionally take into account
HLD and are unable to guide the learning of TLD. In addition,
the performance of LMLL approaches on tail labels has not
been investigated. To the best of our knowledge, this is the first
time learning label-specific features for tail labels is studied.

3 The Proposed Approach
In the following, we first introduce the problem setup and then
present the label-specific feature construction method.

3.1 Preliminary
Let X denote the input space and Y the output space, and
the number of labels K := |Y|, where | · | represents the set
cardinality. Labeled samples are pairs (x,P) with x ∈ X
and P ∈ Y which denotes the set of correct labels for the
instance x. We use the notation N := Y \ P to denote the set
of negative labels for the example. Given a collection of N
training samples {xi,Pi}Ni=1, LMLL aims to learn a scoring
function f : X → RK for a large output space Y .



Considering that, head label prediction could be done very
well using off-the-shelf LMLL approaches [Yu et al., 2014;
Bhatia et al., 2015; Babbar and Schölkopf, 2017], for the in-
ference concerning tail labels, we employ a specially designed
model to achieve better performance than LMLL approaches.
Such setting is feasible because, in LMLL systems, we could
always separately predict a few head labels and tail labels as
relevant. By splitting the label space into two parts, Yc ⊂ Y
and Yt = Y \ Yc represent head labels and tail labels, respec-
tively. Let Kc := |Yc| and Kt := |Yt|. Formally, we define
the head label and tail label in Definition 1.
Definition 1 (Head Label & Tail Label). Let D =

{xi,Pi}Ni=1 be a large-scale multi-label dataset where labels
follow a power-law distribution. Suppose labels {l1, · · · , lK}
are organized by frequencies in descending order where∑N

j=1 I(li ∈ Pj) >=
∑N

j=1 I(li+1 ∈ Pj), ∀1 ≤ i ≤ K − 1.
Frequently occurring labels {l1, · · · , lKc} are referred to as
head labels and infrequently ones {lKc+1, · · · , lK} are re-
ferred to as tail labels.

3.2 Label-specific Feature Construction
Recently, many effective strategies are proposed to learn more
discriminative features [Zhang and Wu, 2015; Jia and Zhang,
2019]. However, these studies typically focus on traditional
multi-label learning problems, which do not finalize a system-
atical solution for tail label learning. Inspired by previous
studies, we propose to improve the learning performance on
TLD through constructing label-specific features.

Specifically, given a data set D = {xi,Pi}Ni=1, TAIL con-
structs label-specific features for each tail label from D fol-
lowing two elemental steps, i.e., label-specific feature con-
struction w.r.t instances and label-specific feature construction
w.r.t labels. Then it induces classification models based on
generated features instead of the original input features. In
the following, we present details of the label-specific feature
construction strategies.

Label-specific Feature Construction w.r.t Instances
In the first step, TAIL aims to generate distinguishing features
which capture the specific characteristics of each tail label to
facilitate its discrimination process. To this end, TAIL inves-
tigates data distribution properties by employing clustering
analysis method which has been widely used [Zhang and Wu,
2015]. In particular, with respect to tail label li, ∀Kc < i ≤ K,
the set of positive training instances P̃i as well as the set of
negative training instances Ñi are denoted as follows:

P̃i = {xj | (xj ,Pj) ∈ D, li ∈ Pj}
Ñi = {xj | (xj ,Pj) ∈ D, li /∈ Pj} (1)

In other words, P̃i and Ñi consist of the training instances
in D with and without label li, respectively. Similar to [Zhang
and Wu, 2015], we adopt the popular k-means algorithm
to partition P̃i into m+

i disjoint clusters whose centers are

denoted as
{
pi
1,p

i
2, · · · ,pi

m+
i

}
. Similarly, Ñi is also parti-

tioned into m−i disjoint clusters whose centers are denoted

as
{
ni

1,n
i
2, · · · ,ni

m−
i

}
. Following the setting in [Zhang and

Wu, 2015], we choose to set equivalent number of clusters
for P̃i and Ñi, i.e. m+

i = m−i = mi. In this way, clustering
information gained from positive instances as well as nega-
tive instances are treated with equal importance. Specifically,
the number of clusters retained for both positive and negative
instances is set to be:

mi = γ ·min
(∣∣∣P̃i

∣∣∣ , ∣∣∣Ñi

∣∣∣) (2)

Here, γ ∈ [0, 1] is the ratio parameter controlling the num-
ber of clusters. Intuitively, the retained cluster centers charac-
terize the underlying structure of input space and can be used
as the bases for label-specific feature construction.

