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Abstract
Different from popular neural networks using qua-
siconvex activations, non-monotonic networks ac-
tivated by periodic nonlinearities have emerged as
a more competitive paradigm, offering revolution-
ary benefits: 1) compactly characterizing high-
frequency patterns; 2) precisely representing high-
order derivatives. Nevertheless, they are also well-
known for being hard to train, due to easily over-
fitting dissonant noise and only allowing for tiny
architectures (shallower than 5 layers). The fun-
damental bottleneck is that the periodicity leads
to many poor and dense local minima in solution
space. The direction and norm of gradient oscillate
continually during error backpropagation. Thus
non-monotonic networks are prematurely stuck in
these local minima, and leave out effective error
feedback. To alleviate the optimization dilemma,
in this paper, we propose a non-trivial soft trans-
fer approach. It smooths their solution space close
to that of monotonic ones in the beginning, and
then improve their representational properties by
transferring the solutions from the neural space of
monotonic neurons to the Fourier space of non-
monotonic neurons as the training continues. The
soft transfer consists of two core components: 1)
a rectified concrete gate is constructed to charac-
terize the state of each neuron; 2) a variational
Bayesian learning framework is proposed to dy-
namically balance the empirical risk and the inten-
sity of transfer. We provide comprehensive em-
pirical evidence showing that the soft transfer not
only reduces the risk of non-monotonic networks
on over-fitting noise, but also helps them scale to
much deeper architectures (more than 100 layers)
achieving the new state-of-the-art performance.

1 Introduction
Deep neural networks have led to a series of breakthroughs.
Their representational properties depend heavily on the ac-
tivation functions. Most activation functions typically used
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nowadays, e.g., Sigmoid and ReLU, are quasiconvex, mim-
icking the activation/inhibition of the Heaviside function.

Monotonic neuron only responding to a particular pattern
makes sense from an intuitive point of view: 1) it is attracted
to noticeable/generalizable/low-frequency features; 2) this
monotonicity prevents complex coupling and co-adaptations
between feature detectors; 3) more importantly, monotonic
nonlinearity substantially smoothes the variations of gradi-
ent. In general, the solution spaces of monotonic networks are
much plainer than that of non-monotonic counterparts. This
plays a major role in the success of training deep networks
with hundreds of millions of parameters.

In contrary to popular monotonic ones, non-monotonic
neurons are regarded as difficult to train, owing to 1) easily
over-fitting and 2) only compatible with tiny networks (shal-
lower than 5 layers). But in the last two years, we have to
seriously reexamine the importance of non-monotonic acti-
vations. Many researches showed that non-monotonic activa-
tions can achieve irreplaceable effects including 1) compactly
characterizing complex high-frequency patterns; 2) precisely
representing implicit high-order derivatives.

Specifically, Tancik et al. [2020] formally demonstrated
that sinusoidal Fourier mappings can dramatically perform
better by allowing them to learn much higher frequencies
across low-dimensional space. Sitzmann et al.; Bond-Taylor
and Willcocks; Sitzmann et al. [2020b; 2020; 2020a] compre-
hensively proved the great power of sinusoidal units in mod-
elling complex signals with fine detail and implicit deriva-
tives. Xue et al.; Xue and Wu [2019; 2020] used the si-
nusoidal function to reveal dynamic characteristics and po-
tential correlations. Mildenhall et al.; Zhong et al. [2020;
2019] improved the state-of-the-art performance on the tasks
of novel view synthesis by using sinusoids in Fourier space.

However, these non-monotonic networks built on sinu-
soidal nonlinearities are paired with manually initialization
and tiny architectures (shallower than 5 layers). Although
the important properties of non-monotonic networks are rec-
ognized, their intractable optimization dilemma left over by
history has not yet been solved.

On the one hand, they are more inclined to over-fit noise
hidden in signals. Their periodic neurons can be activated
across the whole feature space. As the correlation with the
input increases, the activation will oscillate between stronger
and weaker, and thus is more attracted to dissonant noise. On

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3200



(a) Fitting by resin (b) Fitting by sin (c) Fitting by resin→ sin

(d) Optimizing resin (e) Optimizing sin (f) Optimizing resin→ sin

Figure 1: The results on fitting sin(2x), x ∈ [−2π, 2π], and the corresponding optimization traces in solution space.

the other hand, they can hardly work well in more complex
architectures. Non-monotonic neuron responds to multiple
patterns, and easily couples and co-adapts with each other.
The direction and norm of gradient oscillate continually in a
local range during error backpropagation. Therefore, it is a
great challenge to optimize deep non-monotonic networks.

