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Abstract
Large-scale multi-label learning annotates relevant
labels for unseen data from a huge number of can-
didate labels. It is well known that in large-scale
multi-label learning, labels exhibit a long tail dis-
tribution in which a significant fraction of labels
are tail labels. Nonetheless, how tail labels make
impact on the performance metrics in large-scale
multi-label learning was not explicitly quantified.
In this paper, we disclose that whatever labels are
randomly missing or misclassified, tail labels im-
pact much less than common labels in terms of
commonly used performance metrics (Top-k preci-
sion and nDCG@k). With the observation above,
we develop a low-complexity large-scale multi-
label learning algorithm with the goal of facilitating
fast prediction and compact models by trimming
tail labels adaptively. Experiments clearly verify
that both the prediction time and the model size are
significantly reduced without sacrificing much pre-
dictive performance for state-of-the-art approaches.

1 Introduction
Large-scale multi-label learning [Zhang and Zhou, 2014;
Hsu et al., 2009] annotates data object with the relevant labels
from an extremely large number of candidate labels, which
recently owns many real applications. For example, in web-
page categorization, millions of labels (categories) are col-
lected in Wikipedia and one needs to annotate a new webpage
with relevant labels from such a big candidate set; in image
annotation, millions of people tags are in the repository and
one wishes to tag each individual picture from such a big can-
didate tags; in recommendation system, millions of items are
presented and one hopes to make informative personalized
recommendation from the big candidate items.

An important statistical characteristic of large-scale multi-
label learning is that labels follow a power law distribution
(as illustrated in Figure 1). There are more than 70% labels
which occur in at most 15 examples on each dataset. The
infrequently occurring labels are referred as tail labels and
the frequently occurring ones are referred as common labels.

∗Yu-Feng Li is the corresponding author.

How do tail labels impact the performance? It turns out that
this intrinsic issue is persistently neglected in most large-scale
multi-label learning studies, though tail label has recently at-
tracted increasing attention [Babbar and Schölkopf, 2018].
Most approaches usually believe that the final performance
would benefit from leveraging tail labels [Bhatia et al., 2015;
Xu et al., 2016; Jain et al., 2016].

To answer this question, in this paper we compute the im-
pact of tail labels on popular performance metrics through
analyzing the missing labels and the misclassified labels. Our
analyses consistently show that tail labels impact much less
than common labels in terms of commonly used performance
metrics (Top-k precision and nDCG@k). This implies that
simply optimizing the Top-k precision and nDCG@k metrics
in large-scale multi-label learning does not need to take tail
labels into account. We conduct a simple empirical study by
trimming off 50% labels with fewest positive examples. As
illustrated in Figure 2, both the prediction time and the model
size are reduced without sacrificing much performance.

Based on the observations mentioned above, we develop
a low-complexity large-scale multi-label learning algorithm
with the goal of facilitating fast prediction and compact mod-
els through trimming tail labels adaptively. We simulate
the training procedure and correlate the reduction in terms
of predictive performance, prediction time and model size
with the fraction of trimmed tail labels by polynomial func-
tions of label set size. Through modelling such correlations,
the objective function is optimized based on golden section
search and parabolic interpolation [Forsythe et al., 1977;
Brent, 2013]. Experiments verify the effectiveness of trim-
ming tail labels in terms of prediction time and model size re-
duction, and promising predictive performance. In addition,
the strategy mentioned above is a wrap of model and hence
can be applicable to many large-scale multi-label models.

In the rest of the paper, we first briefly introduce related
works. Then, we study the usefulness of tail labels in large-
scale multi-label learning, and propose to trim off tail label
adaptively to facilitate fast prediction and compact models.
Experimental results on a number of data sets are conducted
to verify our idea, followed by discussion and conclusion.

2 Related Work
In previous large-scale multi-label learning, prediction time
and model size are two crucial issues because fast prediction
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Figure 1: The number of examples for each label is presented on
(a) Wiki10 and (b) EUR-Lex datasets. The horizontal axis indicates
the indices of labels, while the vertical axis indicates the number
of associated examples in the training data. The vertical red line
indicates that labels to the left of it (more than 70%) occur in at
most 15 examples on each dataset.
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Figure 2: Performance of state-of-the-art large-scale multi-label
method (LEML [Yu et al., 2014]) on (a) Wiki10 and (b) EUR-Lex
datasets with entire label set and label set after trimming off 50% tail
labels. As we can see, P@1 and nDCG@1 do not deteriorate while
prediction time and model size are reduced.

and compact models are desired for large label set, especially
for real-time applications in portable devices.