In detail, TAIL builds a mapping φi from the original d-
dimensional feature space X to the 2mi-dimensional label-
specific feature space as follows:

φi(x) =[
d(x,pi

1), · · · , d(x,pi
mi

), d(x,ni
1), · · · , d(x,ni

mi
)
] (3)

Here, d(·, ·) represents the distance metric and is set to the
Euclidean metric following [Zhang and Wu, 2015].

Label-specific Feature Construction w.r.t Labels
In the second step, TAIL aims to enhance label-specific fea-
tures by exploiting label correlations between head labels
and tail labels. We leverage label cooccurrence statistics
obtained from training data to build a connection between
head labels and tail labels. Specifically, similarity is com-
puted for each pair of tail label and head label (li, lj) by
sim(li, lj) = |P̃i ∩ P̃j |, ∀1 ≤ j ≤ Kc < i ≤ K. After
that, we construct a k-NN graph that is known for its good
performance [Ebert et al., 2010; Maier et al., 2009] using
dist(li, lj) = N − sim(li, lj) as the distance metric, i.e.,

Wi,j =

{
1 if lj is in the k-NN of li
0 otherwise

(4)

To leverage the correlations between head labels and tail
labels, for instance x, we apply Kc classifiers {f1, . . . , fKc

}
for head labels on x and take the predictive information as
transferred knowledge. More precisely, for tail label li and
head label lj , the predictive information of f̄j is filtered by
Wi,j � fj(x). If Wi,j = 1, then fj(x) is selected as one
of generated features, otherwise discarded. By doing this,
the relationship between labels is encoded as augmented fea-
ture representations, which is proved beneficial for building
classification models in our experiments.

In detail, TAIL builds a label correlation aware mapping ψi

for tail label li from the original D-dimensional feature space
X to the k-dimensional label specific feature space as follows:

ψi(x) = [Wi,1 � f1(x), · · ·Wi,Kc
� fKc

(x)] (5)

Finally, TAIL induces a family of Kt = K − Kc clas-
sification models {fKc+1, . . . , fK} by aggregating feature
mappings φ(·) and ψ(·). Specifically, for tail label li, a bi-
nary training set D∗i with m examples is created from D by
applying our two label-specific feature generation steps. Algo-
rithm 1 lists the details of TAIL approach.



Algorithm 1 The pseudo-code of TAIL

Input:
D: LMLL training set D = {xi,Pi}Ni=1
Kc: the number of head labels
k: the number of nearest neighbors considered
γ: the ratio parameter controlling the number of clusters
L: the binary classification learner
Output:
{fi}Ki=Kc+1: a family of tail label classifiers
Process:

1: for i = Kc + 1, . . . ,K do
2: Form P̃i and Ñi based on D according to Eq. (1)
3: Perform k-means clustering on P̃i and Ñi, each with

mi clusters as defined by Eq. (2)
4: Construct the mapping φi for li according to Eq. (3)
5: Compute k-NN adjacent matrix according to Eq. (4)
6: Construct the mapping ψi for li according to Eq. (5)
7: Aggregate label-specific features by concatenating φi

and ψi for li
8: Induce fi by invoking a binary learner L on the con-

structed label-specific features for li
9: end for

10: return {fi}Ki=Kc+1

3.3 Computational Complexity Analysis
For each tail label, it first takes O(2minDT ) and O(NL̄2 +
KtKc log k) to construct two types of label-specific features,
respectively. Here, T is the number of iterations when perform-
ing k-means, k is set to 5 in k-NN search, L̄ is the averaged
number of relevant labels per instance, and n � N is the
total number of examples after performing negative downsam-
pling. Then, TAIL builds a linear classifier inO((2mi +k)n).
Thus, the total computational cost to train TAIL for each label
is O(minDT + NL̄2 + KtKc log k) since (2mi + k)n �
minDT . Note that, for the i-th tail label, 1 ≤ i ≤ Kt, the
dimensionality of D∗i is exactly 2mi + k � D. In the test-
ing stage, the computational cost for TAIL to predict a new
instance is O((2mi + k)D).