Actually, even a network with only one single sinusoidal
neuron has infinite VC dimension. The periodicity gives rise
to numerous poor and dense local minima in solution space.
Non-monotonic networks may be prematurely stuck in poor
local minima, and leave out more effective error feedback.
Hence, we pay particular attention to smoothing their solution
space by taking monotonic variants as the helper, so as to help
non-monotonic networks learn low/high-frequency concepts
better and scale them to substantially deeper and wider senior
architectures.

As a first step toward understanding this optimization
dilemma intuitively, we conduct a synthetic experiment on
fitting the scalar sin(2x), x ∈ [−2π, 2π] with three networks
defined in Eq. (1): 1) the monotonically-rectified sinusoidal
network σ̄ := resin; 2) the non-monotonic σ̃ := sin; 3)
the non-monotonic σz := resin → sin softly transferring
the solution from resin to sin. They have only one neuron
paired with a scalar weight w initialized at w = 6. The fitting
results and optimization processes are shown in Figure 1.

Firstly, the solution space of resin is much smoother than
that of sin. But resin can only capture the local features on
x ∈ [−π4 ,

π
4 ]. Even if it is optimized to the global optimum

w = 0, resin just outputs 0 constantly owing to the struc-
tural limitation. Secondly, in contrast, the solution space of
the non-monotonic sin has more poor and dense local min-
ima. sin is prematurely stuck in the terrible solution and fits
the wrong frequency. Thirdly, resin→ sin finds the optimal
solution w = 2 and perfectly reconstructs the original func-
tion. Consequently, by accurately transferring the solution

from monotonic network to the associated non-monotonic
network, we can alleviate the optimization difficulty on the
premise of preserving the structural superiority.

In this paper, we propose a non-trivial soft transfer ap-
proach, bridging the gap between the neural solution space of
monotonic networks and the Fourier solution space of non-
monotonic networks. The novel transfer alleviates the opti-
mization dilemma by smoothing their solution space close to
that of monotonic counterparts in the early stage of training,
and then improves their representational properties by trans-
ferring the solutions from the monotonic nonlinearities to the
non-monotonic ones as the training continues. Specifically,
the soft transfer is implemented by two core components:

• To automatically characterize the monotonicity/non-
monotonicity of each neuron, a parametric gate with the
rectified concrete distribution is constructed.

• To dynamically balance the empirical risk and the in-
tensity of transfer, a more efficient learning framework
based on variational Bayesian inference is proposed.

By taking the soft transfer approach, non-monotonic net-
works are as easy to optimize as their monotonic counter-
parts. Moreover, we provide comprehensive empirical evi-
dence showing that:

• Soft transfer reduces the risk of over-fitting noise. Low-
frequency concepts are chiefly learned by monotonic
parts, and then high-frequency details and high-order
derivatives are represented by non-monotonic parts.

• Soft transfer helps non-monotonic networks scale to
deeper and wider architectures. The solution space
changes smoothly from simple to complex in training,
without sacrificing any representational property.

We perform various experiments to demonstrate the effec-
tiveness of the soft transfer. Based on the proposed approach,
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non-monotonic networks are successfully extended to the se-
nior residual learning architectures deeper than 100 layers,
and achieve the new state-of-the-art performance.

2 Related Work
On the one hand, Tancik et al. [2020] comprehensively
showed that standard neural networks are poorly suited for
learning high-frequency content, a phenomenon referred to
spectral bias caused by a rapid frequency falloff. Sitzmann
et al.; Bond-Taylor and Willcocks; Sitzmann et al. [2020b;
2020; 2020a] proved that monotonic activations are incapable
of modeling information contained in higher-order deriva-
tives of natural signals.

On the other hand, more important properties of non-
monotonic networks have been recognized. Prior works in
natural language processing and time series analysis have
used sinusoidal functions as positional encoding [Vaswani
et al., 2017; Xu et al., 2019; Kazemi et al., 2019]. Xue
et al.; Xue and Wu [2019; 2020; 2017] pointed out that
periodic nonlinearities have the potential to reveal input-
dependent and long-range characteristics. Coordinate-based
neural networks paired with sinusoidal activations achieved
the new state-of-the-art performance on novel view synthe-
sis [Mildenhall et al., 2020; Zhong et al., 2019].

But as yet, an available approach solving their optimization
dilemma left over by history is still missing.

