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Re-weighting Large Margin Label Distribution
Learning for Classification
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Abstract—Label ambiguity has attracted quite some attention among the machine learning community. The latterly proposed Label
Distribution Learning (LDL) can handle label ambiguity and has found wide applications in real classification problems. In the training
phase, an LDL model is learned first. In the test phase, the top label(s) in the label distribution predicted by the learned LDL model is
(are) then regarded as the predicted label(s). That is, LDL considers the whole label distribution in the training phase, but only the top
label(s) in the test phase, which likely leads to objective inconsistency. To avoid such inconsistency, we propose a new LDL method
Re-Weighting Large Margin Label Distribution Learning (RWLM-LDL). First, we prove that the expected L1-norm loss of LDL bounds
the classification error probability, and thus apply L1-norm loss as the learning metric. Second, re-weighting schemes are put forward
to alleviate the inconsistency. Third, large margin is introduced to further solve the inconsistency. The theoretical results are presented
to showcase the generalization and discrimination of RWLM-LDL. Finally, experimental results show the statistically superior
performance of RWLM-LDL against other comparing methods.

Index Terms—Label Distribution Learning (LDL), Classification, Re-weighting, Large Margin, Generalization
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1 INTRODUCTION

LAbel ambiguity [1] is the phenomenon that one instance
is related to multiple labels by different degrees, which

is a hot topic in the field of machine learning. Take multi-
label image classification and emotion recognition as exam-
ples. Fig. 1a shows a multi-label scene image from [2]. Note
that “Water” has higher importance than “Sun”, although
both are positive labels. Fig. 1b shows an image from
the JAFFE database [3] with a ground-truth single-label
“ANG.”. However, the image is a mixture of many kinds
of emotions by different relevance. Traditional supervised
learning paradigms, such as Single-Label Learning (SLL)
and Multi-Label Learning (MLL) [4], model the correspon-
dence between instances and labels by 0 or 1, which fails to
consider label ambiguity.

Recently, a novel learning paradigm called Label Distri-
bution Learning (LDL) [5] is proposed as a possible solution
to label ambiguity. Unlike SLL and MLL, LDL models
the correspondence between instances and labels by real
values. Specifically, LDL assigns each instance with a label
distribution, and the elements of a label distribution are
called the label description degrees that explicitly indicate
the relative importance of labels. In LDL, for Fig. 1a, “Wa-
ter” and “Sun” are respectively given the label description
degrees of 0.74 and 0.26 (the label distribution is got from
[6]), which tells the difference of label-importance. Simi-
larly, in LDL, Fig. 1b is annotated with a label distribution
[0.10, 0.15, 0.11, 0.28, 0.23, 0.13]> (the label distribution is
from the mean ratings by 60 annotators [3]), which models
the relevance of emotions. Label distribution directly tells
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(b) A facial emotion image

Fig. 1. Illustration of label ambiguity and label distribution. Fig. 1a shows
a multi-label scene image with little “Sun” and mostly “Water”. Fig. 1b
shows an image from the JAFFE database [3] with a ground-truth single-
label “ANG.”. The image is a mixture of emotions by different relevance.
The label distribution of Fig. 1a is got from [6], and the label distribution
of Fig. 1b is from the mean ratings from 60 annotators [5].

how much does each label describe the instance [5], which
is more general than 0/1 label. The goal of LDL is to learn a
mapping from instance to label distribution directly.

LDL has already been applied to varieties of real classi-
fication applications, such as age estimation [7], [8], head-
pose estimation [9], expression recognition [10], beauty per-
ception [11], acne image grading and counting [12], multi-
label classification [13], etc. There are two phases involved
in the applications. First, in the training phase, an LDL
model is learned by minimizing the distance between the
model’s output and the specific label distribution (e.g., age
distribution [7]). Second, in the test phase, the top label(s) in
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Fig. 2. Illustration of multi-label classification in the framework of LDL,
where d is the given label distribution function, and g is an LDL model.

the label distribution predicted by the learned LDL model
is (are) then regarded as the predicted label(s). Take multi-
label classification as an instance, which is depicted in Fig.
2. First, an LDL model is learned from the training set
described by label-importance-aware label distribution [13].
Next, an unknown instance is directly fed into the learned
LDL model. The top two labels having the largest predicted
label description degrees (i.e., y1 and y3) are then treated as
the predicted labels.

Although LDL has found wide applications, it faces the
challenge of objective inconsistency between the training
phase and the test phase. The goal of the training phase
is to learn the whole label distribution, while the goal of the
test phase is to learn the top label(s) – LDL may neglect
the top label(s) for the sake of learning the whole label
distribution. The objective inconsistency may result in a sub-
optimal decision function [14]. To see that, for the example
of Fig. 1b, suppose that the learned label distribution is
[0.10, 0.15, 0.11, 0.25, 0.26, 0.13]>, which is a good approx-
imation to the ground-truth label distribution with an L1-
norm loss of 0.05. However, for SLL, the predicted label in
the predicted label distribution is “DIS.”, which is different
from the ground-truth label “ANG.”.

This paper tackles the objective inconsistency. We design
a new LDL method called Re-weighting Large Margin
Label Distribution Learning (RWLM-LDL). RWLM-LDL in-
corporates three components, including L1-norm loss, re-
weighting schemes, and large margin. First, we prove that
the expected L1-norm loss of LDL bounds the classification
error probability. According to that finding, we apply L1-
norm loss as the learning metric to minimize the classifica-
tion error probability. Second, we alleviate the inconsistency
by re-weighting instances w.r.t. the information entropy of
label distributions and re-weighting labels w.r.t. label de-
scription degrees. Third, to further solve the inconsistency,
we introduce large margin to LDL. To thoroughly validate
RWLM-LDL, we conduct theoretical analysis and empirical
evaluations. Theoretical results reveal the generalization
and discrimination of RWLM-LDL. Experimental results
show the statistically superior performance of RWLM-LDL
against the baseline methods.

Preliminary results have already been presented in [15],
which only considered SLL. The main contribution of this
paper is that we establish a unified view of SLL and MLL in
the framework of LDL. Specifically, a more general theorem
(Theorem 2) is presented to uncover the relation between
LDL and classification, and more explanations are added

concerning the re-weighting schemes and large margin.
Additionally, more experimental results are reported.

The rest of the paper is organized as follows. First,
section 2 briefly reviews some related works. Then, section
3 presents the details of RWLM-LDL. Next, section 4 con-
ducts the theoretical analysis. Besides, section 5 reports the
experimental results. Finally, section 6 concludes.

2 RELATED WORK

This paper is related to label distribution learning, large
margin, and re-weighting, which are discussed as follows.

Geng et al. [7] first introduced label distribution to allevi-
ate the insufficiency of training examples in age estimation
and proposed IIS-LLD and CPNN to learn from such label
distribution. Latter, Geng [5] formalized LDL as a new learn-
ing paradigm and put forward several baseline methods, in-
cluding PT-SVM, PT-Bayes, AA-kNN, AA-BP, and SA-BFGS.
Since then, many LDL algorithms have been designed. Shen
et al. [16] used the differentiable decision trees to learn
label distribution and proposed LDLFs. LDLFs can learn
any form of label distribution and can be combined with
representation learning [16]. Chen et al. [17] employed the
structured random forest to exploit the structural informa-
tion among different classes and proposed StructRF. Yang
et al. [18] applied the regularized sample self-representation
technique to LDL and proposed RSSR-LDL21. Jia et al. [19]
exploited local label correlation and put forward LDL-SCL.
Gao et al. [1] designed the first deep LDL model DLDL.
Nevertheless, the objective inconsistency of LDL has not
been considered in the design of the above proposals.

LDL has found wide applications in many classification
tasks. In MLL, Zhang et al. [13] applied label distribution to
model the relative importance of labels. Rather than learning
0/1 label, they directly learned the label-importance-aware
label distribution [13]. For a test instance, the top labels in
the predicted label distribution are regarded as the positive
labels. In facial beauty perception, Liang et al. [11] adopted
label distribution to describe frontal faces, which can keep
all the rating information from raters. In acne image analy-
sis, Wu et al. [12] used two label distributions to model the
uncertainty of the number of lesions and the acne severity
for a face image. Moreover, in head-pose estimation, Geng et
al. [9] employed multivariate label distribution to alleviate
the problem of inaccurate pose labels and directly learned
a mapping from instances to the multivariate label distri-
butions. Similarly, the pose label with the highest predicted
label description degree is regarded as the predicted pose.
However, none of the above works realize the objective
inconsistency of LDL.

There are a few works on the objective inconsistency of
LDL. Gao et al. [14] first recognized the objective inconsis-
tency in the application of age estimation. They designed
a lightweight network to jointly learn the label distribution
and the ground-truth age label. However, the method is only
suitable for real-valued label space, and theoretical guaran-
tees are not provided. Besides, we analyzed the learnability
of classification in the framework of LDL in a recent work
[20]. However, the theory only applies to SLL, and the ob-
jective inconsistency is not considered. In contrast, RWLM-
LDL is a general LDL approach that addresses the objective
inconsistency and has theory guarantees.
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The large margin (or maximum margin) was first intro-
duced by Vapnik and Chervonenkis [21] and directly led
to the Support Vector Machine (SVM) [22]. SVM attempts to
maximize the margin of training instances. Large margin has
been widely used in many SLL and MLL methods, such as
multi-class SVM [23], Optimal Margin Distribution Machine
(OMD) [24], Binary Relevance SVM (BR-SVM) [4], Rank-
SVM [25], LIMO [26], etc. Moreover, margin theory is an
important statistical tool that has been adopted to analyze
the generalization of many algorithms [27]. Re-weighting
assigns different weights to different samples, which has
been well studied in the literature, such as importance
sampling to match up different distributions [28], dataset
sampling [29] to deal with imbalanced datasets, boosting
methods [30], [31] to weight samples based on the training
loss, etc. We first introduce large margin and re-weighting
to LDL and solve the objective inconsistency.