The analysis shows that their total computation complexities
scale linearly with size of the data set. Thus, both methods are
very suitable for the LMLL applications.

4 Experiments
We conduct comprehensive experiments on LMLL benchmark
data sets to evaluate the efficacy of our proposal.

4.1 Experimental Setup
Experiments are conducted on four benchmark data sets with
the number of labels ranging from 159 to 30K. Table 1 lists
the detailed statistics. We report and compare the results using
the same train/test splits of data sets. All the data sets as
well as the code of compared methods are publicly available1.
Notably, hundreds of labels on EUR-Lex data set do not have
any positive example available in the training set, and thus

1http://manikvarma.org/downloads/XC/XMLRepository.html

Table 1: Data set statistics

Data set Train
N

Features
D

Labels
K

Test
M

Avg. labels
per point

Avg. points
per label

Bibtex 4,880 1,836 159 2,515 2.40 111.71
Delicious 12,920 500 983 3,185 19.03 311.61
EUR-Lex 15,539 5,000 3,993 3,809 5.31 25.73
Wiki10 14,146 101,938 30,938 6,616 18.64 8.52

we discard such labels. In all of our experiments, we fix the
number of nearest neighbors considered to 5, i.e., k = 5. We
set the ratio parameter γ during clustering to 0.1 following
the setting in [Zhang and Wu, 2015]. For other comparison
methods, we use the default parameter settings in the code.

Compared Methods
We compare our method to Binary Relevance (BR) and seven
state-of-the-art LMLL approaches.
• Binary Relevance [Zhang and Zhou, 2014] builds OvR

SVM for each label using Liblinear [Fan et al., 2008].
• LEML [Yu et al., 2014] is an embedding method based

on low-rank empirical risk minimization.
• FastXML [Prabhu and Varma, 2014] is a random forest-

based LMLL approach.
• SLEEC [Bhatia et al., 2015] learns the embedding of

labels by preserving the pairwise distances between a few
nearest label neighbors.
• CoH [Shen et al., 2018] proposes a co-hashing method

which jointly compresses the input and output into com-
pact binary embeddings.
• DisMEC [Babbar and Schölkopf, 2017] learns a 1vsA

linear-SVM in a distributed fashion.
• PD-Sparse [Yen et al., 2016] proposes to solve `1 regular-

ized multi-class loss using Frank-Wolfe based algorithm.
• REML [Xu et al., 2016] proposes to decompose label

matrix into a low-rank matrix and a sparse matrix to
model head labels and tail labels respectively.

We build TAIL based on Liblinear using constructed label-
specific features. For comparison methods, we first obtain
predictive scores over the entire label set and take top k tail
labels with the highest predictive score for evaluation.

Performance Metrics
In LMLL applications, e.g., recommender systems, only the
top k ranked labels are concerned, where P@k and nDCG@k
are widely used [Jain et al., 2016]. Accordingly, P@k and
nDCG@k are defined as

P@k =
1

k

∑
l∈rankk(z)

I(l ∈ P) (6)

nDCG@k =
DCG@k(z,P)∑min(k,|P|)
l=1

1
log(l+1)

, (7)

where DCG@k(z,P) :=
∑

l∈rankk(z)
I(l∈P)
log(l+1) . Here, z is

the predicted score vector of instance x and P is the true label
set. The indicator function I(·) returns 1 if the condition is
true, otherwise 0.



Table 2: Performance comparison between the proposed TAIL and BR in terms of P@k and nDCG@k with the number of tail
labels Kt = K

10 for small data sets (Bibtex, Delicious) and Kt = K
2 for large ones (EUR-Lex, Wiki10). The best results in terms

of each performance metric are in bold.