3 Softly Transferring Solution Space
This section contains three main parts: 1) a naı̈ve but in-
tractable recipe; 2) a variational Bayesian learning frame-
work; 3) a rectified concrete gate. In the end, some distinctive
properties of this soft transfer scheme are analyzed.

Above all, we make an innocuous stipulation that non-
monotonic networks are composed of periodic neurons ac-
tivated by sinusoidal functions. But it should be emphasized
that the soft transfer approach is naturally compatible with
other variants without modification.

3.1 Non-Monotonicity Gated Unit
A non-monotonicity gated unit is defined to characterize the
monotonicity/non-monotonicity of each neuron. Consider the
general activation that can be either monotonic or not.

σz(·) = z � σ̄(·) + (1− z)� σ̃(·), z ∈ {0, 1}. (1)

σ̃(·) is a non-monotonic activation and σ̄(·) is its mono-
tonic variant. Without loss of generality, we mainly consider
the widely-used sinusoidal function σ̃(x) = sin(x) and its
monotonically-rectified variant σ̄(x) = resin(x), with re-
spect to an input x, where resin(x) is defined by

resin(x) =


−1, x ∈ (−∞,−π2 ]

sin(x), x ∈ (−π2 ,
π
2 )

1, x ∈ [π2 ,∞)

. (2)

Whether σz(·) is monotonic or periodic is controlled by the
discrete value of the binary gate z.

By initializing all gates z in a network to 1 and penalizing
those gates z for being different than exact 0 as the train-
ing continues, we can mimic the behavior of transferring the

solution space from a monotonic neural network to a non-
monotonic Fourier network. The transfer has three meanings:
1) the nonlinearity is switched from monotonic to periodic; 2)
the representational property is changed from low-frequency
to high-frequency; 3) the solution space is transformed from
smooth/neural to bumpy/Fourier.

Controlling the proportion of different kinds of neurons
properly, we can ease the complexity of the solution space
in the beginning and improve the representational properties
as the training continues. But the practical optimization un-
der this transfer is computationally intractable due to the non-
differentiability and the combinatorial nature of 2|σz| possible
states, where |σz| is the total number of activations.

3.2 Differentiable Soft Transfer Framework
For this reason, we propose a more efficient differentiable
learning framework for softly transferring solution space, uti-
lizing variational Bayesian inference as its theoretical basis.

Given some observed data D, a group of random variables
z gating monotonicity/non-monotonicity, and a collection of
activations σz regarded as random variables reparameterized
by z. According to Bayesian inference, a general learning
problem can be formalized by a log-probability logP(D).

logP(D) = log P(D,σz, z)− logP(σz, z|D)

=

∫
log

P(D,σz, z)

q(σz, z)
q(σz, z)dσzdz︸ ︷︷ ︸

L(D,σz,z)

+

∫
log

q(σz, z)

P(σz, z|D)
q(σz, z)dσzdz︸ ︷︷ ︸

KL(q(σz,z)‖P(σz,z|D))

.

(3)

q is the introduced approximate posterior over σz and z.
Moreover, because logP(D) is a constant if D is given, max-
imizing the Evidence Lower BOund (ELBO) L(D,σz, z)
is equivalent to minimizing the Kullback–Leibler divergence
(KL-divergence) KL(q(σz, z)‖P(σz, z|D)). Generally, we
consider minimizing the negative ELBO −L(D,σz, z).

Furthermore, suppose p is a spike and slab prior over σz
and z, which is the widely-used golden standard in selecting
variables as far as Bayesian inference is concerned. It is de-
fined as a mixture of a delta spike at zero and a continuous
distribution over the real line.

p(z) = Bernoulli(λ),

p(σz|z = 0) = δ(σz),

p(σz|z 6= 0) = N (σz|0,1).

(4)

Since the true posterior distribution under this prior is in-
tractable, we let q(σz, z) be a spike and slab approximate
posterior over σz and z. The negative ELBO −L(D,σz, z)
under the spike and slab prior and approximate posterior over
σz and z can be rewrited as

− L(D,σz, z)

=− Eq(σz,z)

[
logP(D|σz, z)

]
+KL(q(σz, z)‖p(σz, z)).

(5)
We assume that the non-monotonicity gated units are in-

dependent of each other. That is, p and q factorize over the
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dimensionality of σz and z in an element-wise way. Further-
more, according to the chain rule of KL-divergence, we have

− L(D,σz, z)

=− Eq(z)q(σz|z)

[
logP(D|σz)

]
+

|σz|∑
i=1

KL(q(zi)‖p(zi))

+

|σz|∑
i=1

q(zi = 0)KL(q(σz,i|zi = 0)‖p(σz,i|zi = 0))

+

|σz|∑
i=1

q(zi 6= 0)KL(q(σz,i|zi 6= 0)‖p(σz,i|zi 6= 0)).