3 THE RWLM-LDL APPROACH

We start with the preliminaries and then establish the rela-
tion between LDL and classification, which is the theoretical
foundation of RWLM-LDL. Next, we elaborate on the algo-
rithm formulation.

3.1 Preliminaries
Denote by X ⊆ Rq the input space and Y = {y1, · · · , ym}
the label space. In LDL, each instance x ∈ X is associated
with a label distribution dx = [dy1x , · · · , dymx ]>, where dyjx is
called the label description degree and indicates the relative
importance of yj to x. Furthermore, label description degree
satisfies

∑
j d

yj
x = 1 and d

yj
x ≥ 0. The summary of the

mainly used notations is listed in Table 1. Given a training
set S = {(x1,dx1

), . . . , (xn,dxn
)} and a loss function

` : Rm × Rm → R+, LDL can be cast as the following [5]

min
W

n∑
i=1

`(g(xi;W ),dxi
),

where g is a parametric model, and W is the parameter.
Let DX be the underlying distribution over X . Let y ∈ Y

denote the (random) SLL label variable, and y ∈ {0, 1}m de-
note the (random) MLL label variable. For an SLL classifier
f : X → Y , the error probability [32] is defined by

L(f) = Ex,y [I(f(x) 6= y)] ,

where I(·) is the indicator function. For an MLL classifier
f : X → {0, 1}m, the error probability is defined by

L(f) = Ex,y

 1

m

m∑
j=1

I(fj(x) 6= yj)

 ,
where yj is the jth element of y, and fj(x) is the prediction
for the jth label. Our objective is to minimize L(f).

Let η : X 7→ Rm be the conditional probability distribu-
tion function, and ηj(·) be the jth output of η(·). For SLL,
ηj(x) = P(y = yj | x). For MLL, we have

ηj(x) = P(yj = 1 | x) =
∑
y:yj=1

P(y | x).

For simplicity, let ηyjx = ηj(x) and ηx = [ηy1x , . . . , η
ym
x ]>. Let

d : X → Rm be the ground-truth label distribution function.

TABLE 1
Summary of the mainly used notations.

Symbol Definition

X Feature Space
Y Label Space
xi The ith training instance
dxi The ith training label distribution
d
yj
xi

The label description degree of yj to xi

y,y SLL and MLL (random) label variables
q The number of feature dimensions
n The number of training instances
m The number of classes
DX The underlying distribution over X
η Conditional probability distribution function
I(·) Indicator function
g∗ The optimal classifier
L(·) Error probability function

3.2 Relation between LDL and Classification

Assume that d ranks the labels the same as η does1. Then,
for SLL, the optimal (Bayes) classifier [32] can be defined by

g∗(x) = arg max
y∈Y

dyx,

which outputs the label having the largest label description
degree. For MLL, the optimal classifier [33] is defined by

g∗(x) = {g∗1(x), g∗2(x), . . . , g∗m(x)},

and g∗j (x) equals 1 if j ∈ rankk(x)(dx) and 0 otherwise,
where rankk(x)(·) returns the indices of the k(x) largest
values ranked in descending order, and k(x) = |{j : η

yj
x ≥

0.5}| [33]. That is, the top k(x) labels having the largest label
description degrees are returned.

Let g : X → Rm denote a learned LDL function. For
simplicity, let gyjx = gj(x) and gx = [gy1x , g

y2
x , . . . , g

ym
x ]>.

Similarly, an SLL classifier can be induced by

ĝ(x) = arg max
y∈Y

gyx, (1)

and an MLL classifier can be induced by

ĝ(x) = {ĝ1(x), ĝ2(x), . . . , ĝm(x)}, (2)

where ĝj(x) equals 1 if j ∈ rankk(x)(gx) and 0 otherwise.

Theorem 1. Let g be a learned LDL function. Then, the error
probability of an SLL classifier as Eq. (1) satisfies

L(ĝ)− L(g∗) ≤ Ex∼DX

 m∑
j=1

|gyjx − ηyjx |
 ,

and the error probability of an MLL classifier as Eq. (2) satisfies

L(ĝ)− L(g∗) ≤ 2

m
Ex∼DX

 m∑
j=1

|gyjx − ηyjx |
 .

1. In statistical learning theory, η decides which label is the Bayes
prediction [32]. In LDL, d determines the relative importance of labels.
This assumption connects two of them.
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Theorem 1 extends the plug-in decision theorem [32].
The right-hand sides of the bounds are (for MLL, 2/m×) the
expected L1-norm distance between g and η. The theorem
says that the error probability of the induced (SLL and MLL)
classifiers would approach that of the optimal classifiers as
long as g is close to η in the L1-norm sense. The proof
is in the Supplementary Material. Notice that the scale of
g may mismatch with that of η. To see that, g generally
satisfies

∑
j g

yj
x = 1 while η may not satisfy the constraint

for MLL. To avoid that, define η̂ by η̂
yj
x = η

yj
x /Nx, where

Nx =
∑
j η

yj
x . Next, the following theorem discloses the

relation between LDL and classification.

Theorem 2 (Relation between LDL and Classification). Let
g be a learned LDL function, and ĝ be the induced (SLL/MLL)
classifier. Then, the error probability of ĝ satisfies

L(ĝ)− L(g∗) ≤ 2Ex∼DX

 m∑
j=1

|gyjx − dyjx |


+ 2Ex∼DX

 m∑
j=1

|dyjx − η̂yjx |
 .

(3)

Theorem 2 holds for both SLL and MLL cases. The right-
hand side of Eq. (3) is the sum of two terms, where the first
one is the expected L1-norm loss of g, and the second one is
the expected L1-norm distance between d and η̂. The second
term is a constant independent of g, which can be ignored
in LDL. As a result, the theorem states that the expected L1-
norm loss of LDL bounds the classification error probability.
Theorem 2 is the theoretical foundation of RWLM-LDL. The
proof is deferred to the Supplementary Material.

3.3 Algorithm Formulation

3.3.1 LDL with L1-norm Loss
According to Theorem 2, to minimize the error probability,
it suffices to minimize the sum of the terms on the right-
hand side of Eq. (3). Because the second term is a constant,
we only need to minimize the first one, i.e., the expected L1-
norm loss of LDL, which inspires us to apply L1-norm loss
as the learning metric for LDL. Analogous to [5], we adopt
the maximum entropy model to learn the label distribution
[34], which is parameterized by

g
yj
x =

1

Zx
exp(wj · x),

where wj ∈ Rq is the parameter, and Zx =
∑
j exp(wj ·

x) is the normalization factor. The output of the maximum
entropy model satisfies the probability simplex constraint
(i.e., gyjx ≥ 0 and

∑m
j=1 g

yj
x = 1). Next, applying L1-norm

loss as the learning metric for LDL, the problem of LDL can
be formulated as the following,

min
W

n∑
i=1

m∑
j=1

|gyjxi − dyjxi |+
λ1

2
‖W ‖2F (4)

where W = [w1,w2, . . . ,wm], ‖ · ‖2F is the Frobenius norm,
and λ1 is the regularization parameter.

There are two advantages of L1-norm loss. The first one
is that L1-norm loss directly relates LDL with classification.

As a result, we can minimize the error probability by min-
imizing the expected L1-norm loss. The second one is that
both SLL and MLL can be formulated into the framework
of LDL using L1-norm loss according to Theorem 2.

3.3.2 Re-weighting LDL

We proceed by showing in Fig. 3 that the characteristics of
label distribution may result in the inconsistency. Specifi-
cally, Fig. 3a and Fig. 3b show the case of SLL, where dx =
[0.1, 0.5, 0.1, 0.2, 0.1]> and gx = [0.2, 0.35, 0.25, 0.1, 0.1]>

for Fig. 3a, and dx = [0.2, 0.3, 0.2, 0.15, 0.15]> and
gx = [0.3, 0.2, 0.2, 0.15, 0.15]> for Fig. 3b. Besides, Fig.
3c and Fig. 3d explain the case of MLL, where dx =
[0.4, 0.4, 0.05, 0.05, 0.1]> and gx = [0.5, 0.2, 0.05, 0.15, 0.1]>

for Fig. 3c, and dx = [0.25, 0.25, 0.1, 0.2, 0.2]> and gx =
[0.2, 0.2, 0.1, 0.25, 0.25]> for Fig. 3d. Then, we can make the
following three observations:

1) For the case of Fig. 3a, the L1-norm loss is 0.5 and
ĝ(x) = g∗(x) = y2. In contrast, for the case of
Fig. 3b, the L1-norm loss is 0.2, but ĝ(x) 6= g∗(x)
(ĝ(x) = y1 and g∗(x) = y2).

2) For the case of Fig. 3c, the L1-norm loss is 0.4
and ĝ(x) = g∗(x) = {1, 1, 0, 0, 0} (top 2 labels
are considered). In contrast, for the case of Fig.
3d, the L1-norm loss is 0.2, while ĝ(x) 6= g∗(x)
(ĝ(x) = {1, 1, 0, 0, 0} and g∗(x) = {0, 0, 0, 1, 1}).

3) The cases of Fig. 3b and Fig. 3d have smaller L1-
norm losses, but the cases of Fig. 3a and Fig. 3c have
smaller 0/1 losses. On one hand, the cases of Fig.
3a and Fig. 3c are inferior to Fig. 3b and Fig. 3d
from the view of LDL. On the other hand, the cases
of Fig. 3a and Fig. 3c are superior to Fig. 3b and
Fig. 3d from the perspective of classification, which
validates the objective inconsistency.

