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Abstract—Graph representation learning has been widely ap-
plied to graph tasks such as node classification, link prediction,
graph-level classification and so on. Graph representation learn-
ing takes full advantage of spatial or spectral approaches to
embed nodes into low-dimension space correctly and effectively.
Especially, Graph Neural Networks (GNNs), which is one of
representation learning, attract increasing interests due to their
powerful ability to integrate local information and outstanding
generalization in graph tasks. Currently, GNN models are also
able to capture further nodes information with more stacked
convolution layers. But when the number of layers reaches a
certain level, these existing methods perform worse as the depth
of networks increases continuously. Thus, most GNNs employ
shallow architectures, leading to the failure of capturing further
information. In this paper, we present Multi-hop Hierarchical
Graph Neural Networks (MHGNNs), a new graph neural net-
work framework, to address the shortcomings of lacking further
node information and obtain broad receptive field. Distinct from
prior works, one layer of MHGNNs can concatenate hop-level
features in a hierarchical way, where features in the same
hop are aggregated with each other. Another advantage is that
MHGNNs have a flexible structure, where the number of used
hops can be different in each layer. Besides, MHGNNs also use
attention mechanism during the integrated step, which mines
latent relationships among hops and adaptively selectes important
hop-level features. Finally, our MHGNN model was evaluated
on citation and protein-protein interaction graph benchmarks to
conduct node classification, and has advanced or matched the
outcomes of state-of-the-art methods in node classification tasks.

Index Terms—graph representation learning, graph neural
networks, attention mechanism

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have acquired great

success in the field of image and video analysis. CNNs

can embed image data into a low-dimension space to tackle

relevant tasks [1] [2] [3]. But convolutional neural networks

are only designed to data with Euclidean structures, where

this kind of data has fixed arrangement, thus CNNs can easily

extract neighbors in accordance with certain order. Because of

this characteristic, CNNs can use fixed-size filters to learning

local information and achieve parameter sharing.

However, most non-Euclidean structured data, like man-

ifolds and graphs, can not be arranged into fixed order,

which makes CNNs invalid. Unfortunately, non-Euclidean

structured data do exist in telecommunication, society and

(a) prior models (b) our models

Fig. 1: Comparsion between prior convolution models (a) and

ours (b). We show the current node (yellow node) captures

further and more hop nodes (blue ones) with our model. The

cover ellipses (orange ones) is represented as importance to

current node with different color shades.

biology widely. Therefore, it is necessary to design new

methods to solve problems with non-Euclidean structured data.

In the past years, graph representation learning has been

empirically applied to graph tasks such as node classification

[4], link prediction [5], graph classification [6] and so on.

Especially, Graph Neural Networks (GNNs) [7] [8] [9], as an

outstanding method among graph representation learning, have

attracted increasing interests in node classification including

transductive and inductive tasks (The graph in transductive

tasks is definitive while inductive tasks require problems with

unseen graphs to be solved.).

Most existing GNN methods are intended to get local

information by aggregating one-hop neighbors and employing

more layers (hop refers to the interval between two nodes,

and one-hop nodes are also called neighbors in this paper).

But the performance would become worse as the number

of layers increases [10], thus only 3—4 layers are stacked

in most GNN models, which results in few local nodes or

narrow receptive field. This phenomenon can be interpreted

as Laplacian smoothing—it explains that all nodes in a graph

will have same features when layers are towards infinity [11].

The majority of current methods are in the dilemma where

networks should be undoubtedly deeper for wider receptive

field but should be shallow for better perfermance. To get rid

of this dilemma, we extend existing methods to obtain broader
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receptive field.

We propose a general framework called Multi-hop Hier-

archical Graph Neural Networks (MHGNNs). To the best of

our knowledge, it is a new framework which makes full use of

multi-hop node information to broaden receptive field. Unlike

previous methods that only aggregate one-hop neighbors in

a layer, our methods can capture nodes within multiple hops

in a layer. Fig. 1 shows that MHGNNs can preserve multi-

hop node information with different importance in comparison

to prior models. Meanwhile, the number of hops is variable

in differnet layers, which brings flexibility to MHGNNs. If

nodes within multiple hops are considered independently, huge

complexity will make models hard to train. Through the

observation of convolution, we reuse neighbor information and

apply aggregation function to extract multi-hop node features

in a hierarchical way, which reduces complexity effectively.

