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a b s t r a c t 

Twin support vector machine (TWSVM) is an efficient algorithm for binary classification. However, the 

lack of the structural risk minimization principle restrains the generalization of TWSVM and the guaran- 

tee of convex optimization constraints TWSVM to only use positive semi-definite kernels (PSD). In this 

paper, we propose a novel TWSVM for indefinite kernel called indefinite twin support vector machine 

with difference of convex functions programming (ITWSVM-DC). The indefinite T WSVM (IT WSVM) lever- 

ages a maximum margin regularization term to improve the generalization of TWSVM and a smooth 

quadratic hinge loss function to make the model continuously differentiable. The representer theorem 

is applied to the ITWSVM and the convexity of the ITWSVM is analyzed. In order to address the non- 

convex optimization problem when the kernel is indefinite, a difference of convex functions (DC) is used 

to decompose the non-convex objective function into the subtraction of two convex functions and a line 

search method is applied in the DC algorithm to accelerate the convergence rate. A theoretical analysis 

illustrates that ITWSVM-DC can converge to a local optimum and extensive experiments on indefinite 

and positive semi-definite kernels show the superiority of ITWSVM-DC. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Support vector machine (SVM) [1–4] is a machine learning 

ethod based on the theory of statistical learning and the prin- 

iple of structural risk minimization (reducing the VC dimension 

f learning machine and seeking the minimum sum of experience 

isk and confidence risk). The learning strategy of SVM is “maxi- 

um margin”, that is, solving the optimal separating hyperplane 

ith the maximal margin, which gives impetus to have good gen- 

ralization. In fact, SVM aims to address a constrained quadratic 

rogramming (QP) problem. By introducing kernel learning, the 

amples in low dimension feature space can be implicitly mapped 

nto the high dimensional feature space and the complexity of 

nner product operations in SVM can be avoided [5] . Therefore, 

t overcomes the problems of the “curse of dimensionality” and 

over-fitting” to a great extent. Since SVM was proposed, it has at- 

racted extensive attention for its superior performance [6–8] and 

as been widely used in anomaly detection [9] , image retrieval 

10] , sequence-based prediction of protein [11] , etc. 
∗ Corresponding author at: School of Computer Science and Engineering, South- 

ast University, Nanjing, 210096, China. 
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Jayadeva et al. proposed a twin support vector machine 

TWSVM) as a useful extension of the traditional SVM. TWSVM 

enerates two nonparallel hyperplanes by solving a pair of smaller- 

ized QP problems instead of a single larger-sized QP problem [12] . 

herefore, compared with SVM, TWSVM accelerates the learning 

peed for the smaller-sized model and is more resilient to “Cross 

lanes” datasets for the solution of two nonparallel hyperplanes. 

owever, TWSVM only takes into account the empirical risk min- 

mization principle and lacks structural risk minimization princi- 

le which is a significant advantage of SVM. Some scholars solve 

he problem by modifying the loss function to ensure the struc- 

ural risk minimization principle and improve the generalization 

erformance [13,14] . However, in order to ensure the convexity 

f the modified TWSVM to reduce the dual gap and satisfy Mer- 

er’s condition, the kernel in TWSVM is limited to positive semi- 

efinite (PSD) kernels. In fact, verifying the property of PSD for a 

iven kernel can be a challenging task beyond the ability of most 

cholars. Moreover, indefinite kernels (i.e. kernel matrix contains a 

ix of positive and negative eigenvalues) play an important role in 

achine learning and real-world applications [15] . Some functions 

uch as hyperbolic tangent kernel are indefinite [16] and most ker- 

els as similarity measures directly utilized in real-world applica- 

ions are indefinite [17] . Unfortunately, to the best of our knowl- 
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dge, TWSVM has not exploited the study of indefinite kernels and 

annot elegantly deal with indefinite kernels. 

However, indefinite kernel SVM (IKSVM) has been studied ex- 

ensively and many algorithms have been proposed for dealing 

ith indefinite kernels in SVMs. One direction is “Kernel transfor- 

ation” which applies direct spectral transformations to indefinite 

ernels. These methods are represented by “Clip” (set all negative 

igenvalues to zero) [18] , “Flip” (set negative eigenvalues to their 

bsolute value) [19] and “Shift” (add all eigenvalues with a positive 

onstant to make sure all eigenvalues are non-negative after shift- 

ng) [20] . The other direction is “Reformulate problems” which is 

olving the non-convex problem directly. However, these methods 

ay lose useful information in samples and have adverse effects 

n modeling a function [21,22] . In 2017, Xu et al. [23] directly fo-

us on the non-convex primal form of IKSVM by decomposing the 

rimal problem into two convex functions. 

In this paper, we construct a bridge between TWSVM and indef- 

nite kernel and propose a novel algorithm called indefinite twin 

upport vector machine with difference of convex functions pro- 

ramming (ITWSVM-DC). In order to consider the confidence inter- 

al which is ignored by TWSVM and be free from complex matric 

nversion, we add a regularized item into TWSVM. We further in- 

roduce the smooth quadratic hinge loss function to make the reg- 

larized T WSVM (IT WSVM) model continuously differentiable and 

ore resilient to indefinite kernels. Then, we analyze the convexity 

f the proposed ITWSVM. In order to solve the non-convex prob- 

em existing in indefinite kernels, DC algorithm [24] is used to de- 

ompose the objective function into the subtraction of two convex 

unctions on ITWSVM. Therefore, ITWSVM can both use PSD and 

ndefinite kernels. A line search along the descent direction under 

he Armijo type rule is used in the DC algorithm to accelerate the 

onvergence rate. We also implement a theoretical analysis to il- 

ustrate that ITWSVM-DC can converge to the local optimum and 

arious experiments on both PSD and indefinite kernels show that 

ur algorithm is superior to the state-of-the-art algorithms. 

This paper is organized as follows. Section 2 outlines the related 

orks including TWSVM and DC programming. Section 3 expounds 

he mechanisms of the ITWSVM-DC in detail including the model 

nd convexity of ITWSVM with Representer Theorem, the decom- 

osition of the ITWSVM with DC, the convergence of ITWSVM-DC. 

ection 4 is the experimental results and analysis. The superiority 

nd convergence of ITWSVM-DC are verified through experiments 

n real-world and artificial datasets. Conclusions are given in the 

ast section. 

. Related work 

.1. TWSVM 

For a binary classification problem, given a training set 

 

x i , y i ) , i = 1 , 2 , . . . , n where x i ∈ X and y i ∈ {−1 , +1 } . n is the num-

er of training samples and m is the dimension of training sam- 

les. There are n 1 samples belonging to class +1 and n 2 samples 

elonging to class −1 in the n -dimensional real space X . For the 

inear separable binary classification problem, the goal of TWSVM 

s to find two non-parallel hyperplanes 

 

T 
1 w 1 + b 1 = 0 and x T 2 w 2 + b 2 = 0 . (1) 

The model of TWSVM makes each hyperplane closer to the pat- 

ern of one class and as far as possible from the other. The hyper-

lanes are generally obtained by solving the following QP prob- 

ems 

TWSVM1) min 

w 1 ,b 1 

1 

2 

( A w 1 + e 1 b 1 ) 
T ( A w 1 + e 1 b 1 ) + c 1 e 

T 
2 ξ, 

s.t. − ( B w 1 + e 2 b 1 ) + ξ ≥ e 2 , ξ ≥ 0 . (2) 

o

2 
TWSVM2) min 

w 2 ,b 2 

1 

2 

( B w 2 + e 2 b 2 ) 
T ( B w 2 + e 2 b 2 ) + c 2 e 

T 
1 η, 

s.t. ( A w 2 + e 1 b 2 ) + η ≥ e 1 , η ≥ 0 . (3) 

here c 1 and c 2 are penalty variables, e 1 and e 2 are column vec- 

ors of ones, ξ and η are slack variables and the matrices A in 

 

n 1 ×m and B in R n 2 ×m are training sample matrices composed of 

ositive class and negative class respectively. 

For non-linear problem, by using kernel functions, data samples 

an be implicitly mapped from low-dimensional space to high- 

imensional feature space, thus transforming the linear inseparable 

roblem in low-dimensional space into a linear separable problem 

n high-dimensional space. φ( x ) is defined as the mapping func- 

ion from the input space X to the feature space H. K( x , z ) is de-

ned as K ( x , z ) = φ( x ) · φ( z ) . Generally, we use the Radial Basis

unction (RBF) as the kernel function. 