In light of the above observations, for overall unevenly-
distributed label distributions (like the cases of Fig. 3a and
Fig. 3c), the label description degrees are mainly dominated
by the top label(s). As a result, the inconsistency is less likely
to occur since there is more room to maneuver. In contrast,
for overall evenly-distributed label distributions (like the
cases of Fig. 3b and Fig. 3d), the inconsistency is more likely
to happen because the label description degrees of the top
label(s) is(are) easily to be surpassed by that of other labels.
That is, evenly-distributed label distributions deserve more
attention than unevenly-distributed ones. Here, we use in-
formation entropy [35] to measure the uniformity of label
distributions and re-weight instances w.r.t. the information
entropy. Further, the labels with higher label description
degrees deserve more attention, which inspires us to re-
weight labels w.r.t. the label description degrees. Next, we
propose the following weighted L1-norm loss

Ex ·
m∑
j=1

d
yj
x · |gyjx − dyjx | =

m∑
j=1

d
yj
x Ex|gyjx − dyjx |, (5)

where Ex = −∑y∈Y d
y
x ln dyx is the information entropy

of dx. That is, the jth label is weighted with the weight dyjx ,
and x is assigned with the weightEx. Define ωi,j = d

yj
xiExi .
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Fig. 3. Examples to illustrate the inconsistency, where `1 denotes the L1-norm loss. The red bar represents the ground-truth label distribution, and
the blue bar denotes the learned label distribution. Fig. 3a and Fig. 3b demonstrate the case of SLL, and Fig. 3c and Fig. 3d manifest the case of
MLL. The cases of Fig. 3a and Fig. 3c have small classification losses, but the cases of Fig. 3b and Fig. 3d have small L1-norm losses.
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Fig. 4. Illustration of the re-weighting LDL, where the sizes of the
markers indicate the scales of the weights. Note that the instances with
evenly-distributed label distributions are assigned with higher weights
and have smaller losses in the re-weighting LDL.

Then, substituting Eq. (5) into Eq. (4), the re-weighting LDL
is further formulated as the following,

min
W

n∑
i=1

m∑
j=1

ωi,j · |gyjxi − dyjxi |+
λ1

2
‖W ‖2F. (6)

Compared with Eq. (4), where instances and labels are
treated equally, the re-weighting LDL mainly focuses on
the labels with higher label description degrees and the
instances where the inconsistency is more likely to happen.
Thereby, the objective inconsistency will be alleviated.

Fig. 4 illustrates the effect of the re-weighting LDL w.r.t.
information entropy. The points with evenly-distributed la-
bel distributions are assigned with higher weights and have
smaller losses in the re-weighting LDL.

3.3.3 LDL with Large Margin

The re-weighting LDL alleviates the objective inconsistency
from the perspective of LDL. To further solve the objective
inconsistency and improve the classification performance,
we introduce the large margin [22] to LDL.

As Geng et al. [7] pointed out, the predicted label de-
scription degree can be regarded as the confidence of the
corresponding label. Accordingly, we can put more confi-
dence to the top label(s). Specifically, let Yi denote the index
set of the top label(s) for xi, and Ȳi be the complementary
set of Yi. We encourage gyjxi to be larger than gylxi

by a margin

ρ (0 < ρ < 1) for j ∈ Yi and l ∈ Ȳi. Then, the problem (6)
can be re-cast as the following,

min
W ,ξ

∑
i,j

ωi,j ·
∣∣gyjxi − dyjxi

∣∣+
λ1

2
‖W ‖2F + λ2

n∑
i=1

∑
j,l

ξi,j,l
ρ

s.t.: ∀i ∈ [n], ∀j ∈ Yi, ∀l ∈ Ȳi
g
yj
xi − gylxi

≥ ρ− ξi,j,l,
ξi,j,l ≥ 0,

(7)

where ξi,j,l is the slack variable, [n] stands for the set
{1, 2, · · · , n}, and λ2 is a trade-off parameter balancing the
importance of re-weighting schemes and large margin. For
SLL, Yi has one element, i.e., the index of the label with
the highest label description degree of xi. For MLL, Yi is
the index set of the positive labels for xi. The second con-
straint of Eq. (7) encourages the predicted label description
degree(s) of the top label(s) to be larger than those of other
labels by a margin of ρ. As a result, the induced classifier
will prefer the top label(s) as the predicted label(s), which
further solves the inconsistency.

3.3.4 Advantages of Re-weighting and Large Margin
RWLM-LDL seeks a balance between re-weighting and large
margin. The advantages are as follows:

1) Large margin improves the classification perfor-
mance of RWLM-LDL. The instances outside the
marginal hyper-planes have already been correctly
classified by large margin classifier. Thereby, the
error of RWLM-LDL is only determined by the in-
stances inside the marginal hyperplanes.

2) The re-weighting further boosts the classification
performance of RWLM-LDL. The instances inside
the marginal hyper-planes tend to have evenly-
distributed label distributions, which are assigned
with higher weights.

3) To summarize, large margin correctly classifies the
instances outside the marginal hyperplanes, and the
re-weighting tends to correctly classify the instances
inside the marginal hyperplanes. Thereby, the objec-
tive inconsistency is solved.

Fig. 5 visualizes the advantages of re-weighting and
large margin by examples in the case of binary classification.
The solid lines and the dash lines represent separating
hyperplanes and marginal hyperplanes, respectively. Fig.
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(a) Large margin classifier
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(b) The advantage of re-weighting LDL
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(c) The advantage of large margin classifier

Fig. 5. Visualization of the advantages of re-weighting and large margin classifier in the case of binary classification. The solid lines and the dash
lines are separating hyper-planes and marginal hyper-planes, respectively. Fig. 5a illustrates a large margin classifier with two misclassified points
highlighted in red. Fig. 5b showcases the advantage of re-weighting. The sizes of the markers indicate the scales of weights. Fig. 5c illuminates the
advantage of large margin. The points outside the marginal hyper-planes have already been correctly classified.

5a shows a large margin classifier with two misclassified
points highlighted in red. Fig. 5b illustrates the advantage
of re-weighting LDL, where the label distributions of points
are given, and the sizes of the markers indicate the scales
of the weights. Generally, the points inside the marginal hy-
perplanes have higher uncertainty whose label distributions
tend to be evenly distributed and are assigned with higher
weights. Thereby, the separating hyperplane is adjusted to
correctly position the points inside the marginal hyper-
planes. Fig. 5c illuminates the advantage of large margin,
where the points outside the marginal hyperplanes have
already been correctly classified. As a result, the error is
completely determined by the points inside the marginal
hyperplanes (i.e., the shaded area).

3.3.5 Optimization
It’s difficult to solve the problem (7) directly due to a large
number of constraints. There areO(nm2) constraints, which
may raise the problem of scalability. To address the compu-
tational problem, we use the Stochastic Gradient Descent
(SGD) method [36] to solve the cast optimization problem.
First, the problem (7) can be written equivalently as the
following unconstrained optimization problem,

min
W ,ξ

λ1

2
‖W ‖2F+

n∑
i

m∑
j=1

ωi,j ·
∣∣gyjxi − dyjxi

∣∣
+λ2

n∑
i=1

∑
j∈Yi,l∈Ȳi

max(0, 1− gyjxi/ρ+ gylxi
/ρ).

Then, the sub-gradient is calculated to update the param-
eters. For a mini-batch of θ training examples indexed by
(i′ : i′ + θ), the sub-gradient is got through

5(i′:i′+θ)
w = λ1w +

i′+θ∑
i=i′

m∑
j=1

ωi,j · sign(g
yj
xi − dyjxi)

∂g
yj
xi

∂w

+
λ2

ρ

i′+θ∑
i=i′

∑
j∈Yi,l∈Ȳi

I(gyjxi − gylxi
< ρ)

(
∂gylxi

∂w
− ∂g

yj
xi

∂w

)
,

(8)

where sign(·) is the sign function. The gradient of the
maximum entropy model is got through

∂g
yj
xi

∂wl
=
[
I(j = l) · gyjxi − gyjxi · gylxi

]
· xi. (9)

The Adam [37] is applied to solve the problem (7). The
details of the algorithm are presented in Alg. 1. First, line

4 calculates the sub-gradient (gt). Second, lines 5 and 6
estimate biased first moment (mt) and second raw moment
(vt), respectively. Next, lines 7 and 8 compute the biased-
corrected first moment (m̂t) and second raw moment (v̂t)
[37], respectively. Finally, line 9 updates the parameter W .

Alg. 1 has O(θkm2qT ) time complexity, where k is the
maximum number of positive labels for MLL (generally,
k � m [4]), and k = 1 for SLL. First, the calculation of the
model’s output [g

yj
xi ]i,j has O(θmq) complexity for a mini-

batch. Second, by Eq. (9), the computation of ∂g
yj
xi/∂wl has

O(q) complexity. Next, the second term on the right-hand
side of Eq. (8) involves θm times gradient calculation and
has O(θmq) complexity. Moreover, the third term on the
left-hand side of Eq. (8) needs θkm times gradient compu-
tation at most and has O(θkmq) complexity. Thereby, the
computation of Eq. (8) hasO(θkmq) complexity, and the cal-
culation of gradient w.r.t. W needs O(θkm2q) complexity.
Given T iterations, the total time complexity isO(θkm2qT ).

Algorithm 1 The RWLM-LDL algorithm
Input: Training set S, parameters λ1 and λ2, margin ρ,

batch size θ, step size α, and number of iterations T
Output: W

1: initialize W0 ← 0, β1 ← 0.9, β2 ← 0.999, m0 ← 0,
vt ← 0

2: for t = 1 to T do
3: generate a mini-batch indexed by (it : it + θ)

4: gt ← [5(it:it+θ)
w1 , · · · ,5(it:it+θ)

wm ] by Eq. (8)
5: mt ← β1mt−1 + (1− β1) · gt
6: vt ← β2vt−1 + (1− β2) · g2

t

7: m̂t ← mt/(1− βt1)
8: v̂t ← vt/(1− βt2)
9: Wt ←Wt−1 − α · m̂t/(

√
v̂t + ε)

10: end for
11: return Wt

4 THEORETICAL RESULTS

This section studies the generalization and discrimination
of RWLM-LDL by setting up upper bounds on the error
probability (stochastic setting) and the expected 0/1 loss (deter-
ministic setting), respectively. The generalization is due to
LDL with L1-norm loss, and the discrimination is credited
to large margin.