Because further hop nodes are integrated into current node

features from hop to hop, we call this method as multi-hop

hierachical structure. Furthermore, attention mechanism is a

powerful tool for mining data relationships in natural language

processing [12]. And it has been applied to Graph Attention

Networks (GATs) [7]. Inspired by this work, we distribute

attention to represent the latent relationships among hops. Due

to attention, MHGNNs can selectively extract significant hop-

level features.

MHGNNs take a graph as input and obtain representations

of every node. The representations are sent to fully connected

layers to make node classification including both transductive

and inductive tasks. To demonstrate MHGNNs’ ability in

graph representation learning, we conducted experiments on

four graph benchmarks and reach the state-of-the-art level.

Concretely, our contributions are the following:

• We design a multi-hop hierachical structure to reach

further hop nodes, acquiring wider receiptive field.

• Neighbor information is reused, reducing complexity

effectively.

• In the fusion process of multi-hop nodes, we apply

attention mechanism to control importance of hop-level

features, which is beneficial to mine latent relationships.

• We evaluate MHGNNs on four graph benchmarks includ-

ing citation network datasets and protein-protein interac-

tion (PPI) dataset. Our MHGNN model has achieved the

state-of-the-art results.

The rest of paper is as follows. In section II, we present

related work about our models. Then, our proposal method is

described in detail in section III. And we conduct our exiper-

iments and analyze results in section IV. Finally, conclusions

are conducted in section V.

II. RELATED WORK

Our models have a strong link with node embeddings and

graph neural networks. Node embeddings generally apply

unsupervised learning to get node representation, and graph

neural networks adopt semi-supervised learning or supervised

learning.

Node Embeddings Node embeddings aim at learning low-

dimension latent representation of nodes in a graph. Thus, it

is of great significance to thoroughly capture related infor-

mation. DeepWalk model [13] uses a random walk method,

specifically, a node searches for the next node according to

the normalized edge weight. Then Skip-Gram model [14] is

designed for representation of nodes. Based on DeepWalk,

Tang et al. in [15] adopted first-order nearest neighbors and

second-order nearest neighbors, which is so called one-hop

and two-hop, fusing two-order nearest neighbors methods to

generate node representation. Node2vec is another method to

find broader nodes by controlling transition probability [16].

For global structural information, GraRep captures k-step rela-

tional information from graph directly, which is manipulating

various transition matrices [17].

These models have done outstanding works in exploring

nodes via edges in graphs, which makes great success because

of further nodes captured by random walk or global informa-

tion. Inspired by these work, our methods also try to integrate

furher nodes and mine latent relationships.

Graph Neural Networks Graph neural networks and variants

have emerged a lot in recent years [8] [7] [9] [18] [19] [20]

[24]. Similar to convolutional networks, GNNs adopt learnable

and parameterized filters to update node features with neigh-

bors information. According to the type of convolution, GNNs

can be divided into spectral approaches and spatial approaches.

Spectral approaches make convolution operation in the Fourier

domain like GCNs [8]. And spatial approaches directly define

convolutions in original graph, utilizing neighbors as convo-

luted objects. Among these approaches, the famous represen-

tatives include GraphSAGE [9], GATs [7] and so on. The

significant benefit of spatial approaches is that graphs can use

neighbor information flexibly. But either spectral approaches

or spatial approaches only work on one-hop neighbors in

a layer. For the further nodes, these approaches have no

choice to stack more layers, causing worse performance [10].

Thus, some work has been designed to git rid of shallow

networks, absorbing experience from the advances in CNNs

[21] [22] [23]. In [10], Li et al. distribute residual connections,

dense connections and dilation to GCNs and applied deeper

architectures. From the results of deeper GCNs, it is not

difficult to find that further nodes play the essential role in

representation learning. But how to concatenate further nodes

is a vacant position in graph neural networks.