By introducing the kernel function to TWSVM and constructing 

atric C , i.e., C T = [ A B ] 
T , the counterpart of the problem (2) and 

3) should be 

TWSVM1) min 
u 1 ,b 1 

1 

2 
(K( A , C T ) u 1 + u 1 b 1 ) 

T (K( A , C T ) u 1 + e 1 b 1 ) + c 1 e 
T 
2 ξ, 

s.t. (K( B , C T ) u 1 + e 2 b 1 ) + ξ ≥ e 2 , ξ ≥ 0 . (4) 

TWSVM2) min 
u 2 ,b 2 

1 

2 
(K( B , C T ) u 2 + e 2 b 2 ) 

T (K( B , C T ) u 2 + e 2 b 2 ) + c 2 e 
T 
1 η, 

s.t. (K( A , C T ) u 2 + e 1 b 2 ) + η ≥ e 1 , η ≥ 0 . (5) 

here c 1 and c 2 are penalty variables, e 1 and e 2 are column vec- 

ors of ones, and ξ and η are slack variables. 

Take Eq. (4) for example, the Lagrangian of Eq. (4) is 

 ( u 1 , b 1 , ξ, α, β) = 

1 

2 

∥∥K( A , C T ) u 1 + e 1 b 1 
∥∥2 + c 1 e 

T 
2 ξ + αT (K( B , C T ) u 1 

+ e 2 b 1 − ξ + e 2 ) − β
T 
ξ, (6) 

here α is Lagrangian multiplier. 

By utilizing KKT Conditions, we can achieve 

TWSVM1) max 
α

e T 2 α − 1 

2 

αT V 

(
S T S 

)−1 
V 

T α

s.t. 0 ≤ α ≤ c 1 e 2 , (7) 

here S = [ K( A , C T ) e 1 ] , V = [ K( B , C T ) e 2 ] . 

Similarly, 

TWSVM2) max 
γ

e T 1 γ − 1 

2 

γT S 
(
V 

T V 

)−1 
S T γ

s.t. 0 ≤ γ ≤ c 2 e 1 , (8) 

here γ is Lagrange multiplier similar to α in TWSVM1. 

Thus, each class corresponds to a hyperplane, and the class 

here the sample point belonging to is determined by the follow- 

ng formula. 

lass ( x ∗) = arg min 

i=1 , 2 

∣∣K( x ∗T , C T ) u i + b i 

∣∣√ 

u 

T 
i 
K( C , C T ) u i 

, (9) 

here | ·| is the absolute value. 

.2. DC programming 

DC Algorithm (DCA) is widely applied to many non- 

ifferentiable nonconvex optimization problems. In these prob- 

ems, DCA is often adopted for global solutions and proved to 

e more robust and more efficient than related standard meth- 

ds [24] . The particular structure of DC programming has been 
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ermitted as a good deal of development both in qualitative and 

uantitative studies [25] . 

The DC programming and DCA can address the non-convex 

roblem by decomposing it into two convex functions, which can 

e written as: 

f (x ) = g(x ) − h (x ) , (10) 

here g, h are lower semi-continuous proper convex functions on 

 

n . 

A DC program is in the form of 

 P dc ) α = inf { f (x ) := g(x ) − h (x ) : x in X } , (11)

here g and h belong to �o (X ) which is a set of all proper lower

emi-continuous convex functions on X . 

By introducing conjugate functions, we have 

= inf { g(x ) − h (x ) : x in X } 
= inf { g(x ) − sup { 〈 x, y 〉 − h 

∗(y ) : y in Y } : x in X } , (12) 

here Y is the dual space of X . We state the dual problem of 

q. (11) 

 D dc ) α = inf { h 

∗(x ) − g ∗(x ) : y in Y } , (13)

here g ∗, h ∗ denote the conjugate functions of g and h , respec- 

ively. 

The transportation of global solutions between (P dc ) and (D dc ) 

s expressed as: 

1. If x ∗ is an optimal solution of (P dc ) , then y ∗ in ∂h (x ∗) is an

ptimal solution of (D dc ) . 

2. If y ∗ is an optimal solution of (D dc ) , then x ∗ in ∂g ∗(y ∗) is an

ptimal solution of (P dc ) . 

The variables x and y satisfy 

 ∈ ∂h (x ) , (14) 

 ∈ ∂ g ∗(y ) , (15) 

here y ∈ ∂h (x ) and x ∈ ∂ g ∗(y ) are the sub-gradients [26] of h and

 

∗ respectively. Then, DCA consists in the construction of two se- 

uences { x k } and { y k } , which are candidates to be optimal solu-

ions of primal and dual programs respectively. Therefore, the se- 

uences { g(x k ) − h (x k ) } and { h ∗(y k ) − g ∗(y k ) } are decreasing, { x k }
resp. { y k } ) converges to a primal feasible solution x ∗ (resp. a dual

easible solution y ∗) verifying local optimality conditions and x ∗ in 

g ∗(y ∗) , y ∗ in ∂h (x ∗) . 

. ITWSVM-DC 

.1. The regularized TWSVM 

.1.1. The model of the regularized TWSVM 

In this section, we introduce a regularization item to TWSVM 

o make sure that the model is structural risk minimization. We 

odify the QP problems (4) and (5) with an additional “margin”

etween the proximal hyperplanes ( x T w i + b i = 0 (i = 1 , 2) ) to en-

ure hyperplane of one class as far as possible away from the other 

lass. In order to make the regularized T WSVM (IT WSVM) contin- 

ously differentiable and more resilient to indefinite kernels, we 

ntroduce the smooth quadratic hinge loss function to our model. 

More precisely, our QP problems are 

ITWSVM1) min 
w 1 ,b 1 

1 

2 
‖ w 1 ‖ 2 + 

1 

2 
( A w 1 + e 1 b 1 ) 

T ( A w 1 + e 1 b 1 ) + c 1 ξ
T 
ξ, 

s.t. ( B w 1 + e 2 b 1 ) + ξ ≥ e 2 , ξ ≥ 0 . (16) 
3 
ITWSVM2) min 
w 2 ,b 2 

1 

2 
‖ w 2 ‖ 2 + 

1 

2 
( B w 2 + e 2 b 2 ) 

T ( B w 2 + e 2 b 2 ) + c 2 η
T η, 

s.t. ( A w 2 + e 1 b 2 ) + η ≥ e 1 , η ≥ 0 . (17) 

rom Eqs. (16) and (17) , the distance between proximal hy- 

erplanes x T w i + b i = 0 (i = 1 , 2) and the bounding hyperplanes

 

T w i + b i = ±1 (i = 1 , 2) is 1 
‖ w i ‖ (i = 1 , 2) . Therefore, the extra

erm in the objective function implies to separate the proximal 

nd the bounding hyperplanes away as far as possible [27] . Fi- 

ally, ITWSVM has the same advantages as the standard SVM, this 

trategy leads our method to be more theoretically sound than the 

riginal TWSVM. In the model of the ITWSVM, we also use the 

mooth quadratic hinge loss function on slack term ξ and η to 

ake this model continuously differentiable. Then, we reformulate 

qs. (16) and (17) as unconstrained optimization problems: 

ITWSVM1) min 

w 1 ,b 1 
γ 〈 w 1 , w 1 〉 + 

1 

2 

‖ 

A w 1 + e 1 b 1 ‖ 

2 

+ c 1 ‖ 

max ( 0 , e 2 + B w 1 + e 2 b 1 ) ‖ 

2 
, 

= γ 〈 w 1 , w 1 〉 + 

n ∑ 

i =1 

V 1 ( 〈 w 1 , x i 〉 + b 1 ) . (18) 

ITWSVM2) min 

w 2 ,b 2 
γ 〈 w 2 , w 2 〉 + 

1 

2 

‖ 

B w 2 + e 2 b 2 ‖ 

2 

+ c 2 ‖ 

max ( 0 , e 1 + A w 2 + e 1 b 2 ) ‖ 

2 
, 

= γ 〈 w 2 , w 2 〉 + 

n ∑ 

i =1 

V 2 ( 〈 w 2 , x i 〉 + b 2 ) . (19) 

From Eqs. (18) and (19) , for each of ITWSVM, it can be divided

nto two parts: the regularized term γ 〈 w , w 〉 and loss function 

erm 

n ∑ 

i =1 

V ( 〈 w , x i 〉 + b ) . 