RWLM-LDL adopts the maximum entropy model that
can be regarded as a function combination of the softmax
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function and a multi-output linear regression function. Let
SF : Rm → Rm stand for the softmax function, and F be a
family of multi-output linear functions defined by

F := {x 7→ [w1 · x,w2 · x, . . . ,wm · x]T , ‖wj‖2 ≤ Λ1},
where Λ1 > 0 is a constant. Then, a hypothesis set for the
maximum entropy model can be defined by

G := {x 7→ SF ◦f(x) : f ∈ F}, (10)

where ◦ is the function combination operator. Further as-
sume that supx∈X ‖x‖2 ≤ Λ2, where Λ2 > 0 is a constant.

4.1 Upper Bound on Error Probability

This subsection establishes the generalization of RWLM-LDL
by setting up an upper bound on the error probability. For
simplicity, we further assume that the given label distri-
bution function is the normalized conditional probability
distribution function. Then, Eq. (3) reduces to

L(ĝ)− L(g∗) ≤ 2Ex∼DX

 m∑
j=1

|gyjx − dyjx |
 . (11)

Accordingly, to bound the error probability, it suffices to
bound the expected L1-norm loss. For any g ∈ G, let R̂`1(g)
denote the empirical L1-norm loss defined by

R̂`1(g) =
1

n

n∑
i=1

m∑
j=1

|gyjxi − dyjxi |,

where the re-weighting schemes are suppressed for the
convenience of analysis. Next, the following theorem shows
the generalization of RWLM-LDL.

Theorem 3 (Upper Bound on Error Probability). For any
g ∈ G, let ĝ denote the induced classifier as Eq. (1) or Eq. (2).
Then, for any δ > 0, with probability at least 1− δ, the following
bound holds for all g ∈ G,

L(ĝ) ≤ L(g∗) + 2R̂`1(g) +
8
√

2Λ1Λ2m
2

√
n

+ 4

√
log 1/δ

2n
.

Theorem 3 bounds the error probability by the sum of
four terms. The first one is the minimum error probability,
the second one is (2×) the empirical L1-norm loss, the third
one is an upper bound on the Rademacher complexity [38],
and the last one can be ignored. To achieve a small error
probability, it suffices to minimize L1-norm loss. The proof
of the theorem is in the Supplementary Material.

4.2 Upper Bounds on Expected 0/1 Loss

In this subsection, we borrow the margin theory [22], [27] to
derive upper bounds on the expected 0/1 loss. Specifically,
g∗(x) is regarded as the ground-truth label(s) for x. For any
g ∈ G, define the empirical margin loss by

R̂ρ(g) =
1

n

n∑
i=1

∑
j∈Yi,l∈Ȳi

max
(
0, 1− gyjxi/ρ+ gylxi

/ρ
)
,

and define the expected 0/1 loss by

R(g) = Ex∼DX [I(ĝ(x) 6= g∗(x))] ,

where ĝ is the induced classifier according to g as defined
in Eq. (1) or Eq. (2). For MLL, the operator 6= is taken over
two sets, which returns 0 if they are equal and 1 otherwise.

For SLL, a margin bound on the expected 0/1 loss is
established by the following theorem.

Theorem 4 (Margin Bound on Expected 0/1 Loss for SLL).
Fix ρ > 0. For any g ∈ G, let ĝ denote the induced SLL classifier
as Eq. (1). Then, for any δ > 0, with probability at least 1 − δ,
the following bound holds for all g ∈ G,

R(g) ≤ R̂ρ(g) +
8Λ1Λ2 exp(2Λ1Λ2)m2

ρ
√
n

+

√
log 1/δ

2n
.

For MLL, a margin bound on the expected 0/1 loss is
established by the following theorem.

Theorem 5 (Margin Bound on Expected 0/1 Loss for MLL).
Fix ρ > 0. For any g ∈ G, let ĝ denote the induced MLL classifier
as Eq. (2). Then, for any δ > 0, with probability at least 1 − δ,
the following bound holds for all g ∈ G,

R(g) ≤ R̂ρ(g) +
12Λ1Λ2 exp(2Λ1Λ2)m2

ρ
√
n

+

√
log 1/δ

2n
.

Theorems 4 and 5 show that the expected 0/1 loss of
RWLM-LDL can be upper bounded by the sum of three
terms. The first one is the empirical margin loss, the second
one is an upper bound on the Rademacher complexity [38],
and the last one can be ignored. Accordingly, to minimize
the 0/1 loss, it suffices to minimize the margin loss. The
proofs are deferred to the Supplementary Material.

5 EXPERIMENTS

5.1 Experimental Datasets
We conduct the experiments thoroughly on 18 real-world
datasets. The characteristics of the datasets are summarized
in Table 2, where r1 and r2 are defined in Section 5.5.3.

The first 15 datasets2 are collected by Geng [5], among
which the 1st to the 10th (from Alpha to Spoem) are collected
from the biological experiments [39], the Gene is obtained
from a research on the relation between human gene and
diseases [40], the Natural Scene is got by transforming the
inconsistent rankings of natural scene images to compati-
ble label distributions [6], the SBU 3DFE and SJAFFE re-
sult from two facial expression image databases BU 3DFE
[41] and JAFFE [3], and the Movie is collected from the
user ratings on movies [42]. Moreover, the 16th dataset
FBP55003 is about facial beauty perception [11]. We use
the trained ResNet [43] provided by the authors to extract
512-dimensional features. The 17th dataset RAF ML4 is a
multi-label facial expression dataset, where each image is
represented by 2000-dimensional Deep Bi-Manifold CNN
features [10] and described by a label distribution. The last
dataset Mediamill is a large-scale multi-label dataset [44]. We
borrow the label enhancement [45] technique to recover the
label distributions from the logical labels in the dataset. In
the sequel, each dataset is denoted by its first three letters
(Spo5” and “Spoem” are denoted by “Spo5” and “Spoe” to
distinguish them from “Spo”).

2. http://palm.seu.edu.cn/xgeng/LDL/index.htm
3. https://github.com/HCIILAB/SCUT-FBP5500-Database-Release
4. http://www.whdeng.cn/RAF/model2.html
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TABLE 2
Statistics of the experimental datasets.

ID. Dataset n q m r1 r2

1 Alpha 2,465 24 18 1.02 0.67
2 Cdc 2,465 24 15 1.03 0.70
3 Cold 2,465 24 4 1.30 0.69
4 Diau 2,465 24 7 1.10 0.77
5 Dtt 2,465 24 4 1.27 0.69
6 Elu 2,465 24 14 1.03 0.72
7 Heat 2,465 24 6 1.11 0.77
8 Spo 2,465 24 6 1.13 0.76
9 Spo5 2,465 24 3 1.64 0.56
10 Spoem 2,465 24 2 6.9e4 0.33
11 Gene 17,892 36 68 8.88 0.36
12 Natural Scene 2,000 294 9 1.5e2 0.36
13 SBU 3DFE 2,500 243 6 1.19 0.74
14 SJAFFE 213 243 6 1.16 0.74
15 Movie 7,755 1,869 5 2.37 0.66
16 FBP5500 5,500 512 5 16.00 0.43
17 RAF ML 4,908 2,000 6 3.90 0.46
18 Mediamill 43,907 120 101 1.04 0.30

5.2 SLL Predictive Experiment

We conduct the SLL experiments on the first 16 datasets
(RAF ML and Mediamill are multi-label datasets). Here, we
regard the label having the largest label description degree
as the ground-truth label. Moreover, 0/1 loss is used to
evaluate the performance of the comparing algorithms.

5.2.1 Methodology

We compare RWLM-LDL with five state-of-the-art LDL
methods, including BFGS-LDL, StructRF, RSSR-LDL21,
LDLFs, and LDL-SCL. We also compare RWLM-LDL
with three SLL methods, including ovrSVM, wSVM, and
SAMME, where ovrSVM and wSVM are two large margin
classifiers, and wSVM and SAMME are two re-weighting
methods. The details of the algorithms are as follows:

1) SVM [23]: This method is a multi-class SVM, which
uses the one-vs-rest decision functions.

2) wSVM [46]: This method is a weighting SVM. Sim-
ilar to RWLM-LDL, we weight each instance by the
information entropy of its label distribution.

3) SAMME [31]: This method is a multi-class Adaboost
method, which re-weights each sample w.r.t. the
training loss of that sample.

4) BFGS-LDL [5]: This approach applies the maximum
entropy model to learn label distribution, where KL
divergence is used as the learning metric.

5) LDL-SCL [19]: This approach encodes label correla-
tion as additional features and jointly learns label
distribution and label correlation.

6) RSSR-LDL21 [18]: This method applies the regular-
ized sample self-representation technique to LDL,
which is cast as an L2,1-norm least-squares problem.

7) StructRF [17]: This approach is an ensemble method,
which uses the structured random forest to learn la-
bel distribution and exploits structural information
among different classes by clustering.

8) LDLFs [16]: This approach uses the differentiable
decision trees to learn label distribution. Here, we
use the shallow stand-alone version [16]

The parameters of the methods are set as follows. For
SVM and wSVM, the implementation is based on libsvm [46],
and the RBF kernel is used. For SAMMA, Logistic Regression
(LR) is used as the base classifier since the model of RWLM-
LDL can be viewed as a multinomial LR, and the number of
estimators is set to 50. For RSSR-LDL21, the regularization
parameter is tuned from the set {10−3, · · · , 103}. For other
baselines, the default parameters are applied. For RWLM-
LDL, λ1 is tuned from {10−4, · · · , 1}, λ2 is tuned from
the candidate set {10−3, · · · , 103}, and ρ = 0.1. We tune
the parameters of each method by ten-fold cross-validation.
Then, each method with the best parameters is run for ten
times random data partitions (90% for training and 10% for
testing), and the average performance is reported.

5.2.2 SLL Results
Table 3 tabulates the experimental results of each approach
in terms of 0/1 loss. To further compare the relative per-
formance of RWLM-LDL against each comparing method,
we conduct the pairwise t-test at 0.05 significance level
and use •/◦ to indicate whether RWLM-LDL is statistically
superior/inferior to the comparing algorithm.