(6)
Since

KL(q(zi)‖p(zi)) ≥ 0,

KL(q(σz,i|zi = 0)‖p(σz,i|zi = 0)) = 0,

KL(q(σz,i|zi 6= 0)‖p(σz,i|zi 6= 0)) = γ,

(7)

where γ is a weighting factor for explicitly penalizing mono-
tonic neurons for being different than non-monotonic ones,
−L(D,σz, z) can be further represented as

− L(D,σz, z)

≥− Eq(z)q(σz|z)

[
logP(D|σz)

]
+ γ

|σz|∑
i=1

q(zi 6= 0).
(8)

As long as we apply a differentiable approximate posterior
q(z|φ) allowing for the reparameterization trick z = f(φ, ε)
over the parameters φ and a parameter free noise distri-
bution τ(ε), we can reformulate the optimization objective
−L(D,σz, z) and solve it by Monte Carlo approximation.

− L(D,σz, z)

≥− Eτ(ε)

[
logP(D|σf(φ,ε))

]
+ γ

|σz|∑
i=1

q(zi 6= 0|φi),

≈−
K∑
k=1

logP(D|σf(φ,ε(k))) + γ

|σz|∑
i=1

q(zi 6= 0|φi).

(9)

Crucially, the learning objective is now differentiable with re-
spect to the parameters φ, thus enabling for efficient stochas-
tic gradient based optimization. The parameters of the distri-
bution over the gates can then be jointly optimized with the
original network parameters.

3.3 Parametric Gate with Concrete Distribution
Based on the differentiable learning framework, we further
refine the parametric gate by utilizing a continuously differ-
entiable distribution allowing for the reparameterization trick.
Assume that we have a binary concrete random variable v dis-
tributed in the (0, 1) interval with probability density function
qv(v|φ) and cumulative distribution function Qv(v|φ). The
parameters of the distribution are φ = (α, β), where logα is
the location and 0 < β < 1 is the temperature, controlling
the degree of approximate Bernoulli distribution. We have

v = Sigmoid
(
(logα+ log ε− log(1− ε))β−1

)
, (10)

where ε ∼ U(0, 1). We can calculate qv(v|φ) and Qv(v|φ)
analytically.

qv(v|φ) =
αβv−β−1(1− v)−β−1

(αv−β + (1− v)−β)2
,

Qv(v|φ) =Sigmoid
(

log(
v

1− v
)β − logα

)
.

(11)

Here, we stretch the binary concrete distribution to the (ξ, ζ)
interval, with ξ ≤ 0 and ζ ≥ 1, and rectify it in [0, 1] by
applying a min-max transformation.

v̆ =v(ζ − ξ) + ξ,

z = min(1,max(0, v̆)).
(12)

This would then induce a distribution where the probability
mass of qv̆(v̆|φ) on the negative values Qv̆(0|φ), is folded
to a delta peak at zero, the probability mass on values larger
than one, 1−Qv̆(1|φ) is folded to a delta peak at one, and the
original distribution qv̆(v̆|φ) is truncated to the (0, 1) interval.
More details are referred to the concrete distribution [Maddi-
son et al., 2016; Louizos et al., 2018].

Furthermore, considering q(z 6= 0|φ) = 1−Qv̆(v̆ ≤ 0|φ),
we define the general optimization objective by minimizing
the total riskR(D).

R(D) := − logP(D|σz) + γ

|σz|∑
i=1

[
1−Qv̆i(0|φi)

]
, (13)

where

1−Qv̆i(0|φi) = Sigmoid
(

logαi − β log(− ξ
ζ

)
)
. (14)

In training, z can be sampled efficiently.

ε ∼U(0, 1),

v =Sigmoid
(
(logα+ log(

ε

1− ε
))β−1

)
,

v̆ =v(ζ − ξ) + ξ,

z = min(1,max(0, v̆)).

(15)

In prediction, we apply the following estimator.

z̄ = min(1,max(0, Sigmoid(logα)(ζ − ξ) + ξ)). (16)

The total risk R(D) is a special case of the negative ELBO
−L(D,σz, z) by setting the sampling number K = 1. The
reason for optimizing R(D) is that we focus on optimizing
large-scale networks efficiently instead of reducing the uncer-
tainty of z. As the training continues, these random variables
z will be penalized close to zero.