.1.2. The regularized TWSVM with representer theorem 

According to the Representer Theorem [28] , we can ex- 

end (18) and (19) with kernel in Reproducing Kernel Hilbert 

paces(RKHS) which can be rewritten as 

ITWSVM1) min 

f 1 , b 1 
γ 〈 f 1 , f 1 〉 κ + 

n ∑ 

i =1 

V 1 ( f 1 ( x i ) + b 1 ) . (20) 

ITWSVM2) min 

f 2 , b 2 
γ 〈 f 2 , f 2 〉 κ + 

n ∑ 

i =1 

V 2 ( f 2 ( x i ) + b 2 ) . (21) 

Take ITWSVM1 for example, γ 〈 w 1 , w 1 〉 can be represented as 

〈 f 1 , f 1 〉 κ and V 1 is a loss function. 

When the kernel is indefinite, (20) and (21) can be extended 

n a wilder Reproducing Kernel Kre ̆ın Spaces (RKKS) [29] . In RKKS, 

he Representer Theorem is verified to still hold and the problem 

f minimizing a regularized risk function can be expanded as 

f ∗ = 

n ∑ 

i =1 

βi K ( x i , ·) , (22) 

here the coefficient βi ∈ R and K is a kernel function in RKKS. 

We can further attain the model of ITWSVM1 in RKKS: 

ITWSVM1) min 

β, b 1 

γβ
T 

K β + 

n ∑ 

i =1 

V 1 

(
K 

i β + b 1 
)
, (23) 

here β = [ β1 , β2 , . . . , . βn ] 
T , K is the indefinite kernel matrix de-

ived from corresponding kernel function K i j = K( x i , x j ) , K 

i repre- 

ents the i th row of K . 

Note that: 

n 
 

i =1 

V 1 
(
K 

i β + b 1 
)

= 

n 1 ∑ 

i =1 

( 

n ∑ 

j=1 

β j K( x i , x j ) + b 1 

) 2 
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n 1 + n 2 ∑ 

i = n 1 +1 

c 1 max 

( 

0 , 1 + 

n ∑ 

j=1 

β j K( x i , x j ) + b 1 

) 2 

= 

n 1 ∑ 

i =1 

(
K 

i β + b 1 
)2 + 

n 1 + n 2 ∑ 

i = n 1 +1 

c 1 max 
(
0 , K 

i β + b 1 + 1 
)2 

, (24) 

here n 1 is the number of samples belonging to class +1 and 

 2 is the number of samples belonging to class −1 , n = n 1 + n 2 .

o distinguish β in ITWSVM1 and ITWSVM2, we set β as β1 in 

TWSVM1 and β2 in ITWSVM2 respectively. The optimization prob- 

em by the scaling constant 1 / 2 is given by 

(ITWSVM1) min 
β1 , b 1 

1 

2 
γβ

T 
1 K β1 

+ 

1 

2 

( 

n 1 ∑ 

i =1 

(
K 

i β1 + b 1 
)2 + 

n 1 + n 2 ∑ 

i = n 1 +1 

c 1 max 
(
0 , K 

i β1 + b 1 + 1 
)2 

) 

︸ ︷︷ ︸ 
n ∑ 

i =1 

V 1 ( f 1 ( x i )+ b 1 ) 

. (25) 

(ITWSVM2) min 
β2 , b 2 

1 

2 
γβ

T 
2 K β2 

+ 

1 

2 

( 

n 1 ∑ 

i =1 

(
K 

i β2 + b 2 
)2 + 

n 1 + n 2 ∑ 

i = n 1 +1 

c 2 max 
(
0 , K 

i β2 + b 2 + 1 
)2 

) 

︸ ︷︷ ︸ 
n ∑ 

i =1 

V 2 ( f 2 ( x i )+ b 2 ) 

. (26) 

.1.3. Analysis of convexity 

In this section, we will present a theoretical analysis for the 

onvexity of ITWSVM. In order to better solve the problem, we also 

ivide ITWSVM into two parts: the regularized term 

1 
2 γβ

T 
K β and 

oss function term 

∑ n 
i =1 V ( f ( x i ) + b ) . 

By introducing the convex optimization theory [30] , we have 

he convex Theorem 1. 

heorem 3.1. If f is twice differentiable, that is, its Hessian or second 

erivative ∇ 

2 f exists at each point in dom f , which is open. Then f

s convex if and only if dom f is convex and its Hessian is positive 

emidefinite: for all x ∈ dom f , 

 

2 f ≥ 0 . 

According to Theorem 3.1 , we can deduce that 

roposition 3.1. The convexity of ITWSVM model is determined by 

he regularized term 

1 
2 γβ

T 
K β according to kernel K . 

roof. Take ITWSVM1 for example, for the regularized term 

1 
2 γβ

T 
1 K β1 , its Hessian or second derivative is K . Therefore, the 

onvexity is determined by kernel K . If K is positive semi-definite, 
1 
2 γβ

T 
1 K β1 is convex and non-convex otherwise. 

For the loss function term 

∑ n 
i =1 V 1 ( f 1 ( x i ) + b 1 ) , we carry 

ut convex analysis for its two parts 
∑ n 1 

i =1 

(
K 

i β1 + b 1 
)2 

and 

 n 1 + n 2 
i = n 1 +1 

c 1 max 
(
0 , K 

i β1 + b 1 
)2 

respectively. 

n 1 
 

i =1 

(
K 

i β1 + b 1 
)2 = 

n 1 ∑ 

i =1 

((
K 

i β1 

)T (
K 

i β1 

)
+ 2 b 1 K 

i β1 + b 2 1 

)

= 

n 1 ∑ 

i =1 

(
β

T 
1 K 

iT K 

i β1 + 2 b 1 K 

i β1 + b 2 1 

)
. (27) 

ts Hessian or second derivative is K 

iT K 

i . 

n 1 + n 2 ∑ 

i = n 1 +1 

c 1 max 
(
0 , K 

i β1 + b 1 + 1 
)2 
4 
= 

n 1 + n 2 ∑ 

i = n 1 +1 

c 1 max 

(
0 , 
(
K 

i β1 

)T (
K 

i β1 

)
+ 2(b 1 + 1) K 

i β1 + (b 1 + 1) 2 
)

= 

n 1 + n 2 ∑ 

i = n 1 +1 

c 1 max 

(
0 , β

T 
1 K 

iT K 

i β1 + 2(b 1 + 1) K 

i β1 + (b 1 + 1) 2 
)
. (28) 

ts Hessian or second derivative is K 

iT K 

i . 

Noted that K 

iT K 

i 
 0 is positive semi-definite, there- 

ore, the quadratic form β
T 
1 K 

iT K 

i β1 + 2 b 1 K 

i β1 + b 2 
1 

and 

ax (0 , β
T 
1 K 

iT K 

i 
1 β1 + 2(b 1 + 1) K 

i β1 + (b 1 + 1) 2 ) in loss func- 

ion is convex. Then, the convexity of the two part of loss 

unction 

∑ n 1 
i =1 

( K 

i β1 + b 1 ) 
2 and 

∑ n 1 + n 2 
i = n 1 +1 

c 1 max (0 , K 

i β1 + b 1 ) 
2 can 

e proved. Therefore, the loss function term 

∑ n 
i =1 V 1 ( f 1 ( x i ) + b 1 ) 

s convex. 

Therefore, the convexity of ITWSVM1 is determined by the 

egularized term 

1 
2 γβ

T 
1 K β1 according to kernel K . Similarly, the 

onvexity of ITWSVM2 is determined by the regularized term 

1 
2 γβ

T 
2 K β2 according to kernel K . �

.2. ITWSVM with DC algorithm 

In the last section, we analyze the convexity of ITWSVM. How- 

ver, If the kernel K is indefinite, the ITWSVM is non-convex and 

raditional methods for solving the dual problem of TWSVM is not 

uitable for ITWSVM and there is a dual gap between the primal 

roblem and the dual problem. 

In this section, we optimize the ITWSVM model obtained in 

ection 3.1 with DC algorithm. Both PSD kernels and indefinite ker- 

el can be applied to our algorithm. ITWSVM model can be noted 

s: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(ITWSVM1) min 
β1 , b 1 

1 
2 
γβ

T 
1 K β1 

+ 

1 
2 

(
n 1 ∑ 

i =1 

(
K 

i β1 + b 1 
)2 + 

n 1 + n 2 ∑ 

i = n 1 +1 

c 1 max 
(
0 , K 

i β1 + b 1 + 1 
)2 

)
(ITWSVM2) min 

β2 , b 2 

1 
2 
γβ

T 
2 K β2 

+ 

1 
2 

(
n 1 ∑ 

i =1 

(
K 

i β2 + b 2 
)2 + 

n 1 + n 2 ∑ 

i = n 1 +1 

c 2 max 
(
0 , K 

i β2 + b 2 + 1 
)2 

)
. 