Data set P@1 (%) P@3 (%) P@5 (%) nDCG@1 (%) nDCG@3 (%) nDCG@5 (%)

Bibtex BR 8.95 4.04 2.54 8.95 10.29 10.52
TAIL 9.18 4.04 2.54 9.18 10.37 10.58

Delicious BR 1.85 1.55 1.41 1.85 2.98 3.83
TAIL 4.71 2.69 1.92 4.71 5.87 6.41

EUR-Lex BR 6.98 3.68 2.49 2.68 8.01 8.47
TAIL 6.30 3.57 2.28 3.06 8.62 8.31

Wiki10 BR 5.34 4.10 4.09 4.36 4.12 4.17
TAIL 5.52 5.10 4.46 4.60 5.12 5.57

Table 3: Comparison with state-of-the-art approaches in terms of PSP@k and PSnDCG@k with Kt = K
10 for small data sets and

Kt = K
2 for large data sets. The best and second best results are in bold.

Data set FastXML LEML SLEEC CoH DiSMEC PD-Sparse REML TAIL

Bibtex

P@1 (%) 5.90 5.57 8.97 6.53 8.43 4.34 5.72 9.18
P@3 (%) 1.97 1.86 3.93 2.20 3.90 2.77 2.03 4.04
P@5 (%) 1.18 1.11 1.50 1.59 2.54 1.93 1.24 2.54

nDCG@1 (%) 6.17 5.61 2.21 6.58 8.60 4.34 2.01 9.18
nDCG@3 (%) 2.28 1.86 6.99 3.62 10.30 4.49 2.76 10.37
nDCG@5 (%) 2.11 1.67 8.46 2.06 10.32 5.72 4.58 10.58

Delicious

P@1 (%) 2.38 2.24 3.11 1.24 2.02 1.22 2.77 4.71
P@3 (%) 0.79 0.75 2.21 1.82 1.78 1.03 1.26 2.69
P@5 (%) 0.48 0.45 1.53 0.11 1.50 0.85 0.93 1.92

nDCG@1 (%) 1.27 1.92 1.11 1.43 1.85 1.22 1.55 4.71
nDCG@3 (%) 1.71 0.64 2.50 2.16 2.96 1.80 1.82 5.87
nDCG@5 (%) 2.62 0.55 3.41 2.20 3.87 2.61 3.00 6.41

EUR-Lex

P@1 (%) 6.15 0.21 6.24 3.87 7.22 2.28 5.79 6.30
P@3 (%) 2.72 0.07 2.09 1.98 3.54 2.00 2.54 3.57
P@5 (%) 1.63 0.04 1.76 1.89 2.83 1.89 1.20 2.28

nDCG@1 (%) 2.24 0.23 2.25 3.78 2.62 1.27 1.91 3.06
nDCG@3 (%) 5.95 0.07 5.35 1.49 8.30 1.96 4.20 8.62
nDCG@5 (%) 6.83 0.06 6.30 1.92 8.90 2.44 5.41 8.31

Wiki10

P@1 (%) 4.34 4.82 5.14 3.03 4.61 3.98 3.48 5.52
P@3 (%) 1.45 1.61 4.86 1.56 4.10 1.60 1.27 5.10
P@5 (%) 0.87 0.96 3.40 1.09 4.80 1.19 0.43 4.46

nDCG@1 (%) 5.06 4.46 5.14 3.41 5.00 1.01 4.28 4.60
nDCG@3 (%) 1.48 1.47 4.87 3.25 5.27 1.90 1.59 5.12
nDCG@5 (%) 1.29 1.25 3.46 3.09 5.36 1.96 1.30 5.57

4.2 Comparison with Baseline Approach
We first study how effective TAIL is at improving classifica-
tion performance in comparison with plain Binary Relevance
(BR) based on raw features. Table 2 depicts the compari-
son results with the vanilla BR. On relatively small data set
Bibtex, TAIL achieves competitive results across six different
metrics. Considering the relatively balanced label distribution

and few label co-occurrence frequencies due to the small label
set, and it might be inaccurate to capture label relationship
between head labels and tail labels. On the other three larger
data sets with high-dimensional label space, TAIL improves
the prediction accuracy on tail labels with a relatively large
margin in most cases. Therefore, this justifies the superiority
of constructed label-specific features to raw features.
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Figure 3: Studies on different values of Kt. X-axis: value of
Kt(%). Y-axis: P@5.