From Table 3, RWLM-LDL ranks first in 68.8% cases (11
out of 16) and achieves significantly superior performance
against the comparing algorithms in 69.5% cases (89 wins
out of 128 tests). RWLM-LDL achieves statistically superior
or at least comparable performance against the compared
LDL methods. The reason is that the compared LDL meth-
ods fail to consider the objective inconsistency, which results
in sub-optimal decision functions. In contrast, RWLM-LDL
addresses the objective inconsistency using re-weighting
and large margin, which yields better classification perfor-
mance. Besides, RWLM-LDL outperforms the compared SLL
methods by a margin. The reason lies in the richer infor-
mation of label distribution compared with single label [5].
Accordingly, RWLM-LDL learning from label distribution
has better classification performance than the compared SLL
methods learning from single labels. Furthermore, wSVM
achieves better performance than SVM, which validates the
effect of our re-weighting method since wSVM and SVM are
only different in that wSVM uses the re-weighting.

To summarize, RWLM-LDL achieves competitive perfor-
mances in terms of 0/1 loss. That is, RWLM-LDL has better
classification performance in SLL.

5.3 MLL Predictive Experiment
To properly evaluate the performance of the comparing
methods for MLL, we firist select 12 datasets with m ≥ 6
and then conduct the experiments on the selected datasets.

5.3.1 Label Binarization
For RAF ML and Mediamill, the ground-truth labels are
known. For other datasets, only the label distributions
are available. For comparison and evaluation, we generate
multi-label using the binarization strategy proposed in [45]
as follows. For each instance x, first initialize an empty set
Y+. Next, add into Y+ the label with the highest label
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TABLE 3
SLL predictive results (mean±std) on 16 datasets, where •/◦ indicates whether RWLM-LDL is statistically superior/inferior to the comparing

algorithms (pairwise t-test at 0.05 significance level), and the win/tie/lose (w./t./l.) counts are summarized in the last row.

Dataset SVM wSVM SAMME BFGS-LDL LDL-SCL RSSR-LDL21 StructRF LDLFs RWLM-LDL

Alp 0.791±0.024 0.782±0.021 0.787±0.025• 0.886±0.017• 0.909±0.021• 0.886±0.017• 0.871±0.024• 0.880±0.028• 0.782±0.024
Cdc 0.832±0.022• 0.824±0.019 0.830±0.023• 0.824±0.028 0.825±0.025• 0.824±0.026 0.826±0.032 0.823±0.019 0.817±0.025
Col 0.713±0.022• 0.607±0.036• 0.580±0.032• 0.577±0.032 0.578±0.034 0.580±0.032• 0.555±0.034 0.563±0.034 0.571±0.032

Dia 0.734±0.028• 0.684±0.048• 0.663±0.036 0.693±0.025 0.699±0.022• 0.695±0.027 0.687±0.023 0.693±0.032• 0.658±0.036
Dtt 0.732±0.034• 0.660±0.034• 0.645±0.041 0.643±0.038 0.643±0.037 0.632±0.042 0.625±0.026 0.623±0.031 0.637±0.033

Elu 0.808±0.026• 0.809±0.027• 0.810±0.026• 0.899±0.023• 0.906±0.017• 0.901±0.022• 0.915±0.020• 0.893±0.022• 0.799±0.030
Hea 0.721±0.032• 0.705±0.023• 0.688±0.035 0.693±0.031 0.703±0.026• 0.695±0.028• 0.663±0.024 0.682±0.021• 0.669±0.021

Spo 0.628±0.023• 0.559±0.032• 0.548±0.029• 0.542±0.029• 0.557±0.034• 0.548±0.029• 0.572±0.028• 0.578±0.038• 0.540±0.029
Spo5 0.622±0.045• 0.568±0.036• 0.543±0.031• 0.547±0.029• 0.583±0.031• 0.544±0.033• 0.520±0.031 0.536±0.022 0.524±0.029

Spoe 0.521±0.035• 0.516±0.033• 0.425±0.018• 0.436±0.030• 0.439±0.019• 0.438±0.029• 0.421±0.019• 0.428±0.027 0.405±0.024
Gen 0.969±0.005• 0.941±0.006• 0.928±0.006 0.955±0.005• 0.959±0.020• 0.953±0.002• 0.969±0.004• 0.962±0.007• 0.927±0.006
NAT 0.539±0.038• 0.587±0.031• 0.610±0.034• 0.596±0.035• 0.659±0.035• 0.557±0.030• 0.528±0.039• 0.735±0.067• 0.434±0.040
SBU 0.762±0.039• 0.688±0.041• 0.710±0.038• 0.550±0.033• 0.515±0.036 0.513±0.034 0.494±0.030 0.635±0.035• 0.508±0.034

SJA 0.560±0.114• 0.512±0.097• 0.748±0.119• 0.456±0.089• 0.751±0.109• 0.505±0.101 0.606±0.107• 0.503±0.079• 0.404±0.100
Mov 0.676±0.024• 0.437±0.017• 0.428±0.018 0.417±0.017 0.428±0.015 0.419±0.016 0.447±0.015• 0.443±0.018• 0.416±0.016
FBP 0.352±0.049• 0.281±0.023• 0.392±0.022• 0.210±0.019 0.212±0.014 0.213±0.015 0.227±0.014• 0.261±0.012• 0.210±0.014

w./t./l. 15/1/0 14/2/0 11/5/0 9/7/0 11/5/0 9/7/0 9/7/0 11/5/0

description degree. Then, calculate the sum of the label
description degrees of all labels in Y+ and denote it by H .
If H < 0.5, add from the label set (excluding Y+) the label
with the highest label description degree into Y+. The above
process continues until H ≥ 0.5. Eventually, the labels in
Y+ are regarded as positive labels. For LDL algorithms,
the predicted labels are generated by applying the label
binarization to the predicted label distribution.

5.3.2 Methodology
We use five MLL metrics [4] to evaluate the performance
of the comparing algorithms, including Hamming loss, One
error, Coverage, Ranking loss, and Average precision. We com-
pare RWLM-LDL with the same LDL methods as Section 5.2
and three MLL methods, including BR-wSVM, RELIAB, and
LIMO, details of which are as follows.

1) BR-wSVM [4]: This method decomposes an MLL
problem into m independent binary problems and
then employs the wSVM to each one.

2) RELIAB [13]: It first applies local k nearest neigh-
bors reconstruction to estimate the Relative Labeling-
Importance (RLI) of labels. Then, a predictive model
is learned directly on the RLI by jointly minimizing
KL divergence and pairwise ranking loss.

3) LIMO [26]: This is a large margin method for MLL,
which maximizes two margins, including the label-
wise margin and the instance-wise margin.

The settings of the parameters for each method are as
follows. For RWLM-LDL and the compared LDL methods,
the settings are as Section 5.2.1. For RELIAB, τ is selected
from the candidate set {0.1, 0.15, · · · , 0.5}, λ is chosen from
the pool {10−3, · · · , 10}, and ρ = 0.3. For LIMO, λ1 and
λ2 are tuned from the candidate set {10−3, · · · , 103}. We
tune the parameters of each method by ten-fold cross-
validation and run each method with the best parameter
for ten times random data partitions (90% for training and
10% for testing). Then, the average performance is reported.

5.3.3 MLL Results
Table 4 reports the results of the comparing methods in
terms of each metric on 12 datasets, where the best results
are highlighted in boldface, the “↓” indicates “the smaller
the better”, and the “↑” means “the larger the better”.

To study the relative performance among the comparing
algorithms, we conduct the Friedman test [47] that compares
multiple algorithms over several datasets. The results are
summarized in Table 5. At confidence level of 0.05, the
Friedman statistics on all metrics are larger than the critical
value 2.0454 (9 comparing algorithms on 12 datasets). There-
fore, the null hypothesis that the comparing algorithms have
equal performance is rejected.

To show whether RWLM-LDL achieves competitive per-
formance against other comparing methods, the Bonferroni-
Dunn test [48] is further conducted by regarding RWLM-
LDL as the control algorithm. For the test, the Critical
Difference (CD) equals 3.046 at 0.05 significance level, and
the performance of one comparing algorithm is significantly
different from that of RWLM-LDL if their average ranks over
the datasets differ by at least one CD. Fig. 6 shows the CD
diagrams [47] in terms of each metric, where the average
ranks of each comparing algorithm are marked along the
axis (in decreasing order). Any method whose average rank
is within one CD to that of RWLM-LDL is interconnected by
a thick line along the axis, and the methods not connected
with RWLM-LDL are considered to have a significantly
different performance from RWLM-LDL.

Table 4 shows that RWLM-LDL ranks first in 76.7%
cases and achieves the best average performance (lowest
average rank) in terms of all MLL metrics. Fig. 6 shows
that among the compared LDL methods, RWLM-LDL sig-
nificantly outperforms LDL-SCL, BFGS-LDL, and LDLFs,
and achieves statistically better or comparable performance
against StructRF and RSSR-LDL21 in terms of all metrics.
The reason lies in that the LDL baselines have not con-
sidered the objective inconsistency. In contrast, RWLM-LDL
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Fig. 6. CD diagrams of the Bonferroni-Dunn tests, where RWLM-LDL is set as the control algorithm. The algorithms not connected with RWLM-LDL
are considered to have significantly different performance from RWLM-LDL.

tackles the objective inconsistency by re-weighting and large
margin, which results in better classification performance.
RWLM-LDL significantly outperforms BR-wSVM and LIMO
in terms of all metrics because label distribution contains
richer supervision information than 0/1 label. Furthermore,
RWLM-LDL is comparable to RELIAB in terms of all metrics
except hamming loss and one error because RELIAB directly
learns from the RLI [13] whose information is comparable
to label distribution, and partially solves the inconsistency
by optimizing pairwise ranking loss. However, RWLM-LDL
has better mean performance than RELIAB.