(29) 

The objective functions of ITWSVM are 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f ( β1 ) = 

1 
2 
γβ

T 
1 K β1 

+ 

1 
2 

(
n 1 ∑ 

i =1 

(
K 

i β1 + b 1 
)2 + 

n 1 + n 2 ∑ 

i = n 1 +1 

c 1 max 
(
0 , K 

i β1 + b 1 + 1 
)2 

)
f ( β2 ) = 

1 
2 
γβ

T 
2 K β2 

+ 

1 
2 

(
n 1 ∑ 

i =1 

(
K 

i β2 + b 2 
)2 + 

n 1 + n 2 ∑ 

i = n 1 +1 

c 2 max 
(
0 , K 

i β2 + b 2 + 1 
)2 

). 

(30) 

The eigenspectrum of the indefinite kernel matrix can be noted 

s K = U �U 

T , where U represents the orthogonal column eigen- 

ector matrix and � represent the diagonal eigenvalue matrix re- 

pectively. Due to the kernel matrix is indefinite, � contains both 

ositive and negative eigenvalues. After shifting the eigenspectrum 

f the indefinite kernels, we can achieve several equivalent decom- 

ositions on Eq. (30) . The basic idea adopted in this paper is to 

ecompose the objective function into f ( β) = g( β) − h ( β) . Specif-

cally, the following two decomposition methods are adopted: 

1 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

g 1 ( β1 ) = 

1 
2 

(
γβ

T 
1 U 1 (ρ1 I + �1 ) U 

T 
1 β1 

)
+ 

n ∑ 

i =1 

V 1 ( f 1 ( x i ) + b 1 ) 

h 1 ( β1 ) = 

1 
2 
γβ

T 
1 U 1 (ρ1 I ) U 

T 
1 β1 

g 2 ( β2 ) = 

1 
2 

(
γβ

T 
2 U 2 (ρ2 I + �2 ) U 

T 
2 β2 

)
+ 

n ∑ 

i =1 

V 2 ( f 2 ( x i ) + b 2 ) 

h 2 ( β2 ) = 

1 γβ
T 
2 U 2 (ρ2 I ) U 

T 
2 β2 

, (31) 
2 
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⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

g 1 ( β1 ) = 

1 
2 

(
γβ

T 
1 U 1 (ρ ′ 

1 I ) U 

T 
1 β1 

)
+ 

n ∑ 

i =1 

V 1 ( f 1 ( x i ) + b 1 ) 

h 1 ( β1 ) = 

1 
2 
γβ

T 
1 U 1 (ρ ′ 

1 I 1 − �1 ) U 

T 
1 β1 

g 2 ( β2 ) = 

1 
2 

(
γβ

T 
2 U 2 (ρ

′ 
2 I ) U 

T 
2 β2 

)
+ 

n ∑ 

i =1 

V 2 ( f 2 ( x i ) + b 2 ) 

h 2 ( β2 ) = 

1 
2 
γβ

T 
2 U 2 ( ρ

′ 
2 I − �2 ) U 

T 
2 β2 

, (32) 

here 

 n 

i =1 
V 1 ( f 1 ( x i ) + b 1 ) = 

1 

2 

(∑ n 1 

i =1 

(
K 

i β1 + b 1 
)2 

+ 

∑ n 1 + n 2 
i = n 1 +1 

c 1 max 
(
0 , K 

i β1 + b 1 + 1 
)2 
)

(33) 

nd 

 n 

i =1 
V 2 ( f 2 ( x i ) + b 2 ) = 

1 

2 

(∑ n 1 

i =1 

(
K 

i β2 + b 2 
)2 

+ 

∑ n 1 + n 2 
i = n 1 +1 

c 2 max 
(
0 , K 

i β2 + b 2 + 1 
)2 
)

(34) 

ave been proved convex in Section 3.1.3 . { λ1 
i 
} n 

i =1 
are noted as 

he eigenvalues in the eigenvalue matrix �1 , { λ2 
i 
} n 

i =1 
are noted as 

he eigenvalues in the eigenvalue matrix �2 , ρ1 ≥ − min ({ λ1 
i 
} n 

i =1 
) , 

2 ≥ − min ({ λ2 
i 
} n 

i =1 
) , ρ′ 

1 
≥ max ({ λ1 

i 
} n 

i =1 
) , ρ′ 

2 
≥ max ({ λ2 

i 
} n 

i =1 
) . The- 

es positive numbers ρ1 , ρ2 , ρ
′ 
1 and ρ′ 

2 are used to ensure the con- 

exity of these four functions g 1 ( β1 ) , h 1 ( β1 ) , g 2 ( β2 ) and h 1 ( β2 ) . 

In order to avoid the repetitive complex solving process, we 

se β to simultaneously represent β1 in ITWSVM1 and β2 in 

TWSVM2. 

According to the theory of DC programming, we can get 

he conjugate dual problem [31,32] of function f ( β) : inf { f ∗( θ) =
 

∗( θ) − g ∗( θ) } . According to Eqs. (14) and (15) , we can obtain: 

θ ∈ ∂h ( β) 
β ∈ ∂ g ∗( θ) 

. (35) 

Function h ( β) and g ∗( θ) can be noted as: 

 

h ( β) = h ( β
t 
) + 

〈
β − β

t 
, θ

t 〉
g ∗( θ) = g ∗( θt 

) + 

〈 
θ − θ

t 
, β

t+1 
〉 

(36) 

n β
t 
, θ. In Eq. (36) , θ

t ∈ ∂h ( β
t 
) and β

t+1 ∈ ∂ g ∗( θt 
) . In this way,

he problem is transformed into an iterative solution method to 

he sequences { βt } and { θt } : 
 

 

 

{
β

t } = arg min 

{ 
β

t+1 
: g( β) −

〈
β, θ

t 〉
, β ∈ R 

n 

} 
{
θ

t } = arg min 

{ 
θ

t+1 
: h 

∗( θ) −
〈 
θ, β

t+1 
〉 
, θ ∈ R 

n 

} . (37) 

According to the research result of DC programming [33] , the 

odel requires to optimize six parameters: β1 , b 1 , θ1 , β2 , b 2 and 

2 , where the optimal iteration formulas of β and θ are: 

θ
t ∈ ∂h ( β

t 
) 

β
t+1 ∈ arg min β∈ R n g( β

t 
) −

〈
β

t 
, θ

t 〉. (38) 

In each iteration, the sequence { βt } can generate one descent 

irection. In order to accelerate the convergence rate of the algo- 

ithm, the Armijo type rule along the descent direction is used to 

earch the smallest non-negative integer l t to further reduce the 

alue of the objective function: 

t+1 l t t+1 l t 
∥∥ ∥∥2 
f ( β + η d( β)) ≤ f ( β ) − μη d( β) . (39) 

5 
.3. Algorithm description 

lgorithm 1 The pseudo code of ITWSVM-DC algorithm is given 

n Algorithm 1. 

nput: 

D : the training set { x i , y i } n i =1 
v̄ : the step size of Armijo Rule ( ̄v > 0 ) 
μ, η: the parameters of Armijo Rule (0 < μ < η < 1) 

T : the maximize number of iterations 

x 

∗: the test sample 

utput: 

y ∗: the predicted class label of the sample x 

∗

rocess: 

1: Initialize the kernel coefficient β0 and t = 0 ; 

2: Implement DC decomposition for ITWSVM1: f 1 ( β1 ) = g 1 ( β1 ) −
h 1 ( β1 ) and ITWSVM2: f 2 ( β2 ) = g 2 ( β2 ) − h 2 ( β2 ) ; 

3: while t < T do 

4: for ITWSVM i i ∈ { 1 , 2 } do 

5: Obtain a solution for conjugate dual problem: θt 
i 

= 

∇h 
(
βt 

i 

)
; 

6: Solve convex optimization method βt+1 
i 

∈ 

arg min βi ∈ R n g( β
t 
i 
) −

〈
βt 

i 
, θt 

i 

〉
to obtain the solution βt+1 

i 
of 

the primal ITWSVM i problem; 

7: Calculate d(βi ) = βt+1 
i 

− βt 
i 
; 

8: if | | d ( βi ) | | 2 ≤ δ then 

9: The model converges to the local minimum and Stop 

iteration; 

0: end if 

11: Set υt = ῡ ; 