Table 4: Experimental results employing only label-specific
features w.r.t. instances.

Data set P@1 (%) P@3 (%) P@5 (%)

Bibtex 7.12 2.20 1.61
Delicious 3.82 2.07 0.88
EUR-Lex 4.50 2.00 0.42

4.3 Comparison with State-of-the-art Approaches

In this experiment, we compare the performance of TAIL with
state-of-the-art methods: FastXML, LEML, SLEEC, DiS-
MEC, CoH, PD-Sparse, and REML. As demonstrated in Ta-
ble 3, TAIL achieves better performance compared to state-
of-the-art approaches, which demonstrates the merit of label-
specific features. Specifically, TAIL achieves the best or sec-
ond best performance on TLD in 23 out of 24 cases. Sophisti-
cated solvers, such as FastXML, LEML, and SLEEC, does not
achieve as good performance on tail labels as on head labels.
The reason may owe to the fact of population bias among the
training set. Note that, the predictive accuracy on TLD is
very limited especially on larger data sets because scarce posi-
tive examples are not sufficient to learn satisfactory models.
Specifically, there are more than 20% of labels have no more
than 1 associated instance on Wiki10 and EUR-Lex data sets.
In order to gain better learning performance on tail labels, it is
necessary to leverage side information, such as the underlying
meaning of each class label or the relationship among labels.
Since expertise is expensive to access especially when label
set is large, it is not considered in this work.

4.4 Influences of Two Feature Construction Steps

To study the effectiveness of label-specific features w.r.t. in-
stances and labels separately, we report performance by em-
ploying only label-specific features w.r.t. instances in Table 4
and label-specific features w.r.t. instances in Table 5. As de-
picted in Table 4, in comparison with the results in Table 2, it
results in more than 30% performance degradation depicting
the importance of label relationship. Conversely, performance
degrades when only label-specific features w.r.t. labels are em-
ployed, which is in line with the observations of Table 4. The
case study justifies that both label-specific feature construction
steps are vital to the learning performance of TLD.

Table 5: Experimental results employing only label-specific
features w.r.t. labels.

Data set P@1 (%) P@3 (%) P@5 (%)

Bibtex 6.30 1.32 0.66
Delicious 3.02 1.96 0.38
EUR-Lex 4.83 2.43 1.13

4.5 Parameter Sensitivities Analysis
We further investigate the influence of the number of tail labels
Kt to the performance of TAIL in comparison with LEML,
FastXML, and SLEEC. We vary the percentage of tail labels
ranging from [10%, 20%, 30%, 40%] for comparison. Fig-
ure 3 demonstrates that the performance is getting better as
the value of Kt grows, which is very intuitive because it is
easier to model head labels compared with tail ones and richer
information can be leveraged and make knowledge transfer-
ring feasible. For different values of Kt, TAIL consistently
outperforms competing methods. It can be seen that TAIL can
capture label relationships as good as leading LMLL approach
SLEEC when extra HLD is available.

5 Conclusion
In this paper, for the first time, we attempt to improve the
learning performance on tail label data and we call this kind of
learning problem as tail label learning. A data-level solution
named TAIL is proposed to directly guide the learning of tail
label data through extracting label-specific features. It replaces
the original high-dimensional and sparse feature representa-
tion which may not be suitable for tail label data. Specifi-
cally, TAIL constructs label-specific features concerning each
tail label through exploring data distribution and leveraging
label correlations. Extensive empirical studies on benchmark
data sets demonstrate that the learning performance of tail
label data is clearly improved and validate the effectiveness of
the proposed approach. In the sequel, it is interesting to inves-
tigate the sample generation mechanism of tail label learning.
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