Inspired by above works, our model emerges as a general

framework to integrate further nodes. Our models adopt spatial

approaches and extend neighbor information.

III. PROPOSED METHOD

In this section, we will explain how to construct our

model—MHGNNs. The key point is to collect the information

of multi-hop nodes, and to integrate them into the current node.

Fortunately, our model receives abundant node information

at the expense of low complexity. What’s more, it is also

demonstrated the way of utilizing attention to learn hop-to-hop
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relationships. According to the method-building process, we

divide our model into two part: multi-hop hierarchical structure

and attention mechanism.

A. Multi-hop Hierarchical Structure

Multi-hop hierarchical structure effectively collects node

information from hop to hop, and different hop nodes hier-

archically stack together, which is shaped like a tree as shown

in Fig. 2. The depth of the tree corresponds to the maximum

hop. It is noteworthy that this tree is only an abstract model

for understanding this structure, and general graph is used

in calculation. Next, how one layer collects multi-hop nodes

information will be introduced. We split the structure of one

layer into three parts: linear transformation, aggregation and

multi-hop concatenation. Linear transformation can transfer

input features into a new feature space, aggregation provides

some functions to extract hop-level features, and multi-hop

concatenation is designed to concatenate hop-level features to

every node.

Linear Transformation The input of every layer is a set

of node features, A = {a1,a2, ...,aN},ai ∈ R
M , where N

represents the number of nodes in the graph, and M is the

dimension of features in every node. In every layer, there is

a weight matrix, W ∈ R
M ′×M , where M ′ is dimension of

output features . This matrix provides a linear transformer for

input features. Thus output features h0
i is

h0
i = W · ai (1)

where i ∈ {1, 2, ..., N}, h0
i represents hop-level features

that are computed on zero-hop nodes, that is node iteself,

and h0
i ∈ R

M ′
. Therefore, we can produce output features

H = {h0
1,h

0
2, ...,h

0
N}. Linear transfomation can project the

original input space into a new feature space, and parameters

of W are learnable and shared by all nodes.

Aggregation Aggregation can be viewed as a process that

integrates one-hop nodes features by a class of functions

with special properties [9]. Unlike Euclidean structured data,

the neighbors of nodes in graph have no fixed order and

number, which means that neighbors may have many different

permutations. Thus, we must apply symmetric aggregation

function that is invariant to permutations of neighbors, in

order to ensure that our model is able to tackle graph tasks.

Our aggregation functions follow a general framework in

[9]. Besides the framework in [9], we find out that ADD
aggregation function is also a good function in [20]. So three

symmetric aggregation functions are examined.

• We firstly introduce MEAN aggregation function which

is only intended to take column-element-wise mean of

features in {h0
u, u ∈ N (i)}, where h0

u represents the

neighbors’ features of node i and N (i) means the

neighbors’ set of node i. The mean aggregation func-

tion amounts to convolution operator, where all weights

are the inverse of |N (i)|, where |N (i)| refers to the

number of set. Moreover, we can use another weight

matrix Wmean to reweight neighbors. Thus we design

an AGGREGATIONmean function:

AGGREGATIONmean(h
0
i ) =

Wmean ·MEAN({h0
u, u ∈ N (i)}). (2)

In our experiments, this weight matrix is set as a square

matrix to make dimension consistent. And a shadow

network could replace Wmean. Of course, if we replace

the weight matrix with a shadow network, it would make

some changes in formula but it is still a variant of

mean aggregation. Therefore, we do not distinguish these

variants.

• In addition to MEAN aggregation function, ADD
function is also suggested to take column-element-wise

addition in features of neighbors. It can be regarded

as a special case of mean function. When we set row-

level parameters of Wmean as |N (i)|, they will be-

come consistent. But we discover that this function has

efficient calculation and reaches better performance in

some datasets. An AGGREGATIONadd function is

designed:

AGGREGATIONadd(h
0
i ) = ADD({h0

u, u ∈ N (i)}).
(3)

It is noted that the distinction between (3) and (2)

is weight matrix. As mentioned above, we avoid the

duplication of definitions to omit the weight matrix.