Many approaches exploit structural assumptions to reduce
prediction time. For example, embedding-based methods
have been proposed to project label vectors onto a low di-
mensional space based on the assumption that label matrix
is low-rank [Hsu et al., 2009; Zhang and Schneider, 2011;
Chen and Lin, 2012; Tai and Lin, 2012; Cisse et al., 2013;
Bi and Kwok, 2013; Lin et al., 2014; Yeh et al., 2017]. An-
other recent thread of research is tree-based methods that re-
cursively divide the space of labels or features to achieve
fast prediction speed [Prabhu and Varma, 2014; Choroman-
ska and Langford, 2015; Daume III et al., 2016].

Several methods are proposed recently to yield sparse so-
lutions explicitly or prune spurious weights to achieve sparse
models. Yen et al. [2016] maximized the margin loss with
`1 penalty and yielded extremely sparse solution without
sacrificing the expressive power of predictor. Babbar and
Schölkopf [2017] proposed an framework which controls the
model size by filtering out the billions of stored spurious pa-
rameters by ad-hoc usage of the off-the-shelf solvers. By
weeding out ambiguous parameters, one can obtain model

Notation Meaning
N Number of training instances
L Number of labels
d Number of feature dimensionality
Lc Number of common labels
Lt = L − Lc Number of tail labels
Y = [y1; . . . ;yN ] Observed or predictive label matrix
Y∗ Ground-truth label matrix

Table 1: Summary of Notation

sizes which are three orders of magnitude smaller.
Recently, there are some discussions on the power law dis-

tribution in multi-label learning. Bhatia et al. [2015] repre-
sented tail labels by learning a embedding, which captures
non-linear label correlations by preserving the pairwise dis-
tances between label vectors. For prediction, a k-nearest
neighbor classifier is used in the embedding space, leverag-
ing the preserved nearest neighbors in the training phrase.
Jain et al. [2016] explained that infrequently occurring tail
labels are harder to predict than frequently occurring ones
since they have little training examples. Xu et al. [2016]
treated tail labels as outliers and decomposed the label ma-
trix into a low-rank matrix which depicts label correlations
and a sparse one capturing the influence of tail labels. Wang
et al. [2017] cast the tail label problem as transfer learning by
transferring knowledge from the data-rich head to the data-
poor tail classes. Li et al. [2017] handled the long-tail rec-
ommendation problem. They decomposed the recommen-
dations into two part, a low-rank part to address short-head
items and a sparse part to handle long-tail items. Due to the
scarcity of positive training instances for tail labels, Babbar
and Schölkopf [2018] viewed this phenomenon as a setup in
which an adversary is generating test examples such that the
features of the test set instances is quite different from those
in the training set. Most of these studies, believe that the final
performance would benefit from leveraging tail labels.

3 Usefulness of Tail Labels in Large-Scale
Multi-Label Learning

In this section, focusing on large-scale multi-label learning,
we study the usefulness of tail labels for the final perfor-
mance. We first briefly introduce the setup of large-scale
multi-label learning and its commonly used evaluation met-
rics. Then, we compute the impact of tail labels on popular
performance metrics through analyzing the missing and the
misclassification of labels, respectively.

3.1 Preliminaries
Let D = {(x1,y1) . . . (xN ,yN )} be the given training set,
where xi ∈ Rd is the input feature of the i-th example and
yi ∈ {0, 1}L is the corresponding label vector. Yij = 1
if example xi is relevant with the j-th label, and 0 other-
wise. Large-scale multi-label learning aims to learn a clas-
sifier f : Rd → {0, 1}L that predicts the label vector for
unseen data. Unlike traditional multi-label learning, the label
set size is very large and the labels usually follows a long tail
distribution. Detail notations are summarized in Table 1.



3.2 Commonly Used Performance Metrics
Top-k precision
Top-k precision is a commonly used ranking based perfor-
mance measure in large-scale multi-label learning and has
been widely adopted for ranking tasks [Prabhu and Varma,
2014; Bhatia et al., 2015]. In Top-k precision, only a few top
predictions of an instance will be considered. For each in-
stance x, the Top-k precision is defined for a predicted score
vector ŷ ∈ RL and ground truth label vector y ∈ {−1, 1}L
as

P@k :=
1

k

∑
l∈rankk(ŷ)

yl, (1)

where rankk(ŷ) returns the indices of k largest value in ŷ
ranked in descending order.

nDCG@k
nDCG@k is another commonly used ranking based perfor-
mance measure and is defined as

nDCG@k :=
DCG@k∑min(k,‖y‖0)

l=1
1

log(l+1)

, (2)

where DCG@k :=
∑
l∈rankk(ŷ)

yl

log(l+1) and ||y||0 returns the
0-norm of the true-label vector.