3.4 Analysis
Following the above theoretical inference, the application of
soft transfer scheme is quite flexible. The general optimiza-
tion objective R(D) can be reformulated as 1) the empiri-
cal risk − logP(D|σz) and 2) the structural risk

∑|σz|
i=1

[
1 −

Qv̆i(0|φi)
]
. The former empirical risk is calculated by a con-

ventional loss function characterizing how well the model fits
the observed data. What we need to do is add the latter struc-
tural risk to the loss as an additional regularizer, and replace

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3203



(a) Ground Truth (b) resin (c) sin (d) resin→ sin

Figure 2: Learning the Bessel function with the white Gaussian noise.

the activation with the non-monotonicity gated unit σz pa-
rameterized by φ. φ can be shared by different neurons de-
pending on the transfer granularity. Even in the most fine-
grained case, the total number of φ does not exceed the sum
of the output dimensions in all neurons, which is far less than
that of the original network parameters.

In addition to smoothing the solution space to ease the op-
timization difficulty, soft transfer actually has some other im-
portant advantages. Firstly, it is essentially a regularizer that
balances the degree of learning observed data and the pro-
portion of non-monotonicity. Secondly, it enables the proper
uncertainty for the networks and then encourages the opti-
mizer to explore more potential solutions in a space 2|σz|

larger than the original. Thirdly, it prevents complex cou-
pling and co-adaptations between feature detectors by switch-
ing the monotonic/non-monotonic state of each neuron.

4 Experiments
4.1 Experimental Networks
• sin: Sinusoidal activation as the most important baseline.
• resin: Monotonically-rectified sinusoidal activation.
• tanh: Tanh activation that is the smooth approximation of
the discontinuous resin.
• relu: Hugely popular ReLU activation.
• Copy: Directly copying the parameters from resin trained
in the first half of epoches to sin, and then continue to train
sin in the second half of epoches.
• Line: Linearly penalizing the z from 1 to 0.
• Bern: z is subject to a Bernoulli distribution.
• resin→ sin: Soft transfer from resin to sin.
• tanh→ sin: Soft transfer from tanh to sin.
• relu→ sin: Soft transfer from relu to sin.

4.2 Experimental Settings
The weights and biases of sin are respectively initialized by
N (0, 0.1) and U(−π, π) in accordance with the explanation
in [Rahimi and Recht, 2008; Xue et al., 2019]. Other net-
works are initialized according to the Kaiming method [He
et al., 2016]. They are all optimized by SGD with a mini-
batch size of 128, a weight decay of 10−4, and a Nesterov
momentum of 0.9 [Paszke et al., 2019; Sutskever et al., 2013;
Goodfellow et al., 2016]. The learning rate is initially set to
0.1, and then it is adjusted by a cosine annealing schedule

with warm restarts [Loshchilov and Hutter, 2016]. For all soft
transfer related networks, we set β = 2

3 , ξ = −0.1, and ζ =
1.1 following the recommendations [Maddison et al., 2016;
Jang et al., 2016]. α is initialized by sampling from N (8, 1).

4.3 Learning the Bessel Function
To evaluate that the proposed soft transfer can reduce the
risk of over-fitting high-frequency noise, we conduct an ex-
periment to learn the first kind of 0-order Bessel function
J0(x), x ∈ [−80, 80], which contains a lot of implicit high-
frequency features and high-order derivatives. We uniformly
get 400 samples {(xi, J0(xi))}400

i=1, and randomly divide
them into two non-overlapping training and test sets that are
equal in size. The extra white Gaussian noise N (0, 0.082) is
added to the training labels for simulating the interference in
practical tasks. resin, sin, and resin → sin are used to fit
J0(x). They have the same fully-connected 400× 400× 400
architecture. The results are shown in Figure 2.

Owing to the structural limitation, The insensitive resin
makes a very conservative decision and outputs the average
value in the high-frequency range. But the periodic sin is
over-sensitive to learn the white noise added to each sample.
This is a possible reason why non-monotonic networks are
inclined to make over-confident but inaccurate decisions in
practical tasks. In contrast, resin → sin with the soft trans-
fer scheme achieves the best fitting result. The low-frequency
concepts are chiefly guaranteed to be learned well by the
initial monotonic parts, and then high-frequency details and
high-order derivatives are further extracted by the transferred
non-monotonic neurons. resin → sin not only accurately
captures the key information such as frequency and phase,
but also resists the noisy interference.