2: while f i ( β
t+1 
i 

+ ηl t d(βi )) ≤ f i ( β
t+1 
i 

) − μηl t ‖ d(βi ) ‖ 2 do 

3: υt = ηυt ; 

4: end while 

5: Update the solution of ITWSVM i : βt+1 
i 

= βt+1 
i 

+ υt d ( βi ) 
and the number of iterations t = t + 1 ; 

6: end for 

17: end while 

18: return Class (x 

∗) = arg min i =1 , 2 
| K(x ∗T , C 

T ) βi + b i | √ 

βT 
i 

K(C , C 

T ) βi 

) 

.4. Convergence analysis 

In this section, we implement a theoretical analysis for the con- 

ergence of ITWSVM-DC. Like Section 3.2 , we use unified β to rep- 

esent β1 and β2 . 

heorem 3.2. If the sequence β
t 

satisfies d( β) = β
t+1 − β

t = 0 , that 

s, β
∗ = β

t+1 − β
t 
. Then, for ∀ β ∈ U( β

∗
, δ) , we have 

( β) − h ( β) ≥ g( β
∗
) − h ( β

∗
) . (40) 

roof. For the DC programming and DCA, we can decompose the 

on-convex objective function into two convex function f (x ) = 

(x ) − h (x ) . If an additional term 

τ
2 x 

2 (τ > 0) is added to the con-

ex function g and h , it can make them strongly convex. Then 

g − h )(x ) = 

(
g(x ) + 

τ

2 

x 2 
)

−
(

h (x ) + 

τ

2 

x 2 
)
. (41) 

et 

 (x ) = g(x ) + 

τ

2 

x 2 , (42) 

(x ) = h (x ) + 

τ
x 2 . (43) 
2 
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Then we introduce the functions to our objective function. For 

he strongly convexity of function, we can get 

 

(
β

t ) ≥ G 

(
β

t+1 
)

+ ∇G 

(
β

t+1 
)(

β
t − β

t+1 
)T 

, (44) 

 

(
β

t+1 
)

≥ H 

(
β

t )+ ∇H 

(
β

t )(
β

t+1 − β
t 
)T 

, (45) 

 

(
β

t ) ≥ H 

(
β

t+1 
)

+ ∇H 

(
β

t+1 
)(

β
t − β

t+1 
)T 

. (46) 

According to the iteration formula 

θ
t ∈ ∂h ( β

t 
) 

β
t+1 ∈ arg min β∈ R n g( β

t 
) − 〈 βt 

, θ
t 〉 , we have 

{
θ

t = ∂h ( β
t 
) 

∂g β
t+1 = θ

, that is 

g( β
t+1 

) = θ
t = ∇h ( β

t 
) . (47) 

By substituting Eqs. (42) and (43) into Eqs. (44) and (45) re- 

pectively and combine Eq. (47) , we have 

g( β
t 
) − h ( β

t 
)) − (g( β

t+1 
) − h ( β

t+1 
)) ≥ τ

∥∥∥βt+1 − β
t 
∥∥∥2 

. (48) 

The equality holds if and only if τ
∥∥∥βt+1 − β

t 
∥∥∥2 

= 0 , which 

eans ITWSVM-DC can reduce the value of objective function in 

ach iteration. When τ
∥∥∥βt+1 − β

t 
∥∥∥2 

= 0 , ITWSVM-DC converges. 

ccording to Eqs. (43) and (46) , function h ( β) is strongly convex

n R n . According to the theory of reference [34] , we have �

heorem 3.3. A function f is strongly convex if and only if it is con- 

inuously differentiable and for any x, y ∈ R n , we have 

f ′ (x ) − f ′ (y ) , x − y 
〉
≥ μ‖ 

x − y ‖ 

2 
, μ > 0 . (49) 

roof. According to Eq. (49) , we have 

 

∇h ( β
t 
) − ∇h ( β

t+1 
) , β

t − β
t+1 
〉 

≥ τ
∥∥∥βt − β

t+1 
∥∥∥2 

. (50) 

Substitute Eq. (47) into Eq. (50) , we have 

 ∇g( β
t+1 

) − ∇h ( β
t+1 

) , β
t+1 − β

t 〉 ≤ τ
∥∥∥βt − β

t+1 
∥∥∥2 

≤ 0 . (51) 

The equality holds if and only if τ
∥∥∥βt − β

t+1 
∥∥∥2 

= 0 , which 

emonstrates that d( β) = β
t+1 − β

t = 0 is a descent direction for 

he objective function f = g − h at β
t+1 

. 

Setting the optimal solution of the function as β
∗
, when 

( β) = β
t+1 − β

t = 0 , according to Eq. (47) , we have ∇g( β
∗
) =

g( β
t+1 

) = θ
t 
, that is ∃ θ ∈ ∂g( β

∗
) . 

So the conjugate function g ∗ of g at β
∗

is 

 

∗( θ) = sup 

{〈
β

∗
, θ
〉
− g( β

∗
) 
}

= 

〈
β

∗
, θ
〉
− g( β

∗
) . (52) 

Similar to Eq. (52) , ∀ θ ∈ R n , the conjugate function h ∗ of h at β
∗

s 

 

∗( θ) = sup 

{〈
β

∗
, θ
〉
− h ( β

∗
) 
}

≥
〈
β

∗
, θ
〉
− h ( β

∗
) . (53) 

Combining Eqs. (52) and (53) , we have 

( β
∗
) − h ( β

∗
) ≤ h 

∗( θ) − g ∗( θ) . (54) 

Due to θ = ∇h ( β) , that is ∃ θ ∈ ∂h ( β) . the conjugate function h ∗

f h at β
∗

is 

 

∗( θ) = sup 

{〈
β, θ

〉
− h ( β) 

}
= 

〈
β, θ

〉
− h ( β) . (55) 

Similar to Eq. (55) , ∀ θ ∈ R n , the conjugate function g ∗ of g at β
s 

 

∗( θ) = sup 

{〈
β, θ

〉
− g( β) 

}
≥
〈
β, θ

〉
− g( β) . (56) 
6 
Combining Eqs. (55) and (56) , we have 

( β) − h ( β) ≥ h 

∗( θ) − g ∗( θ) . (57) 

According to Eqs. (54) and (57) , we obtain 

( β) − h ( β) ≥ g( β
∗
) − h ( β

∗
) . (58) 

Therefore, the function converges to the optimal solution 

∗
. �

.5. ITWSVM-DC for multi-class classification 

In this section, we use “one-versus-rest” strategy for multi- 

lass ITWSVM-DC [35] . For a K-class classification problem, the 

pproach generates K hyperplanes, one hyperplane for each class. 

hen constructing the k th hyperplane for the k th class, multi-class 

TWSVM-DC takes the k th class as the positive class and considers 

he rest classes as negative class to construct an ITWSVM-DC-type 

P Problem. Each QP problem of multi-class ITWSVM-DC is trained 

n all samples and generates one hyperplane. In the stage of pre- 

iction, multi-class ITWSVM-DC calculates the distances between 

he new sample and these hyperplanes. Then, multi-class ITWSVM- 

C signs the new sample to the class corresponding to the hyper- 

lane that the new sample is closest to. For a K-class classification 

roblem, the model of multi-class ITWSVM-DC for the k th hyper- 

lane is written as follows: 

in 
k , b k 

1 

2 
γβ

T 
k K βk + 

1 

2 

( 

n k ∑ 

i =1 

(
K 

i βk + b k 
)2 + 

n k + n k ′ ∑ 

i = n k +1 

c k max 
(
0 , K 

i βk + b k 
)2 

) 

, 

(59) 

here βk and b k are the parameters of the k th separating hyper- 

lane, c k is the penalty parameter. Then the multi-class ITWSVM- 

C model can be optimized with DC algorithm as described in 

ection 3.2 . 

. Experiments results and analysis 

In this section, all algorithms are implemented in Python 3.6.5 

n a PC with an Intel i5-8300H quad core processor, 8 GB RAM 

nd Microsoft Windows 10. 

.1. Experimental setup 

We present experimental results of our algorithms on UCI 

atasets and IDA datasets to verify the effectiveness of our algo- 

ithms. We adopt the grid search method to optimize the parame- 

ers. We choose sigmoid kernel and Radial Basis Function (RBF) as 

ernel functions to compare our ITWSVM-DC with other methods 

espectively. The definition of kernel functions (sigmoid kernel and 

BF kernel) is given by 

 ( x, z ) = tanh ( γ 〈 x, z 〉 + θ ) (60) 

nd 

 ( x, z ) = exp 

(
−γ ‖ 

x − z ‖ 

2 
)

(61) 

espectively. The regularization term parameter, the parame- 

ers in sigmoid and RBF kernels and penalty parameters in 

VMs and TWSVMs are selected by grid search from the set 

2 −6 , 2 −5 , · · · , 2 6 
}

. 