3.3 For Labels are Randomly Missing
Due to the large number of labels, human annotators may not
be able to go through every label and make out all the rele-
vant labels. We first consider the impact of tail labels under
the scenario that relevant labels go missing randomly with
probability ε [Lim et al., 2015], and compute the expectation
of performance for discussion.
Proposition 1. Under the assumption that relevant labels
are randomly missing with probability ε, common labels have
more impact than tail labels in terms of P@k and nDCG@k.

Proof. (a) P@k: In this analysis, for simplicity we suppose
that each instance associates with a constant c number
of labels in the ground-truth label vector, that is, v =
(1 − ε)c relevant labels are observed for each instance.
As only k out of v relevant labels are considered in the
calculation of P@k, we choose a random subset of size
k from v relevant labels which has

(
v
k

)
distinct ways for

each instance and compute the expected number of times
for the j-th label is chosen as

N∑
i=1∧Yij=1

(
v−1
k−1
)(

v
k

) = (1− ε)uj
k

v
, (3)

As we can see, the value of Eq. (3) increases as uj
becomes larger. Since Eq. (3) only depends on uj
for the j-th label, we can compute the contribution
of each label separately. By considering the contribu-
tion to P@k of tail labels (referred as TP@k) and com-
mon labels (referred as CP@k) respectively, we have
TP@k = b

∑Lt

j=1 uj and CP@k = b
∑L
j=Lt+1 uj , where

b = (1− ε)kv and labels are sorted according to their oc-
currences in ascending order beforehand with tail labels
at the front.

Then, we get

CP@k

TP@k
=

∑L
j=Lt+1 uj∑Lt

j=1 uj
(4)

In practical cases, tail labels only occur with a handful
of examples while there can be as many as hundreds or
even thousands of examples having common labels (as
shown in Figure 1). Therefore, CP@k is significantly
larger than TP@k, which evidently discloses that com-
mon labels impact much more importantly than tail la-
bels in terms of Top-k precision.

(b) nDCG@k: Note that every observed label has the same
rank, hence

∑k
l=1

1
log(l+1) is a constant. The analysis

for nDCG@k is reduced to the one in P@k, and we get
the same conclusive remark in terms of nDCG@k, i.e.,
common labels impact much more importantly than tail
labels.

3.4 For Labels are Randomly Misclassified
It’s a common practice to consider the probability of misclas-
sification [Schapire, 1990; Bartlett, 1998]. We further con-
sider the impact of tail labels under the scenario that labels
are randomly misclassified with probability ε, and similar to
Section 3.3, we compute the expectation of performance for
discussion.
Proposition 2. Under the assumption that labels are ran-
domly misclassified with probability ε, common labels have
more impact on P@k and nDCG@k than tail labels.

Proof. (a) P@k: Similar to the proof of the previous propo-
sition, we suppose that each instance associates with a
constant c number of labels in the ground-truth label
vector. Hence, there will be v = (1 − ε)c + ε(L − c)
relevant labels in the predicted label vector. By choos-
ing a random subset of size k from v relevant labels, the
expected number of times the j-th label is chosen can be
computed as

N∑
i=1∧Yij=1

(
v−1
k−1
)(

v
k

) =
(
εN + (1− 2ε)uj

)k
v

(5)

Since Eq. (5) only depends on uj for the j-th label, we
can compute the contribution of each label separately.
By considering contribution of tail labels and common
labels respectively, we have TP@k = b

∑Lt

j=1 uj +

εNLt
k
v and CP@k = b

∑L
j=Lt+1 uj + εN(L − Lt)

k
v ,

where b = (1− 2ε)kv . Therefore, we have

CP@k

TP@k
=
εN(L− Lt) + (1− 2ε)

∑L
j=Lt+1 uj

εNLt + (1− 2ε)
∑Lt

j=1 uj
(6)

As tail labels only occur in a handful of examples and
common labels can associate with as many as hundreds
or even thousands of examples in practical cases, simi-
larly, disclosing that common labels impact much more
importantly than tail labels in terms of Top-k precision.



(b) nDCG@k: Similar with the reason in the proposition
1, The analysis for nDCG@k is reduced to the one in
P@k, and we obtain a same conclusive remark in terms
of nDCG@k.

With the analysis above, in both label-missing and label-
misclassified scenarios, we conclude that common labels
have a significant larger impact compared with that of tail
labels in terms of P@k and nDCG@k. This analysis moti-
vates us to trim off tail labels, which may have little impact
on popular performance metrics.