4.4 Learning Image Classification
We conduct image experiments to learn MNIST [LeCun et
al., 1998] and CIFAR10 [Krizhevsky et al., 2009] by the
shallower LeNet-5 architecture [LeCun et al., 1998] and the
deeper ResNet-20/110 architectures, respectively. The divi-
sion of datasets is consistent with their default settings. The
results are presented in Table 1 and Figure 3.

Shallower LeNet-5 Architecture
On this simple task paired with the shallow LeNet-5 archi-
tecture, all networks associated with sin perform better than
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(a) MNIST (LeNet-5) (b) CIFAR10 (ResNet-20) (c) CIFAR10 (ResNet-110)

Figure 3: Classification top-1 error(%) on the image datasets. Different curves represent the learning processes of different networks where
soft transfer based ones are denoted as the best solid lines. The learning rate lr and the degree of transfer E[z] are also shown at the top.

MNIST CIFAR10 CIFAR10
Top-1 Error (LeNet-5) (ResNet-20) (ResNet-110)

(%) conv best conv best conv best

sin 0.56 0.53 11.39 11.25 - -
resin 0.73 0.60 10.41 10.30 - -
tanh 0.76 0.72 10.48 10.33 - -
relu 0.89 0.86 8.63 8.47 7.55 7.49

Copy 0.66 0.61 10.94 10.66 - -
Line 0.66 0.55 10.59 10.41 - -
Bern 0.70 0.66 10.10 9.85 - -

resin→ sin 0.48 0.48 8.53 8.50 - -
tanh→ sin 0.52 0.49 8.67 8.54 - -
relu→ sin 0.50 0.47 7.94 7.55 5.99 5.84

Table 1: Classification top-1 error(%) on the image datasets. conv
means the convergent error in the last epoch and best means the best
error in all epochs. The best results are highlighted in bold.

monotonic ones. The sinusoidal neuron compactly repre-
sents implicit details. In general, the non-monotonic net-
works built on the soft transfer (resin → sin, tanh → sin,
and relu → sin) achieve the most competitive performance
0.47%, owing to the preferable balance between the empirical
risk and the proportion of non-monotonicity.

Deeper ResNet-20/110 Architectures
First, it is completely opposite to the results presented in the
MNIST classification that these networks associated with sin
but not built on the soft transfer approach perform worst.
Once the network architecture becomes a little bit complex,
sin can not make its excellent theoretical properties yield well
as we expected. The three naı̈ve transfer scheme (Copy,
Line, and Bern) do not work at all. In contrast, the soft
transfer based networks fully realize the great power of sin
through cautiously transferring the solution from the mono-
tonic nonlinearity to the sinusoidal nonlinearity. relu→ sin
successfully achieve the best top-1 error 7.55% that is also
competitive compared with the record 7.51% of the deeper
ResNet-32 in the publication [He et al., 2016].

Second, interestingly, it may not be a tough requirement

for softly transferring that the source neuron and the target
neuron have some similar mapping structures. According to
the performance of relu → sin, the knowledge is success-
fully transferred from the neural space of the piecewise linear
relu to the Fourier space of the periodic sin, which implies
that the soft transfer is a very general and flexible framework
and has more potential to be developed.

Last, based on the soft transfer approach and the monotonic
ReLU helper, we successfully train the non-monotonic net-
work relu → sin in the ResNet-110 architecture. The best
top-1 error 7.49% of relu is slightly higher than that of the
official record 6.61%. But relu → sin still achieve the best
performance 5.84%. Paired with the non-trivial soft transfer,
the superiority of the non-monotonic sin in representation are
well coordinated with the advantages of the monotonic relu
in gradient propagation. Other networks failed to train under
this giant architecture due to the well-known gradient vanish-
ing/explosion, and sin behaves as poorly as random guessing.

5 Conclusion
Despite the increasing emergence of non-monotonic net-
works, an available approach solving their optimization
dilemma is still missing. In this paper, we propose a novel
soft transfer approach consisting of two core components:
1) a rectified concrete gate is constructed to characterize
the state of each neuron; 2) a variational Bayesian learning
framework is proposed to dynamically balance the empiri-
cal risk and the degree of transfer. Consequently, it can help
non-monotonic networks learn low/high-frequency concepts
better and scale them to substantially deeper and wider se-
nior architectures. Systematical experiments demonstrate the
effectiveness of the proposed soft transfer approach.
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