• Finally we examine another symmetric aggregation func-

tion, max aggregation function, which is inspired by

pooling operation in CNNs. In this work, neighbors’

features can be mapped with a parameterized matrix

independently. Following networks’ mapping, a column-

element-wise max pooling operation will be taken, which

is similar to pooling layer in CNNs. Therefore, max

aggregation function, AGGREGATIONmax, is defined

as follows;

AGGREGATIONmax(h
0
i ) =

MAX({Wmax · h0
u + b}, u ∈ N (i)).

(4)

where Wmax represent a weight matrix and b is a

bias. Intuitively, Wmax can be also replaced by a fully

connected network which will be trained as a set of

functions capturing neighbors information.

We have discussed three symmetric aggregation functions.

In principle, every function has its own scenarios. In previous

work [20], it pointed out that MEAN and ADD aggregation

functions perform better and we got the same results in

real experiments. So we focused on these two aggregation

functions in our experiments.

Multi-hop Concatenation So far we only integrate neigh-

bors’ features by using aggregation functions, but the goal of

our model is to extract multi-hop node features. An intuitive

and simple idea is to explore arbitrary hop nodes of node i
and store them into neighbors directly, thus multi-hop nodes

that we need will be obtained independently. Though this idea
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Fig. 2: A toy example of multi-hop hierarchical structure, where all nodes within 2 hop are used. Thus, the subgraph constructed

with hop nodes can be seen as a tree, like the left part of this figure. In the left, every node has inherent features as inputs, then

obtains new features via linear transformation W which represented as a solid line with arrow in figure. Iteratively, further

hop information is delivered to upper levels via AGGREGATION function represented by dotted lines with arrow in figure.

seems to be feasible, there exist obvious drawbacks that huge

storage will be in need for neighbors when a graph owns mil-

lions of nodes and edges, and the procedure of exploring takes

expensive complexity. So considering nodes independently is

not a practical strategy. Actually, it is unnecessary to acquire

every node, we just focus on neighbors features, and multi-hop

node features will be gathered automatically.

As mentioned in Aggregation part, one-hop node features of

every node have been integrated by aggregation functions. It

is apparently different from previous works that one-hop node

features are stored separately from zero-hop features. Corre-

sponding to every node, its two-hop node features are entirely

contained within its neighbors’ one-hop features, three-hop

features are in neighbors’ two-hop features, and so on. Nodes

get multi-hop features from hop to hop as hierarchical models.

We define hk
i as k hop features. Following above observation,

hk
i can be obtained as:

hk
i = AGGREGATION(hk−1

i ) (5)

where AGGREGATION is any aggregation functions. For

preserving features independently, all hop-level features apply

concatenation operation to connect features in series. Thus,

multi-hop features hi

hi = [h0
i | h1

i | ... | hK
i ]

= h0
i

K

‖
k=1

AGGREGATION(hk−1
i )

(6)

where K is the maximum hop set manually and ‖ represents

concatenation operation.

Multi-hop hierarchical structure makes full use of neighbors

features and concatenates all hop-level features in one layer

successfully and effectively. Compared with other methods,

our method has more receptive fields and it only needs to

occupy O(KNM ′) storage in one layer, which is growing

linearly. As for time complexity, it is assumed that the time

complexity of function is O(γ) which is proportional to the

total number of neighbors, and our model just runs aggregation

function iteratively, thus consumes O(Kγ). It is also linear

growth.

B. Attention Mechanism

In this part, we will further extract useful and adequate

features from multi-hop features hi = [h0
i | h1

i | ... | hK
i ].

Obviously, different hop-level feature hk
i has different impor-

tance for current node, thus it is of great significance to give

various and learnable weights to hk
i . Attention mechanism is

a tool that is frequently used to measure importance, which

is an indispensable factor to GATs’ great success [7]. So our

model utilizes attention mechanism, following GATs, but we

focus on different hop-level features.