In summary, RWLM-LDL achieves competitive MLL pre-
dictive performance against other comparing algorithms,
which validates the effectiveness of RWLM-LDL in MLL.

5.4 Ablation Study

This subsection conducts ablation studies. We study the
effectiveness of the three components of RWLM-LDL, i.e.,
L1-norm loss, re-weighting schemes, and larger margin.
Besides, we investigate the advantages of label distribution.

Three degenerate versions of RWLM-LDL are derived,
including (i) LDL-`1, which only uses L1-norm loss (ωi,j = 1
and λ2 = 0), (ii) RW-LDL, which only applies the weighting
schemes (λ2 = 0), and (iii) LM-LDL, which suppresses the
re-weighting schemes (ωi,j = 1).

5.4.1 Effectiveness of L1-norm Loss
The commonly used loss functions for LDL include KL
divergence, Jeffrey’s divergence, and L2-norm loss [5]. To
investigate the effectiveness of L1-norm loss, we derive
three variants of LDL-`1 by replacing L1-norm loss with KL
divergence, Jeffrey’s divergence, and L2-norm loss, which
are denoted by LDL-KL, LDL-J, and LDL-`2, respectively.
Then, LDL-`1 is compared with each of the variants.

We evaluate the performance of LDL-`1 and the variants
in terms of each metric on the experimental datasets. Due to
limited space, we only present the detailed results in terms
of 0/1 loss and ranking loss in Fig. 7. As shown in Fig. 7,
LDL-`1 has the best mean performance. Besides, it has the
sub-optimal performance for some datasets, such as Gene
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Fig. 7. Performance comparison among LDL-`1, LDL-`2, LDL-J, and
LDL-KL in terms of 0/1 loss and ranking loss.

and and Natural Scene. The reason is that L1-norm loss is
non-smooth, which may be hard to optimize sometimes.

To show whether L1-norm loss can truly bring better
classification performance than other loss functions, we
conduct the Wilcoxon signed-rank tests [47] for LDL-`1
against each of the variants, which are summarized in Table
6 (from the 2nd column to the 4th column). Table 6 shows
that, at significance of 0.05, LDL-`1 achieves superior or at
least comparable performance against each of the variants,
which validates the advantage of L1-norm loss. The reasons
may lie in that expected L1-norm loss bounds the error
probability (Theorem 2), and L1-norm loss is tighter than
other loss functions for ‖p − q‖1 ≤ 2

√
DKL(p||q) [35],

‖p − q‖1 ≤ 2
√
DJ(p||q)5, and ‖p − q‖1 ≤

√
m‖p − q‖2,

for label distribution p, q ∈ Rm, where DKL(·||·) is the KL
divergence, and DJ(·||·) is the Jeffrey’s divergence.

5.4.2 Effectiveness of Re-weighting Schemes
Since the only difference between RW-LDL and LDL-`1 is
that RW-LDL incorporates the re-weighting schemes, we
compare RW-LDL with LDL-`1 to validate the usefulness of

5. Recall that DJ(p||q) =
∑

j(pi − qi)(ln pi − ln qi) = DKL(p||q) +
DKL(q||p) ≥ DKL(p||q) because DKL(q||p) ≥ 0 [35].
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TABLE 4
MLL predictive performance (mean±std.(rank)) of each comparing algorithm on 12 selected datasets in terms of five MLL metrics.

Dataset
Hamming loss ↓

BFGS-LDL LDL-SCL StructRF LDLFs RSSR-LDL21 BR-wSVM RELIAB LIMO RWLM-LDL
Alp 0.431±0.008(4) 0.434±0.008(6) 0.435±0.005(7) 0.429±0.010(3) 0.428±0.007(2) 0.451±0.010(9) 0.431±0.010(5) 0.436±0.009(8) 0.424±0.008(1)
Cdc 0.426±0.012(4) 0.431±0.014(6) 0.430±0.007(5) 0.426±0.009(3) 0.425±0.013(2) 0.438±0.008(8) 0.486±0.005(9) 0.431±0.013(7) 0.417±0.010(1)
Dia 0.318±0.015(4) 0.319±0.015(5) 0.320±0.008(6) 0.320±0.014(7) 0.317±0.012(3) 0.327±0.015(8) 0.474±0.005(9) 0.316±0.010(2) 0.310±0.013(1)
Elu 0.416±0.013(3) 0.419±0.009(6) 0.429±0.010(7) 0.416±0.013(4) 0.416±0.012(5) 0.452±0.011(9) 0.412±0.012(1) 0.433±0.007(8) 0.413±0.013(2)
Hea 0.442±0.024(6) 0.436±0.023(5) 0.415±0.019(1) 0.427±0.018(2) 0.443±0.024(7) 0.473±0.016(9) 0.433±0.015(4) 0.454±0.015(8) 0.432±0.014(3)
Spo 0.426±0.019(7) 0.424±0.021(6) 0.411±0.015(1) 0.420±0.011(5) 0.419±0.019(3) 0.437±0.020(8) 0.493±0.006(9) 0.419±0.020(4) 0.418±0.022(2)
Gen 0.448±0.002(8) 0.459±0.004(9) 0.438±0.002(5) 0.445±0.004(7) 0.444±0.002(6) 0.401±0.006(4) 0.322±0.002(2) 0.320±0.003(1) 0.323±0.002(3)
Nat 0.223±0.011(5) 0.273±0.008(8) 0.205±0.013(1) 0.316±0.010(9) 0.214±0.011(4) 0.240±0.007(6) 0.210±0.007(3) 0.259±0.028(7) 0.209±0.200(2)
SBU 0.412±0.012(8) 0.385±0.010(5) 0.346±0.013(2) 0.448±0.011(9) 0.368±0.014(4) 0.405±0.015(7) 0.365±0.011(3) 0.401±0.018(6) 0.314±0.018(1)
SJA 0.312±0.058(4) 0.442±0.058(8) 0.337±0.028(5) 0.469±0.048(9) 0.312±0.054(3) 0.355±0.038(6) 0.294±0.035(2) 0.408±0.033(7) 0.288±0.051(1)
RAF 0.195±0.008(9) 0.160±0.005(8) 0.151±0.007(6) 0.132±0.007(4) 0.142±0.006(5) 0.124±0.009(2) 0.154±0.010(7) 0.124±0.010(3) 0.112±0.011(1)
Med 0.428±0.000(6) 0.430±0.001(7) 0.433±0.000(9) 0.431±0.001(8) 0.427±0.000(5) 0.102±0.008(4) 0.053±0.000(3) 0.041±0.001(2) 0.040±0.001(1)

Dataset
One error ↓

BFGS-LDL LDL-SCL StructRF LDLFs RSSR-LDL21 BR-wSVM RELIAB LIMO RWLM-LDL
Alp 0.338±0.026(4) 0.351±0.029(7) 0.395±0.014(9) 0.342±0.034(5) 0.329±0.024(3) 0.378±0.031(8) 0.312±0.023(2) 0.346±0.040(6) 0.301±0.019(1)
Cdc 0.324±0.029(3) 0.324±0.028(2) 0.336±0.029(8) 0.325±0.024(4) 0.325±0.031(5) 0.411±0.028(9) 0.335±0.024(7) 0.331±0.026(6) 0.321±0.023(1)
Dia 0.164±0.017(7) 0.157±0.020(6) 0.193±0.030(9) 0.176±0.025(8) 0.153±0.024(4) 0.157±0.028(5) 0.138±0.018(3) 0.135±0.016(2) 0.132±0.017(1)
Elu 0.335±0.036(4) 0.336±0.041(5) 0.325±0.027(2) 0.340±0.026(7) 0.330±0.029(3) 0.403±0.038(9) 0.336±0.019(6) 0.391±0.045(8) 0.317±0.026(1)
Hea 0.386±0.032(6) 0.389±0.037(7) 0.363±0.024(1) 0.381±0.029(4) 0.377±0.027(3) 0.475±0.026(9) 0.384±0.034(5) 0.417±0.043(8) 0.376±0.025(2)
Spo 0.390±0.026(5) 0.389±0.025(4) 0.388±0.029(2) 0.394±0.031(8) 0.389±0.027(3) 0.433±0.048(9) 0.394±0.032(7) 0.393±0.036(6) 0.372±0.026(1)
Gen 0.582±0.016(5) 0.604±0.028(6) 0.636±0.012(8) 0.576±0.018(4) 0.561±0.017(3) 0.674±0.029(9) 0.518±0.006(2) 0.615±0.019(7) 0.512±0.007(1)
Nat 0.428±0.028(5) 0.468±0.030(6) 0.357±0.041(2) 0.561±0.106(8) 0.393±0.027(4) 0.525±0.034(7) 0.364±0.039(3) 0.569±0.077(9) 0.333±0.048(1)
SBU 0.387±0.033(5) 0.324±0.025(3) 0.303±0.031(2) 0.477±0.051(8) 0.324±0.021(3) 0.463±0.034(7) 0.324±0.020(4) 0.459±0.035(6) 0.261±0.033(1)
SJA 0.212±0.085(2) 0.472±0.182(8) 0.268±0.058(5) 0.502±0.104(9) 0.231±0.088(3) 0.268±0.084(6) 0.234±0.069(4) 0.402±0.121(7) 0.202±0.085(1)
RAF 0.090±0.014(9) 0.046±0.010(2) 0.060±0.008(5) 0.062±0.009(6) 0.050±0.007(3) 0.057±0.012(4) 0.085±0.014(8) 0.062±0.013(7) 0.043±0.009(1)
Med 0.139±0.004(4) 0.163±0.003(5) 0.197±0.004(7) 0.186±0.015(6) 0.134±0.004(2) 0.329±0.074(9) 0.139±0.004(3) 0.210±0.043(8) 0.134±0.006(1)