4 Adaptively Trimming off Tail Labels
A straightforward way to trim off tail labels is to remove a
constant proportion of labels. However, due to variety of
data, it may result in performance deterioration in case too
many tail labels are pruned. Therefore, a crucial issue is to
adaptively select a cut-off threshold for tail labels, taking the
predictive performance, prediction time and model size into
account simultaneously.

In this section, we present the proposed Adaptively Trim-
ming off Tail Labels (ADATTL) method which selects a
threshold λ adaptively on a variety of data where λ represents
a fraction of tail labels to be trimmed, to trade off the predic-
tive performance, prediction time and model size. Since it
is hard to foresee the influence of different value of λ, we
consider to build a regressor using different label set size and
different training set size, to predict the potential reduction
of predictive performance, prediction time and model size,
respectively, and thus determine an appropriate threshold.

Our approach is data-driven and achieved by sampling
technique. We start collecting data for regressors by trim-
ming off a random fraction λτ of tail labels resulting in
the remaining label set Lτ and sampling a subset of train-
ing examples Dτ uniformly at random. Then, we train an
large-scale multi-label classifier fτ on (Dτ , Lτ ) and com-
pute P@k, nDCG@k, prediction time and model size. This
process is repeated multiple times. We fit the obtained set
of triplets {(|Dτj |, λτj , perfj)}Tj=1, {(|Dτj |, λτj , timej)}Tj=1

and {(|Dτj |, λτj , sizej)}Tj=1 with polynomial functions,
where T is sample size, perf is the testing performance vec-
tor, time is the prediction time vector and size is the model
size vector calculated during the simulation. From this, re-
gression functions can predict the potential reduction in test-
ing performance, prediction time and model size given the
training set size and λ. After building the regressors, we for-
malize ADATTL as

maxL = max
0<λ<1

f(Ntr, λ)− αg(Ntr, λ)− βh(Ntr, λ), (7)

where α, β are trade-off parameters, Ntr is the training set
size and functions f, g, h are regressors for testing perfor-
mance, prediction time and model size, respectively. To max-
imize Eq. (7), functions g and h are desired to be as small
as possible which indicates a large reduction in prediction
time and model size respectively, whereas function f is pre-
ferred to be as large as possible which means losing less test-

ing performance. We obtain the final threshold λ by optimiz-
ing L based on golden section search and parabolic interpola-
tion [Forsythe et al., 1977; Brent, 2013]. The steps discussed
above are summarized in Algorithm 1.

Algorithm 1 ADATTL
Input: feature vectors X ∈ RN×d; label vectors Y ∈ RN×L;
hyper-parameters α, β and sample size T
Output: the fraction λ of tail labels

1: for t = 1, 2, · · · , T do
2: trim a randomly selected fraction λτt of tail labels re-

sulting in the remaining label set Lτt
3: sample a subset of training examples Dτt randomly
4: train large-scale multi-label model ft on (Dτt, Lτt)
5: compute perft, timet and sizet
6: end for
7: fit {(|Dτj |, λτj , perfj)}Tj=1, {(|Dτj |, λτj , timej)}Tj=1

and {(|Dτj |, λτj , sizej)}Tj=1 with polynomial surfaces
8: optimize Eq. (7) and obtain λ
9: return λ

5 Experiments
We conduct experiments with a leading embedding-based
method LEML [Yu et al., 2014] and a state-of-the-art tree-
based method FastXML [Prabhu and Varma, 2014] to vali-
date our theoretical findings and effectiveness of ADATTL.
Experiments are carried out on multi-label datasets including
Bibtex (159 labels), Delicious (983 labels), EUR-Lex (3993
labels) and Wiki10 (30K labels). All the datasets and imple-
mentation of LEML and FastXML are publicly available and
can be downloaded from the Extreme Classification Reposi-
tory1. To demonstrate that ADATTL selects threshold prop-
erly, we trim tail labels with varying fractions ranging from
[10%, 20%, . . . , 90%] for comparison. As the fraction of
trimmed tail labels increases at each time, we decrease the
number of trees trained in FastXML by two. We use quartic
polynomial functions to model functions f , g and h. When
modelling function f , we use the sum of P@k and nDCG@k,
k = {1, 2, 3}, as the whole testing performance. Default
value of parameters for LEML and FastXML are used and
hyper-parameters α and β in Eq. (7) are set to 1.