In the experiments, twenty real-world datasets are used for 

raining models. Tables 1 and 2 gives a brief description of the 

sed twenty datasets. Among them, the diabetis dataset are IDA 

enchmark dataset, and the other nineteen datasets are UCI bench- 

ark dataset. 

For all the datasets, we randomly divide the samples into two 

on-overlapping training and testing sets which contain almost 
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Table 1 

Description of the datasets for binary classification. 

Datasets Number of samples Number of dimension 

australian 690 14 

blood 748 4 

breast 277 9 

cryotherapy 90 6 

customers 440 7 

haberman 306 3 

heart 270 13 

liver 345 6 

pima 768 8 

planning 182 12 

voting 435 16 

wpbc 198 33 

diabetis 768 8 

Table 2 

Description of the datasets for multi-class classification. 

Datasets Number of samples Number of dimension Number of classes 

breast-tissue 106 9 6 

glass 214 9 6 

iris 150 4 3 

seeds 210 7 3 

balance 625 4 3 

soybean 47 35 4 

wine 178 13 3 

h

t

t
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v

p

o

4
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c

a

Table 3 

The classification accuracy (mean ± standard deviation) and training

ing the sigmoid kernel. •/ ◦ indicates whether the ITWSVM-DC is sta

t -test at 0.05 significance level). 

Datasets Flip Diffusion Shift Clip

australian mean(%) 85.68 • 76.41 • 86.81 85.

±std(%) 1.44 14.23 1.25 1.4

time(s) 0.61 0.58 0.64 0.4

blood mean(%) 76.82 • 77.59 • 77.59 • 77.

±std(%) 1.54 1.29 1.13 1.3

time(s) 2.64 0.60 0.70 4.1

breast mean(%) 74.46 • 75.90 • 74.75 • 73.

±std(%) 2.94 1.86 1.26 2.4

time(s) 0.14 0.12 0.17 0.1

cryotherapy mean(%) 85.78 77.11 • 86.00 • 86.

±std(%) 4.99 16.27 3.73 5.0

time(s) 0.05 0.05 0.10 0.0

customers mean(%) 89.18 • 88.64 • 76.27 • 89.

±std(%) 0.88 1.97 2.63 1.1

time(s) 0.26 0.25 0.27 0.4

haberman mean(%) 74.31 74.64 73.53 • 72.

±std(%) 3.09 3.17 3.25 3.5

time(s) 0.16 0.14 0.15 0.2

heart mean(%) 84.22 68.74 • 82.96 84.

±std(%) 2.25 10.17 2.37 2.3

time(s) 0.13 0.13 0.14 0.1

liver mean(%) 66.88 • 61.56 • 61.73 • 63.

±std(%) 2.65 2.82 3.53 4.4

time(s) 0.17 0.25 0.17 0.1

pima mean(%) 75.68 • 71.51 • 74.82 • 76.

±std(%) 2.03 2.81 1.36 1.6

time(s) 0.65 0.64 0.62 0.5

planning mean(%) 71.10 • 71.10 • 71.21 • 71.

±std(%) 3.22 3.22 3.18 3.3

time(s) 0.09 0.09 0.08 0.0

voting mean(%) 96.54 91.49 • 93.56 • 95.

±std(%) 3.91 4.25 4.20 4.3

time(s) 0.63 0.65 0.65 0.4

wpbc mean(%) 77.98 77.58 76.06 • 78.

±std(%) 2.51 2.55 2.39 2.6

time(s) 0.09 0.09 0.09 0.1

diabetis mean(%) 75.89 • 68.05 • 74.58 • 76.

±std(%) 1.96 4.49 2.05 1.7

time(s) 0.61 0.58 0.65 0.5

7 
alf of the samples in each class. The processes are repeated ten 

imes to generate ten independent epochs for each dataset, and 

hen the mean classification accuracies, the standard deviations 

nd training time are reported. 

In order to reflect the characteristics of different algorithms and 

alidate the performance, we perform experiments to compare our 

roposed regularized TWSVM (ITWSVM) and ITWSVM-DC with the 

riginal TWSVM and several state-of-the-art IKSVMs, they are: 

• Clip: Treat all negative eigenvalues as noise and replace them 

with zero. 
• Flip: Flip the sign of negative eigenvalues in K so as to form a 

PSD kernel matrix. 
• Diffusion [36] : Consider data distribution when computing 

pairwise similarity. 
• Shift: Add a constant to all eigenvalues to make sure all the 

eigenvalues are non-negative. 
• IKSVM-DC: Introduce DC programming into the solution of 

IKSVM, which greatly improves the classification accuracy of 

the model. 

.2. Experimental results on binary classification datasets 

First, we perform experiments on sigmoid kernel which can be 

iewed as one prominent representative of indefinite kernel. we 

ompare our algorithm with Flip, Diffusion, Shift and Clip which 

re common forms of SVMs for solving indefinite kernel. We also 
 time of binary classification of various algorithms when us- 

tistically superior/inferior to the compared models (pairwise 

 TWSVM ITWSVM IKSVM-DC ITWSVM-DC 

59 • 82.23 • 86.96 86.75 87.39 

6 2.33 0.64 0.64 0.76 

4 0.89 0.38 2.85 5.94 

09 • 78.48 79.79 78.61 79.89 

9 1.74 1.14 1.44 1.24 

4 0.71 0.37 3.54 5.77 

24 • 70.79 • 77.70 76.76 • 78.56 

2 2.85 2.43 1.25 2.15 

4 0.14 0.09 0.71 1.08 

44 88.00 89.33 88.67 90.22 

1 3.87 3.27 5.11 4.12 

6 0.13 0.05 0.17 0.52 

86 • 88.64 • 92.18 91.55 92.23 

1 1.36 1.25 1.24 1.08 

1 0.26 0.14 1.48 2.36 

94 • 65.29 76.47 75.29 77.06 

5 22.07 3.78 4.12 3.55 

0 0.19 0.09 0.76 1.28 

30 80.44 • 84.22 83.11 84.52 

1 2.07 1.45 3.05 1.12 

3 0.22 0.08 0.72 1.06 

99 • 58.55 • 70.98 61.73 • 71.27 

3 2.94 2.52 3.95 2.88 

7 0.08 0.10 1.09 1.41 

33 • 66.98 • 77.84 77.45 77.97 

7 2.54 1.47 1.43 1.53 

8 0.36 0.38 4.18 6.68 

32 • 71.10 71.10 71.10 71.43 

1 3.22 3.22 3.22 3.15 

9 0.09 0.07 0.42 0.80 

85 96.32 96.78 96.31 97.47 

4 2.77 4.02 4.29 3.15 

4 0.84 0.38 4.67 7.13 

08 77.17 78.99 77.07 79.80 

7 2.13 3.02 3.23 3.29 

0 0.11 0.06 0.34 0.81 

77 • 66.09 • 78.52 78.10 78.67 

3 3.29 1.38 1.40 1.25 

4 0.73 0.35 4.09 6.17 
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Fig. 1. The binary classification accuracy of various algorithms when using the sigmoid kernel. 

Fig. 2. The binary classification accuracy of various algorithms when using the RBF kernel. 
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ompare our ITWSVM-DC with IKSVM-DC which is the state-of- 

he-art algorithm. To better illustrate performance of TWSVM with 

ndefinite kernel, we compare our algorithm with the original 

WSVM to demonstrate that directly using indefinite kernel is not 

avorable. For RBF kernel which is the prominent representative of 

SD kernels, the kernel spectra of Flip, Shift, Clip and Diffusion do 

ot need to transform and here we use original SVM as one com- 

arison of our algorithm. We also compare our algorithm with the 

riginal T WSVM, IT WSVM and IKSVM-DC to test the robustness of 

ur algorithm. 
8 
Tables 3 and 4 are the classification accuracies and training 

ime of different algorithms when using the sigmoid kernel and 

BF kernel respectively. The mean and standard deviation (std) of 

arious algorithms are used to validate the accuracy of experimen- 

al results. Specially, when one algorithm is superior to all com- 

ared algorithms on one dataset, the accuracy of the algorithm 

s highlighted in bold. Furthermore, to statistically measure the 

erformance differences of compared algorithms, we conduct pair- 

ise t -test at 0.05 significance level between these algorithms. The 

aker •/ ◦ is shown when the ITWSVM-DC is statistically supe- 
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Table 4 

The classification accuracy (mean ± standard deviation) and training time of bi- 

nary classification of various algorithms when using the RBF kernel. •/ ◦ indicates 

whether the ITWSVM-DC is statistically superior/inferior to the compared models 

(pairwise t -test at 0.05 significance level). 