On the basis of the work of GATs, input features are

transformed into new feasure space as we do in last part—

Multi-hop Hierarchical Structure. Meanwhile, we also need to

design a new mapping function to compute attention socres

of hop-level features hk
i , where the function should take two

inputs in R
M ′

into a real number in R. So, we then perform

an attention-score function F (·, ·):
F (h0

i ,h
k
i ) = LeakyRelu(aT · [h0

i ‖ hk
i ]) (7)

where a is a parametrized vector, ·T is transposition, and

LeakyRelu(·) represents leakyrelu nonlinearity activation

function. LeakyRelu(·) is defined as follows:

LeakyRelu(x) =

{
x if x ≥ 0

βx, β ∈ (0, 1) if x < 0
(8)
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Fig. 3: The diagram of attention mechanism which is a two-

hop case. The features h0
i of current node (yellow features)

is computed with other hop features hk
i , k ∈ {0, 1, 2} to get

attention scores. Meanwhile, normalized function is applied

to get attention coefficients αik, which is represented in red

node. Then eventual features h
′
i are obtained via product and

addition.

In all of our experiments, β is set as 0.1.

The attention-score function computes a set of values to

indicate the importance of multi-hop nodes to current node.

But scores may be over large, which will limit model train-

ing. So scores should be normalized across multi-hop node

features of current nodes. Intuitively, scores are larger and

features are more important. Following the intuitive idea, a

monotonic increasing function is expected. Mathematically,

softmax function is an appropriate choice. Thus, normalization

function may be then expressed as:

αik = softmax(F (h0
i , ·)) =

exp(F (h0
i ,h

k
i ))∑K

j=0 exp(F (h0
i ,h

j
i ))

(9)

The normalized scores are called attention coefficients. The

coefficients are utilized to combine multi-hop features. To sim-

plify model complexity, normalized coefficients is multiplied

with the correponding features, then all multi-hop features

apply a linear combination and an activation unit σ :

h
′
i = σ

( K∑
k=0

αikh
k
i

)
(10)

Finally, we output features h
′
i of every node in one layer.

In detail, the specific architecture of applied attention is

constructed with four steps, as shown in Fig. 3. Through

stacking more layers, our model obtains representations of

every node. Then these representations can be used to tackle

various graph tasks.

In order to make our model clearer, we summarize our

model in Algorithm 1 in detail.

C. Classification Networks

Our MHGNNs adopt multi-hop hierarchical structure and

attention mechanism to capture more and further hop nodes

information. Hence, the eventual node-level representations

contain abundant information. To evaluate our models, we

develop a fully connected network as our classifier. The

network consists of one hidden layer, which is so called a

three-layer network (including input and output layer). We

apply Relu(·) activation function to input and hidden layer.

And output layer is connected to softmax function or sigmoid

function for single-label or multi-label classification. And

cross-entropy is utilized to compute the loss.

Algorithm 1 Algorithm for one-node representations in one

layer of MHGNNs

Input: A = {a1,a2, ...,aN}, inputs features

i, node number

K, maximum hop

F (·, ·), attentin-score function

Output: h
′
i, node-level featurs

1: h0
i = W · ai

2: for k = 1 to K do
3: hk

i = AGGREGATION(hk−1
i )

4: end for
5: Obtain hi = [h0

i | h1
i | ... | hK

i ] = ‖Kk=0 h
k
i

6: for k = 0 to K do
7: αik =

exp(F (h0
i ,h

k
i ))∑K

j=0 exp(F (h0
i ,h

j
i ))

8: end for
9: h

′
i = σ

( ∑K
k=0 αikh

k
i

)
10: return h

′
i

IV. EXPERIMENTS

In this section, we demonstrate benchmark datasets, ex-

periment setup and results. We have evaluated our MHGNN

models compared with other existing state-of-the-art baseline

methods on four widely used benchmark dataset for node

classification including transductive and inductive tasks. In

experiments, we acquire highly competitive results to prove

the effectiveness of our methods.

A. Benchmark Datasets

Benchmark tasks are composed of transductive and induc-

tive tasks, where different datasets are used for evaluation. We

give an overview of these datasets in TABLE I .