5.1 For Embedding-Based Methods
We compare the performance of ADATTL with LEML. The
classification performance in terms of P@k and nDCG@k
is presented in Figure 3, while Table 2 presents the re-
sults of prediction time and model size. It can be seen
that ADATTL selects threshold properly which do not re-
sult in performance deterioration, while stably performs bet-
ter than LEML on all datasets in terms of prediction time and
model size. For example, ADATTL improves over LEML
by as much as 92.1% and 20% in terms of prediction time
and model size on Wiki10 dataset. This is because that the
success of LEML mainly depends on the low-rank assump-
tion, which tends to be violated due to the presence of tail

1http://manikvarma.org/downloads/XC/XMLRepository.html



labels. Therefore, tail labels make very limited contribution
to the performance of LEML. ADATTL provides an appropri-
ate approach to preserve the validity of low-rank assumption
by elegantly trimming off the tail labels. Hence, ADATTL is
able to achieve comparable results.

5.2 For Tree-Based Methods
We next conduct experiments with FastXML, which is a lead-
ing tree-based method. Figure 4 and Table 3 show the com-
parison results and we have the following observations. Com-
pared with FastXML, ADATTL achieves highly competitive
performance in terms of P@k and nDCG@k, meanwhile
saves considerable prediction time and model size in all cases.
The reason lies in the fact that, the number of split partitions
and the depth of trees during the training process are both re-
duced as the number of labels decreases, therefore the size of
tree model and the prediction time spent on leaf nodes are cut

down consequently.
From the experimental results, we conclude that the pro-

posed strategy selects threshold adaptively and yield fast pre-
diction speed as well as compact models. Moreover, the ef-
fectiveness is valid for both embedding-based and tree-based
approaches, which validates the applicability of our strategy.

6 Discussion
Our analysis and empirical studies suggest that, in order to
evaluate the performance of large-scale multi-label methods
on tail labels, the choice of performance metric is critical
due to the power-law distribution. Jain et al. [2016] claimed
that existing performance metrics, such as the Hamming loss,
are unsuitable for performance evaluation. They developed
propensity scored variants of top-k precision, nDCG@k and
other popular performance metrics which treat tail labels as
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Figure 3: Top@k precision and nDCG@k of state-of-the-art embedding-based method LEML with different ratios of trimmed tail labels,
where “adaptive point” refers to the adaptive threshold selected by our ADATTL method.

Dataset LEML ADATTL Reduction over LEML

Bibtex Prediction time 0.31 s 0.26 s 16.13 %
Model size 0.76 MB 0.61 MB 19.74 %

Delicious Prediction time 0.02 s 0.01 s 50.00 %
Model size 2.26 MB 1.13 MB 50.00 %

EUR-Lex Prediction time 3.85 s 1.85 s 51.92 %
Model size 34.31 MB 24.22 MB 29.41 %

Wiki10 Prediction time 3.67 s 0.29 s 92.10 %
Model size 506.88 MB 405.52 MB 20.00 %

Table 2: Prediction Time (s) and Model Size (MB) with comparison embedding-based method LEML.
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Figure 4: Top@k precision and nDCG@k of state-of-the-art tree-based method FastXML with different ratios of trimmed tail labels, where
“adaptive point” refers to the adaptive threshold selected by our ADATTL method.

Dataset FastXML ADATTL Reduction over FastXML

Bibtex Prediction time 1.47 s 1.12 s 23.80 %
Model size 18.72 MB 15.10 MB 19.34 %

Delicious Prediction time 5.82 s 4.12 s 29.21 %
Model size 71.29 MB 53.28 MB 25.26 %

EUR-Lex Prediction time 14.22 s 8.05 s 43.34 %
Model size 194.40 MB 130.09 MB 33.08 %

Wiki10 Prediction time 45.74 s 25.10 s 45.12 %
Model size 501.47 MB 301.42 MB 39.89 %

Table 3: Prediction Time (s) and Model Size (MB) with comparison tree-based method FastXML.

being more important than common ones. Nonetheless, the
weights for labels were set in an ad hoc fashion and unavail-
able for general cases. To make tail labels have great merit,
more preferable performance metrics need to be designed.

7 Conclusion
In this paper, we propose to study how tail labels make im-
pact on the commonly used performance metrics in large-
scale multi-label learning. Through examining the missing
labels and the misclassified labels, our analysis discloses that
tail labels consistently impact much less than common la-
bels on popular performance metrics. We then develop a
low-complexity large-scale multi-label algorithm to facilitate
fast prediction and compact models by trimming tail labels
adaptively. Experiments verify the effectiveness of trimming
tail labels in terms of prediction time and model size reduc-

tion, and promising predictive performance. The contribution
of this work is that we provide a different aspect for large-
scale multi-label learning, revealing that significant attention
should be paid to the design of performance metrics, to fully
exploit the great merit of tail labels.
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