Datasets SVM TWSVM ITWSVM IKSVM-DC ITWSVM-DC 

australian mean(%) 86.78 • 83.71 • 86.99 • 87.04 • 87.97 

±std(%) 0.82 2.26 0.70 0.83 0.82 

time(s) 0.28 0.49 0.31 2.49 5.81 

blood mean(%) 78.88 78.85 79.73 79.20 80.05 

±std(%) 1.51 1.49 1.28 1.10 1.33 

time(s) 1.68 0.46 0.37 2.74 5.29 

breast mean(%) 76.69 72.73 • 77.70 77.41 78.42 

±std(%) 2.07 2.15 2.30 1.58 2.57 

time(s) 0.06 0.11 0.08 0.60 1.08 

cryotherapy mean(%) 91.33 89.56 90.89 90.44 91.78 

±std(%) 3.06 2.64 3.51 4.10 3.98 

time(s) 0.03 0.06 0.05 0.22 0.42 

customers mean(%) 91.91 86.91 • 91.14 90.68 91.55 

±std(%) 1.46 3.29 1.60 1.34 1.15 

time(s) 0.10 0.41 0.14 2.10 2.17 

haberman mean(%) 74.51 75.56 76.01 75.10 76.01 

±std(%) 3.46 3.07 3.74 3.82 3.73 

time(s) 0.30 0.16 0.09 0.63 1.31 

heart mean(%) 85.11 82.15 • 85.04 84.81 85.93 

±std(%) 2.26 1.86 1.27 2.66 1.05 

time(s) 0.06 0.11 0.08 0.48 0.89 

liver mean(%) 72.83 65.32 • 72.02 70.58 • 73.24 

±std(%) 1.32 2.05 1.27 1.14 1.49 

time(s) 0.08 0.31 0.11 0.61 1.46 

pima mean(%) 78.31 73.54 • 78.57 77.81 78.75 

±std(%) 1.45 1.68 1.54 1.81 1.37 

time(s) 0.27 0.71 0.36 3.52 6.13 

planning mean(%) 72.64 72.97 72.86 72.86 73.19 

±std(%) 3.20 2.92 3.22 3.03 2.96 

time(s) 0.04 0.09 0.06 0.33 0.82 

voting mean(%) 97.46 96.77 97.24 96.54 97.00 

±std(%) 3.18 3.47 3.07 3.90 3.28 

time(s) 0.27 0.41 0.35 3.19 5.91 

wpbc mean(%) 79.90 78.89 79.49 78.79 79.80 

±std(%) 2.98 3.42 3.50 3.38 3.26 

time(s) 0.05 0.08 0.06 0.40 0.80 

diabetis mean(%) 75.89 • 73.65 • 79.17 78.10 • 79.40 

±std(%) 1.96 1.57 1.22 1.40 0.90 

time(s) 0.26 0.70 0.35 4.02 5.92 
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Table 6 

The rank of various algorithms on binary classification datasets when using the 

RBF kernel. 

Datasets SVM TWSVM ITWSVM IKSVM-DC ITWSVM-DC 

australian 4 5 3 2 1 

blood 4 5 2 3 1 

breast 4 5 2 3 1 

cryotherapy 

2 5 3 4 1 

customers 1 5 3 4 2 

haberman 5 3 1 4 1 

heart 2 5 3 4 1 

liver 2 5 3 4 1 

pima 3 5 2 4 1 

planning 5 2 3 3 1 

voting 1 4 2 5 3 

wpbc 1 4 3 5 2 

diabetis 4 5 2 3 1 

Avg. 2.9 4.5 2.5 3.7 1.3 
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ior/inferior to the compared algorithms. Otherwise, no maker is 

iven. 

From Tables 3 and 4 , it is obvious that due to the introduc-

ion of the regularized term for ITWSVM which can be viewed 

s an implementation of the structural risk minimization princi- 

le, the classification performances of ITWSVM are significantly su- 

erior to the original TWSVM. From Table 3 , when using the sig- 

oid kernel, the performance of TWSVM is not favorable in many 
Table 5 

The rank of various algorithms on binary classification da

Datasets Flip Diffusion Shift Clip TW

australian 5 8 3 6 7 

blood 8 5 5 7 4 

breast 6 4 5 7 8 

cryotherapy 

7 8 6 5 4 

customers 5 6 8 4 6 

haberman 5 4 6 7 8 

heart 3 8 6 2 7 

liver 3 7 5 4 8 

pima 5 7 6 4 8 

planning 6 6 3 2 6 

voting 3 8 7 6 4 

wpbc 4 5 8 3 6 

diabetis 5 7 6 4 8 

Avg. 5.0 6.4 5.7 4.7 6.5

9 
atasets, which indicates that directly using indefinite kernel for 

WSVM may lose useful information for non-convex problems. In 

hese SVM methods for indefinite kernels (Flip, Diffusion, Shift, 

lip, IKSVM-DC), the performance of IKSVM-DC algorithm is bet- 

er than that of the IKSVMs which employ the methods of spec- 

rum transformation in many cases, which means that the intro- 

uction of DC programming plays a significant role in solving non- 

onvex problems and improves the performance of the model. It 

s worth noting that, in sigmoid kernel settings, our ITWSVM-DC 

utperforms all the algorithms on all binary classification datasets 

nd is statistically significantly superior to compared algorithms in 

ost cases, which indicates that the proposed ITWSVM-DC algo- 

ithm is effective and can significantly improve the classification 

ccuracy of the algorithm when using indefinite kernels. It means 

hat ITWSVM-DC can not only make full use of the advantages 

f TWSVM and hold the structural risk minimization in SVM but 

lso effectively apply DC algorithm to solve non-convex problems 

aused by indefinite kernels. Therefore, our algorithm can always 

chieve the best result and successfully employ indefinite kernels 

o TWSVM. From Table 4 , in RBF kernel settings, our proposed 

TWSVM still outperforms the original TWSVM. The performance 

f IKSVM-DC is not particularly favorable and stable while our 

TWSVM-DC performs robustly and achieves the highest average 

ccuracy for binary classification datasets. The results demonstrate 

hat our method performs outstandingly in terms of PSD kernels 

nd indefinite kernels. 

In order to show the classification effect of each algorithm more 

learly, Figs. 1 and 2 show the performances of compared algo- 
tasets when using the sigmoid kernel. 

SVM ITWSVM IKSVM-DC ITWSVM-DC 

2 4 1 

2 3 1 

2 3 1 

2 3 1 

2 3 1 

2 3 1 

3 5 1 

2 5 1 

2 3 1 

6 6 1 

2 5 1 

2 7 1 

2 3 1 

 2.4 4.1 1.0 
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Table 7 

The classification accuracy (mean ± standard deviation) and training time of multi-class classification of various algorithms 

when using the sigmoid kernel. •/ ◦ indicates whether the ITWSVM-DC is statistically superior/inferior to the compared models 

(pairwise t -test at 0.05 significance level). 