Transductive Tasks Three graph benchmark datasets gener-

ated from standard citation networks which are Cora, Citerseer

and Pubmed [25] are used for transductive tasks. Each dataset

has only one graph. All of these graphs are undirected, where
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TABLE I: Benchmark Datasets Statistics

Cora Citeseer Pubmed PPI

Nodes 2708 3327 19717 56944
Edges 5429 4732 44338 818716
Average degree 4.01 2.84 4.50 28.76
Features/Node 1433 3703 500 50
Labels 7 6 3 121 (multilabe)
Traing Nodes(label rate) 140 (0.052) 120 (0.036) 60 (0.003) 44906 (20 graphs)
Validation Nodes(label rate) 500 (0.185) 500 (0.150) 500 (0.025) 6514 (2 graphs)
Testing Nodes(label rate) 1000 (0.369) 1000 (0.301) 1000 (0.051) 5524 (2 graphs)

nodes represent papers and edges are citation links. And the

goal is to predict paper categories correctly. Among these

datasets, Cora dataset has 2708 nodes, average degree is 4.01,

and the number of classes is 7. The Citeseer dataset contains

3327 nodes, average degree is 2.84, and the number of classes

is 6. The Pubmed dataset consists of 19717 nodes, average

degree is 4.50, and the number of classes is 3. Following

previous experimental design [7] [8], we also apply a few

nodes for training step, 500 nodes for validation, and 1000

nodes for testing.

Inductive Tasks Inductive tasks involve predicting nodes

label in unseen graphs, so we adopt protein-protein inter-

action (PPI) dataset which has 24 graphs. Each graph in

PPI corresponds to a different human tissue [26]. Given

by positional gene sets, motif gene sets and immunological

signatures collected from the Molecular Signatures Database

[27], PPI dataset has 50 features and 121 labels (multilabel)

per node. Each graph contains 2373 nodes on average, and

average degree is 28.76. Like experimental setup of prior

works [7] [9], we use 20 graphs to train models, and 2 graphs

to validate models and 2 graphs to test models, where data

have been processed by GraphSAGE.

B. Baseline Methods

We compared our approach with some baseline methods,

including unsupervised learning in graph, GNNs and variants.

Transductive Task Baseline We compare against the

same baselines as GATs [7], i.e. Multi-Layer Perception

(MLP), label propagation (LP) [28], semi-supervised embed-

ding (SemiEmb) [29], manifold regularization (ManiReg) [30],

DeepWalk [13], the iterative classification algorithm (ICA)

[31], Planetoid [32] and Chebyshev [33]. GCNs [8], MoNet

[34] and GATs [7] are also used as comparisons.

Inductive Task Baseline For the inductive task, there are

a few prior works. As far as we all know, GraphSAGE [9]

and GATs [7] are fundamental achievements in this task. So

we compare our model with GraphSAGE-GCN, GraphSAGE-

mean, GraphSAGE-LSTM, and GraphSAGE-pool. A distinc-

tion among these approaches is that they employ a vari-

ety of aggregator functions, for example, GraphSAGE-mean

takes the element-wise mean value of feature vectors, yet

GraphSAGE-LSTM uses LSTM units to aggregate neighbors

(LSTM is not invariant to permutations). Another particular

point is that GraphSAGE samples parts of neighbors from all.

Besides, we also use GATs as a baseline in this task. Finally,

we present MLP as a node classifier in order to prove models’

efficiency.

C. Experimental Setup

All experiments run on the PC with an Nvidia TITAN

RTX GPU with 24G RAM. And we implemented our models

in Python with the excellent Pytorch-Geometric framework

[35]. The experimental setup depends on types of tasks, so

we distribute diverse architectures to four datasets. Dataset

architectures are as follows:

• For Cora dataset, we design a four-layer MHGNN. The

first layer consists of a five-hop hierarchical structure, that

is K = 5. Then the second layer is a two-hop-structure

layer, yet the third and fourth layer are both a one-hop

layer. As for aggregation funtion and the dimension of

features, the first two layers apply MEAN function to

compute M ′ = 1024 features, and the last two layers use

ADD function to compute 512 features.

• For Citeseer dataset, we design a five-layer MHGNN.