Dataset
Coverage ↓

BFGS-LDL LDL-SCL StructRF LDLFs RSSR-LDL21 BR-wSVM RELIAB LIMO RWLM-LDL
Alp 0.842±0.005(6) 0.843±0.006(7) 0.840±0.004(5) 0.839±0.005(3) 0.840±0.004(4) 0.869±0.007(9) 0.837±0.006(2) 0.849±0.006(8) 0.835±0.005(1)
Cdc 0.833±0.005(5) 0.834±0.006(6) 0.825±0.007(1) 0.828±0.006(4) 0.834±0.006(7) 0.838±0.006(8) 0.827±0.007(3) 0.845±0.011(9) 0.826±0.008(2)
Dia 0.634±0.012(6) 0.635±0.015(7) 0.628±0.013(4) 0.630±0.017(5) 0.638±0.012(9) 0.635±0.013(8) 0.620±0.007(2) 0.620±0.007(3) 0.614±0.010(1)
Elu 0.811±0.008(4) 0.812±0.008(5) 0.818±0.006(7) 0.809±0.008(1) 0.811±0.008(3) 0.837±0.006(9) 0.813±0.007(6) 0.825±0.012(8) 0.809±0.007(1)
Hea 0.661±0.011(6) 0.659±0.014(4) 0.641±0.010(1) 0.651±0.012(2) 0.662±0.014(7) 0.684±0.006(9) 0.660±0.011(5) 0.682±0.016(8) 0.659±0.012(3)
Spo 0.616±0.013(6) 0.615±0.013(5) 0.604±0.011(1) 0.614±0.010(4) 0.609±0.010(3) 0.627±0.013(8) 0.621±0.014(7) 0.634±0.029(9) 0.608±0.009(2)
Gen 0.914±0.002(6) 0.917±0.003(7) 0.905±0.002(2) 0.909±0.003(4) 0.912±0.002(5) 0.935±0.003(9) 0.906±0.002(3) 0.931±0.005(8) 0.905±0.002(1)
Nat 0.312±0.016(4) 0.338±0.015(6) 0.280±0.022(1) 0.381±0.023(8) 0.320±0.021(5) 0.359±0.008(7) 0.297±0.016(3) 0.382±0.022(9) 0.285±0.017(2)
SBU 0.589±0.015(8) 0.561±0.011(5) 0.531±0.012(3) 0.606±0.011(9) 0.549±0.016(4) 0.563±0.017(6) 0.516±0.017(2) 0.574±0.013(7) 0.490±0.021(1)
SJA 0.507±0.049(4) 0.792±0.084(9) 0.534±0.043(5) 0.670±0.040(8) 0.491±0.046(3) 0.563±0.035(6) 0.487±0.048(2) 0.599±0.040(7) 0.480±0.057(1)
RAF 0.297±0.009(9) 0.266±0.007(2) 0.287±0.008(8) 0.282±0.007(6) 0.273±0.008(3) 0.276±0.008(4) 0.286±0.008(7) 0.278±0.008(5) 0.265±0.008(1)
Med 0.174±0.002(4) 0.198±0.006(6) 0.207±0.003(7) 0.191±0.007(5) 0.170±0.002(3) 0.265±0.008(8) 0.169±0.002(2) 0.275±0.011(9) 0.161±0.003(1)

Dataset
Ranking loss ↓

BFGS-LDL LDL-SCL StructRF LDLFs RSSR-LDL21 BR-wSVM RELIAB LIMO RWLM-LDL
Alp 0.398±0.009(5) 0.403±0.011(6) 0.404±0.005(7) 0.393±0.013(3) 0.393±0.009(4) 0.429±0.014(9) 0.391±0.010(2) 0.404±0.011(8) 0.387±0.012(1)
Cdc 0.406±0.014(6) 0.409±0.012(7) 0.405±0.012(5) 0.402±0.011(3) 0.405±0.014(4) 0.417±0.010(9) 0.397±0.017(2) 0.413±0.012(8) 0.393±0.013(1)
Dia 0.280±0.014(7) 0.281±0.017(8) 0.278±0.015(5) 0.277±0.015(4) 0.279±0.012(6) 0.285±0.013(9) 0.269±0.012(2) 0.272±0.015(3) 0.266±0.010(1)
Elu 0.387±0.013(3) 0.390±0.015(6) 0.395±0.011(7) 0.387±0.012(5) 0.386±0.014(2) 0.435±0.009(9) 0.387±0.012(4) 0.408±0.009(8) 0.384±0.015(1)
Hea 0.424±0.023(7) 0.417±0.021(5) 0.390±0.019(1) 0.406±0.020(2) 0.423±0.025(6) 0.462±0.021(9) 0.414±0.020(4) 0.438±0.019(8) 0.412±0.018(3)
Spo 0.404±0.024(6) 0.403±0.023(5) 0.388±0.017(1) 0.401±0.015(4) 0.399±0.022(3) 0.422±0.025(9) 0.408±0.025(7) 0.409±0.025(8) 0.397±0.021(2)
Gen 0.430±0.003(5) 0.443±0.006(7) 0.432±0.003(6) 0.422±0.005(3) 0.424±0.003(4) 0.478±0.006(9) 0.414±0.003(2) 0.469±0.006(8) 0.413±0.004(1)
Nat 0.195±0.010(4) 0.219±0.009(6) 0.163±0.014(2) 0.268±0.027(9) 0.197±0.014(5) 0.241±0.008(7) 0.174±0.011(3) 0.264±0.011(8) 0.161±0.014(1)
SBU 0.374±0.016(6) 0.340±0.014(5) 0.300±0.016(2) 0.419±0.013(9) 0.323±0.016(4) 0.396±0.021(7) 0.303±0.021(3) 0.401±0.022(8) 0.264±0.020(1)
SJA 0.260±0.057(4) 0.723±0.177(9) 0.283±0.040(5) 0.447±0.057(8) 0.244±0.059(3) 0.310±0.042(6) 0.240±0.059(2) 0.408±0.040(7) 0.233±0.065(1)
RAF 0.092±0.009(9) 0.060±0.007(2) 0.079±0.007(7) 0.075±0.007(6) 0.066±0.007(3) 0.069±0.008(4) 0.081±0.009(8) 0.072±0.006(5) 0.059±0.007(1)
Med 0.050±0.001(4) 0.057±0.002(6) 0.063±0.001(7) 0.056±0.003(5) 0.048±0.001(3) 0.093±0.003(9) 0.047±0.001(2) 0.085±0.003(8) 0.044±0.001(1)

Dataset
Average precision ↑

BFGS-LDL LDL-SCL StructRF LDLFs RSSR-LDL21 BR-wSVM RELIAB LIMO RWLM-LDL
Alp 0.647±0.008(5) 0.642±0.010(7) 0.640±0.005(8) 0.651±0.013(4) 0.652±0.007(3) 0.628±0.011(9) 0.656±0.008(2) 0.644±0.011(6) 0.660±0.010(1)
Cdc 0.654±0.010(6) 0.653±0.009(7) 0.656±0.009(4) 0.658±0.007(3) 0.655±0.010(5) 0.638±0.008(9) 0.660±0.012(2) 0.650±0.009(8) 0.662±0.010(1)
Dia 0.811±0.010(7) 0.812±0.011(4) 0.808±0.013(9) 0.812±0.009(6) 0.812±0.008(5) 0.810±0.009(8) 0.819±0.010(2) 0.818±0.009(3) 0.820±0.007(1)
Elu 0.678±0.012(3) 0.676±0.013(6) 0.673±0.009(7) 0.677±0.008(5) 0.679±0.013(2) 0.638±0.010(9) 0.678±0.010(4) 0.656±0.008(8) 0.681±0.013(1)
Hea 0.699±0.014(7) 0.702±0.015(5) 0.719±0.013(1) 0.709±0.013(2) 0.701±0.015(6) 0.668±0.010(9) 0.702±0.015(4) 0.685±0.014(8) 0.705±0.013(3)
Spo 0.720±0.014(6) 0.721±0.013(5) 0.728±0.010(1) 0.721±0.012(4) 0.725±0.013(3) 0.701±0.019(9) 0.718±0.015(8) 0.718±0.018(7) 0.726±0.012(2)
Gen 0.411±0.004(5) 0.401±0.005(7) 0.402±0.004(6) 0.418±0.006(3) 0.417±0.005(4) 0.370±0.004(9) 0.431±0.004(2) 0.376±0.007(8) 0.434±0.004(1)
Nat 0.686±0.017(5) 0.655±0.016(6) 0.732±0.020(2) 0.591±0.050(7) 0.701±0.016(4) 0.587±0.015(9) 0.720±0.022(3) 0.587±0.017(8) 0.736±0.025(1)
SBU 0.692±0.012(6) 0.722±0.010(5) 0.750±0.013(2) 0.651±0.011(9) 0.733±0.010(4) 0.674±0.017(7) 0.749±0.014(3) 0.673±0.016(8) 0.780±0.016(1)
SJA 0.805±0.035(3) 0.587±0.071(9) 0.775±0.031(5) 0.643±0.038(8) 0.814±0.042(2) 0.745±0.040(6) 0.804±0.039(4) 0.678±0.038(7) 0.812±0.050(1)
RAF 0.905±0.009(9) 0.938±0.007(2) 0.922±0.006(7) 0.925±0.006(6) 0.933±0.006(3) 0.930±0.007(4) 0.914±0.008(8) 0.926±0.006(5) 0.940±0.006(1)
Med 0.707±0.004(4) 0.684±0.004(5) 0.644±0.003(7) 0.666±0.011(6) 0.718±0.004(2) 0.521±0.029(9) 0.718±0.004(3) 0.585±0.020(8) 0.724±0.005(1)
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TABLE 5
Results of the Friedman test. The Friedman statistics in terms of each

metric and the critical value at 0.05 significance level are given.

MLL Metrics Friedman Statistics Critical Value
Hamming loss 30.7778

2.0454
One error 49.4288
Coverage 47.9166
Ranking loss 53.1778
Avg. precision 51.0444

the re-weighting schemes. Following the same evaluation
protocol with Section 5.4.1, we evaluate the performance
of RW-LDL and LDL-`1. To show whether the re-weighting
schemes yield better classification performance, we conduct
the Wilcoxon signed-rank tests [47] for RW-LDL against
LDL-`1, which are reported in Table 6 (the 5th column). Table
6 shows that RW-LDL is superior or at least comparable to
LDL-`1 in terms of all metrics, which justifies the usefulness
of the re-weighting schemes.