The first two layers match with Cora’s. But in the third

layer, we set K = 2. And one-hop hierarchical structure

is applied to the rest of layers. We set all features as

1024-dimension vectors. And all layers apply MEAN
function as aggregation except that the last layer uses

ADD function.

• For Pumbed dataset, we adopt a five-layer MHGNN that

is the same with Citeseer.

• For PPI dataset, we distribute a five-layer MHGNN. The

first layer consists of 256 features and a three-hop struc-

ture. The second and third layer have a two-hop structure,

but the former use 512 features and the feature dimension

of the latter is 1024. The rest of layers have 1024-

dimension features and one-hop structure. Aggregation

function of all layers is MEAN function.

Furthermore, dropout [36] with p = 0.4 is applied to at-

tention mechanism. For transductive task, L2 regularization

with 0.005 weight is utilized to control model complexity.

During training, the Adam SGD optimizer [37] with a learning

rate of 0.001 for transductive models is to optimize cross-

entropy loss, yet inductive model is trained by using the same

optimizer with a learning rate of 0.0005. To make it fair,

all models are initialized using Glorot initialization [38] and

we rerun GATs on transductive tasks with Pytorch-Geometric

87



framework. Moreover, our models adopt early-stop technique

to avoid over-fitting.

D. Results

TABLE II summarizes the comparative results on Cora,

Citeseer and Pubmed. Our results are based on 10 runs in

datasets and obtained as mean accuracy in test sets with

standard deviation.We achieve the best performance in Cora

82.2% and Citeseer 71.1% compared with other methods, but

in Pubmed we only match the state-of-the-art results. This is

because Pubmed is a large graph with 19717 nodes, which

needs much more nodes. And the experimental device limits

more stacked layers to get further and more nodes. However,

results in Cora and Citeseer indicate effectiveness of our

model.

Furthermore, TABLE III shows results on PPI. For inductive

task, we report the micro-averaged F1 score on test set,

averaged after 10 runs. Our model also reaches the best

performance 0.988, exceeding 0.015 beyond GATs. According

to TABLE I, PPI dataset have more edges than citation graphs,

where average degree indicates this point. More edges indicate

that more nodes are captured by our model, thus every node

has more rich information than prior methods like GATs.

From the results, we find our models have higher compet-

itiveness in node classification because of broader receiptive

field. Our ideas are verified and very competitive.

TABLE II: Transductive Task Results

Cora Citeseer Pubmed

MLP 55.1% 46.5% 71.4%
ManiReg 59.5% 60.1% 70.7%
SemiEmb 59.0% 59.6% 71.7%
LP 68.0% 45.3% 63.0%
DeepWalk 67.2% 43.2% 65.3%
ICA 75.1% 69.1% 73.9%
Planetoid 75.7% 64.7% 77.2%
Chebyshev 81.2% 69.8% 74.4%
GCN 81.5% 70.3% 79.0%
MoNet 81.7% — 78.8%
GAT(implemeted) 80.1±0.7% 70.5±0.7% 79.0±0.3%

MHGNN(ours) 82.2±0.7% 71.1±0.5% 78.9±0.3%

TABLE III: Inductive Task Results

PPI

MLP 0.422
GraphSAGE-GCN 0.500
GraphSAGE-mean 0.598
GraphSAGE-LSTM 0.612
GraphSAGE-pool 0.600
GAT 0.973± 0.002

MHGNN(ours) 0.988± 0.001

V. CONCLUSION

In this paper, we have presented Multi-hop Hierarchical

Graph Neural Networks (MHGNNs), a novel architecture of

graph neural networks, for node representation and classi-

fication. The MHGNNs provide a method to tackle narrow

receptive field problems for graph-structured data. The multi-

hop hierarchical structure concatenates hop-level features and

reuses neighbors information to capture further hop-level fea-

tures effectively. Moreover, attention mechanism is applied to

obtain the importance of hop node features to current node,

which mines latent relationships among hops. Importantly,

MHGNNs have a flexible structure, where we can design

various aggregation functions (keeps symmetric), and set

different hops in one layer. Eventually, MHGNNs reached

or matched the state-of-the-art performance compared with

existing baseline methods on benchmark datasets.
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