5.4.3 Effectiveness of Large Margin
RWLM-LDL (LM-LDL) is only different from RW-LDL (LDL-
`1) in that large margin is used in RWLM-LDL (LM-LDL).
We compare RWLM-LDL (LM-LDL) against RW-LDL (LDL-
`1) to show the effectiveness of large margin. Similar to
Section 5.4.1, we evaluate the performance of these variants.
To investigate whether large margin can truly improve
classification performance, we conduct the Wilcoxon signed-
rank tests [47] for RWLM-LDL against RW-LDL and LM-
LDL against LDL-`1, which are summarized in Table 6
(the last two columns). Table 6 shows that RWLM-LDL has
statistically superior performance against RW-LDL, and LM-
LDL significantly outperforms LDL-`1, which demonstrates
the effectiveness of large margin.

5.4.4 Advantage of Label Distribution
Label distribution can represent multi-label. For an instance
with c positive labels, we can represent it as a label distri-
bution: a degree of 1/c for each positive label and 0 for each
negative label (e.g., {1, 0, 1, 0, 0, 0} can be equivalently re-
written as {0.5, 0, 0.5, 0, 0, 0}). We can run LDL methods
on multi-label as follows: represent multi-label as label
distribution and run LDL methods. Notice that RAF ML has
both the ground-truth label distribution and mulit-label. To
show the advantage of label distribution, we run BFGS-LDL,
LDLFs, and RWLM-LDL on the label distribution and multi-
label of RAF MLL. The results are shown in Table 7, where
BFGS-ML, LDLFs-ML, and RWLM-ML denote BFGS-LDL,
LDLFs, and RWLM-LDL on multi-label, respectively. Table
7 shows that the methods on label distribution have better
performance than those on multi-label, which manifests
the advantage of label distribution. The reasons lie in that
label distribution has more information than 0/1 label and
directly models the relative importance of labels.

5.5 Further Analysis
5.5.1 Parameter Sensitivity Analysis
This subsection analyzes the influence of the parameters,
including λ1 (the regularization parameter), λ2 (the trade-
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Fig. 8. Influence of ρ in terms of 0/1 loss and five MLL metrics.

off parameter), and ρ (the margin).
To study the influence of ρ, we run RWLM-LDL with

ρ from the candidate set {10−4, · · · , 10−1}. Fig. 8 presents
the results on several datasets. We can see from Fig. 8 that
RWLM-LDL achieves satisfying performance with ρ = 0.1.
Additionally, to investigate the influence of λ1 and λ2, we
set ρ = 0.1 and run RWLM-LDL with λ1 and λ2 selecting
from the candidate set {10−5, · · · , 105}. Fig. 9 presents the
results of the grid-search for λ1 and λ2 on SJAFFE in terms
of each metric. We can see from Fig. 9 that RWLM-LDL
with λ1 = 0.0001 has a satisfying performance. Moreover,
RWLM-LDL is robust w.r.t. λ2, which can be simply set to 1.

5.5.2 Convergence

To study the convergence of RWLM-LDL, Fig. 10 plots the
objective function values w.r.t. the number of iterations on
Alpha for SLL and MLL. As can be seen from Fig. 10, RWLM-
LDL converges fast, and the objective function approaches
a stable value after about 200 iterations, which validates the
efficiency of the optimization method.

5.5.3 When Does RWLM-LDL Work Well?

For each dataset, define r1 = maxiExi/miniExi that is the
ratio between the maximum and the minimum entropy of
the label distributions, and define r2 = avg.Ent. /m lnm
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TABLE 6
Results (win/tie/lose[p-value]) of the Wilcoxon signed-rank test in terms of 0/1 loss and five MLL metrics (at 0.05 confidence level).

Metric
LDL-`1 against RW-LDL against RWLM-LDL against LM-LDL against

LDL-`2 LDL-J LDL-KL LDL-`1 RW-LDL LDL-`1
0/1 loss tie[1.20e-1] win[6.13e-3] win[4.94e-2] win[3.87e-2] win[4.45e-3] win[2.71e-3]

Hamming loss win[1.50e-2] tie[5.97e-2] win[2.29e-2] win[2.81e-2] win[6.04e-3] win[7.65e-3]
One error tie[9.26e-2] tie[5.15e-1] tie[2.03e-1] tie[5.96e-2] win[9.63e-3] tie[8.44e-2]
Coverage win[4.14e-2] tie[1.36e-1] tie[1.58e-1] win[2.29e-2] win[2.22e-3] win[2.29e-2]

Ranking loss win[7.65e-3] win[2.81e-2] win[4.99e-2] win[2.22e-3] win[2.22e-3] win[2.87e-3]
Average precision win[6.04e-3] win[1.21e-2] win[1.21e-2] tie[7.12e-2] win[2.22e-3] win[6.04e-3]

TABLE 7
Performance (mean±std) comparison for the algorithms learning the label distribution and multi-label on RAF ML.

Method Hamming loss One error Coverage Ranking loss Average precision
BFGS-ML 0.228±0.006 0.116±0.015 0.300±0.008 0.099±0.008 0.895±0.008
BFGS-LDL 0.195±0.008 0.090±0.014 0.297±0.009 0.092±0.009 0.905±0.009
LDLFs-ML 0.124±0.010 0.071±0.013 0.286±0.010 0.079±0.007 0.921±0.006

LDLFs 0.132±0.00 0.062±0.009 0.282±0.007 0.075±0.007 0.933±0.006
RWLM-ML 0.139±0.008 0.051±0.010 0.269±0.007 0.063±0.007 0.935±0.007
RWLM-LDL 0.112±0.011 0.043±0.009 0.265±0.008 0.059±0.007 0.940±0.006
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Fig. 9. Influence of λ1 and λ2 in terms of each metric on SJAFFE.

that is the ratio between the average entropy of the la-
bel distributions and the possible maximum entropy (i.e.,
uniform distribution). Note that r1 indicates how large the
gap among the entropy of the label distributions is, and r2

reveals how evenly the label distributions are distributed
(r2 = 1 means uniform distribution). The statistics of r1 and
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Fig. 10. Convergence of RWLM-LDL on Alpha in SLL and MLL cases.

r2 for each dataset are listed in Table 2.
According to Tables 3 and 4, we observe that RWLM-LDL

works less efficiently on the datasets with small r1 and large
r2, such as Heat and Spo. The usefulness of the re-weighting
schemes is partially suppressed when the gap among the
entropy of the label distributions is small (small r1). The
effectiveness of large margin is suppressed when the label
distributions are overall evenly-distributed (large r2) since
there will be more points inside the marginal hyperplanes,
as discussed in Section 3.3.4. Instead, RWLM-LDL achieves
much better performance on the datasets with large r1 and
small r2, such as Spoem and Gene, because the re-weighting
schemes and large margin work more efficiently.

To summarize, RWLM-LDL works well particularly on
the datasets where the gap among the entropy of the la-
bel distributions is large, and the label distributions are
unevenly-distributed.

5.5.4 Why Does RWLM-LDL Work Well?
Fig. 11 shows two examples from Natural Scene in MLL,
where the ground-truth label distributions, as well as the
ones predicted by BFGS-LDL and RWLM-LDL, are pre-
sented. From Fig. 11, two observations can be made:

1) The ground-truth label distribution of Fig. 11b has
higher entropy than that of Fig. 11a. RWLM-LDL
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Fig. 11. Examples from Natural Scene. The ground-truth label distri-
bution of Fig. 11b has higher entropy, which implies that the objective
inconsistency is more likely to occur. RWLM-LDL captures the entropy
and has a smaller loss for Fig. 11b. Besides, RWLM-LDL mainly focuses
on the top labels.

captures the entropy and has a smaller L1-norm
loss for Fig. 11b. In contrast, BFGS-LDL neglects the
entropy and has a smaller L1-norm loss for Fig. 11a.

2) RWLM-LDL mainly focuses on the label description
degrees of the top labels and successfully keeps the
rankings of the top labels. In contrast, BFGS-LDL
neglects the rankings of the top labels for the sake
of learning the whole label distributions.

According to the preceding observations, label distri-
bution has rich information, which at least includes the
relative importance of labels, the rankings of labels, and the
uniformity of the label distribution (by the entropy). Tradi-
tional LDL methods only consider the relative importance of
labels and ignore others. In contrast, RWLM-LDL captures
the uniformity of label distributions by re-weighting w.r.t.
the entropy of label distributions and keeps the rankings of
the top labels by large margin and re-weighting w.r.t. label
description degrees. To summarize, re-weighting and large
margin are helpful to sufficiently exploit the rich informa-
tion of label distribution, which explains why RWLM-LDL
works well.

6 CONCLUSION

Although LDL has been applied to varieties of real classifi-
cation tasks, it faces the challenge of objective inconsistency,
which leads to the performance deterioration of LDL.

This paper addresses the inconsistency. We establish the
relation between LDL and classification that the expected
L1-norm loss of LDL bounds the classification error proba-
bility. We then propose a new LDL method named RWLM-
LDL that employs three components, including L1-norm
loss, re-weighting schemes, and large margin. RWLM-LDL
is shown to have generalization and discrimination. In the
experiments, we show that RWLM-LDL has a competitive
performance against the state-of-the-art LDL methods and
SLL/MLL methods. Furthermore, ablation study and fur-
ther analysis explain the effectiveness of RWLM-LDL.

In the future study, we will explore the followings:

1) How to apply the re-weighing schemes to the rela-
tion between LDL and classification and establish a
tighter bound.

2) How to leverage the large margin to derive a tighter
bound on the error probability, and how to leverage
the re-weighting schemes to derive a tighter bound
on the expected 0/1 loss.

3) Replace the maximum entropy model with a deep
model, and use AutoML techniques to train a high-
quality model automatically.
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