Datasets Flip Diffusion Shift Clip TWSVM ITWSVM IKSVM-DC ITWSVM-DC 

soybean mean(%) 98.70 • 91.30 99.57 98.70 99.57 99.57 99.57 99.57 

±std(%) 1.99 9.91 1.30 1.99 1.30 1.30 1.30 1.30 

time(s) 0.08 0.08 0.09 0.10 0.10 0.11 0.58 0.82 

breast- 

tissue 

mean(%) 40.75 • 40.94 • 46.79 • 37.17 • 60.00 61.70 60.57 61.32 

±std(%) 4.40 9.99 7.54 10.23 5.46 7.55 5.56 5.08 

time(s) 0.17 0.18 0.18 0.21 0.17 0.17 1.77 1.80 

iris mean(%) 65.60 • 70.40 • 86.53 • 66.13 • 94.27 96.40 95.20 96.40 

±std(%) 7.00 4.29 4.15 4.59 2.39 2.15 2.25 2.07 

time(s) 0.13 0.13 0.12 0.14 0.13 0.18 1.13 1.36 

wine mean(%) 91.35 68.99 • 97.30 89.10 • 94.61 • 96.07 95.73 96.74 

±std(%) 16.65 10.47 1.25 6.95 2.06 2.20 2.35 1.37 

time(s) 0.12 0.13 0.12 0.14 0.12 0.11 0.94 1.26 

seeds mean(%) 70.95 • 47.52 • 83.62 • 70.19 • 90.29 90.76 90.76 90.95 

±std(%) 9.43 18.44 5.50 7.92 2.12 0.86 1.05 1.06 

time(s) 0.14 0.14 0.14 0.18 0.17 0.22 1.26 1.30 

glass mean(%) 49.81 • 48.69 • 52.90 • 46.92 • 61.40 60.84 58.69 63.46 

±std(%) 3.37 5.21 5.64 4.34 3.34 4.15 6.13 3.75 

time(s) 0.29 0.32 0.29 0.51 0.37 0.34 2.74 2.91 

balance mean(%) 86.71 • 87.12 • 86.87 • 86.93 • 87.00 • 93.67 91.92 92.59 

±std(%) 1.21 1.16 1.34 1.15 0.72 1.43 1.18 1.18 

time(s) 0.64 0.77 0.63 0.70 0.76 0.57 6.49 7.23 

Table 8 

The classification accuracy (mean ± standard deviation) and training time of multi- 

class classification of various algorithms when using the RBF kernel. •/ ◦ indicates 

whether the ITWSVM-DC is statistically superior/inferior to the compared models 

(pairwise t -test at 0.05 significance level). 

Datasets SVM TWSVM ITWSVM IKSVM-DC ITWSVM-DC 

soybean mean(%) 99.57 99.57 99.57 99.57 100.00 

±std(%) 1.30 1.30 1.30 1.30 0.00 

time(s) 0.09 0.08 0.09 0.43 0.61 

breast- 

tissue 

mean(%) 61.13 59.81 62.45 60.94 62.08 

±std(%) 7.41 6.48 5.69 5.91 4.42 

time(s) 0.18 0.18 0.16 1.47 1.84 

iris mean(%) 96.13 95.73 96.27 96.13 96.40 

±std(%) 1.83 1.31 1.87 2.19 1.98 

time(s) 0.12 0.11 0.10 1.06 1.13 

wine mean(%) 97.98 97.19 • 98.31 98.42 98.54 

±std(%) 0.98 1.26 0.91 1.03 0.88 

time(s) 0.14 0.12 0.13 1.01 1.54 

seeds mean(%) 94.00 93.05 92.00 92.38 92.95 

±std(%) 1.05 1.35 0.97 1.59 1.36 

time(s) 0.14 0.11 0.11 1.25 1.68 

glass mean(%) 68.69 66.17 67.48 68.41 68.31 

±std(%) 3.60 3.07 3.49 4.71 4.35 

time(s) 0.27 0.25 0.23 3.01 3.23 

balance mean(%) 91.21 • 88.59 • 93.74 92.84 93.19 

±std(%) 1.33 1.40 1.55 1.27 1.27 

time(s) 0.59 0.69 0.45 7.23 7.42 
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ithms on different datasets with sigmoid kernel and RBF kernel 

espectively. 
Table 9 

The rank of various algorithms on multi-class classificatio

Datasets Flip Diffusion Shift Clip TW

soybean 6 8 1 6 1 

breast- 

tissue 

7 6 5 8 4 

iris 8 6 5 7 4 

wine 6 8 1 7 5 

seeds 6 8 5 7 4 

glass 6 7 5 8 2 

balance 8 4 7 6 5 

Avg. 6.7 6.7 4.1 7.0 3.6

10 
For better illustrating the results of experiments, we use statis- 

ical comparisons of classifiers-Friedman test. The null-hypothesis 

s that all the algorithms perform the same and the observed dif- 

erences are merely random. The test results of each algorithm on 

ach dataset are obtained and can be sorted from good to bad. If 

he test performances of the algorithms are the same, the score 

rder value is the same. Tables 5 and 6 show the ranks of the al-

orithms in this paper. 

The Friedman statistic is as follow: 

2 
F = 

12 N 

k (k − 1) 

⎡ 

⎣ 

∑ 

j 

( 

1 

N 

∑ 

i 

r j 
i 

) 2 

− k (k + 1) 
2 

4 

⎤ 

⎦ . (62) 

e compare these k algorithms on N datasets and r 
j 
i 

is the rank of 

he i th of N datasets and the jth of k algorithms. In this section, N

s noted as 13 and k are 8 and 5 in sigmoid kernel and RBF kernel

ettings respectively. The Friedman statistic is distributed according 

o χ2 
F with k − 1 degrees of freedom. The original Friedman test is 

oo conservative, and now we usually use 

 F = 

(N − 1) χ2 
F 

N(k − 1) − χ2 
F 

. (63) 

here χ2 
F can be attained from Eq. (62) . F F is distributed according 

o F -distribution with k − 1 and (k − 1)(N − 1) degrees of freedom. 

hen the significance level is 0.05, according to Eq. (63) , the value 

f F F of these classifiers is 20.5099 when using the sigmoid kernel, 

hich is bigger than the critical values of the F -test 2.1206. For the 

BF kernel, the value of F F is 15.4239, which is also bigger than the 
n datasets when using the sigmoid kernel. 

SVM ITWSVM IKSVM-DC ITWSVM-DC 

1 1 1 

1 3 2 

1 3 1 

3 4 2 

2 2 1 

3 4 1 

1 3 2 

 1.7 2.9 1.4 
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Fig. 3. The multi-class classification accuracy of various algorithms when using the sigmoid kernel. 

Fig. 4. The multi-class classification accuracy of various algorithms when using the RBF kernel. 
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ritical values of the F -test 2.5652. Therefore, the null-hypothesis is 

ejected, which means that the performances of these algorithms 

re different. 

.3. Experimental results on multi-class classification datasets 

In this section, we perform experiments on multi-class classi- 

cation datasets. Tables 7 and 8 are the classification accuracies 

nd training time of different algorithms when using the sigmoid 

ernel and RBF kernel respectively. From Tables 7 and 8 , it is ob-
11 
iously that the classification performances of ITWSVM are signif- 

cantly superior to the original TWSVM. From Table 7 , in sigmoid 

ernel settings, our ITWSVM-DC almost outperforms all the algo- 

ithms on all datasets and is statistically significantly superior to 

ompared algorithms in most cases, which indicates that the pro- 

osed ITWSVM-DC algorithm is effective and can significantly im- 

rove the classification accuracy of the algorithm when using the 

igmoid kernel. Therefore, our algorithm can successfully employ 

ndefinite kernels to TWSVM and always achieve the best result 

ith indefinite kernels in multi-class classification setting. From 
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Fig. 5. Comparisons of the decision boundary of different methods on the artificial dataset. 

T

h

r

t

c

f

c

c

r

r

e

d

s

r

b  

t

c

k

g

t  

u

Table 10 

The rank of various algorithms on multi-class classification datasets when using 

the RBF kernel. 

Datasets SVM TWSVM ITWSVM IKSVM-DC ITWSVM-DC 

soybean 2 2 2 2 1 

breast- 

tissue 

3 5 1 4 2 

iris 3 5 2 3 1 

wine 4 5 3 2 1 

seeds 1 2 5 4 3 

glass 1 5 4 2 3 

balance 4 5 1 3 2 

Avg. 2.6 4.1 2.6 2.9 1.9 

w

e

4

f

c

ables 8 , in RBF kernel settings, our ITWSVM-DC still achieves the 

ighest average accuracy for multi-class classification datasets. The 

esults demonstrate that our method performs outstandingly in 

erms of PSD kernels and indefinite kernels no matter in binary 

lassification settings or multi-class classification settings. There- 

ore, ITWSVM-DC is a robust and prominent algorithm and can ex- 

ellently deal with problems in different situations. 

In order to show the classification effect of each algorithm more 

learly, Figs. 3 and 4 show the performances of compared algo- 

ithms on different datasets with sigmoid kernel and RBF kernel 

espectively. 

To statistically measure the significance of performance differ- 

nce, Friedman test at 0.05 significance level is conducted on all 

atasets. The null-hypothesis is that all the algorithms perform the 

ame and the observed differences are merely random. The test 

esults of each algorithm on each dataset are obtained and can 

e sorted from good to bad. Tables 9 and 10 show the ranks of

he algorithms with sigmoid kernel and RBF kernel in the multi- 

lass classification settings respectively. When using the sigmoid 

ernel, the value of F F of these classifiers is 18.5487, which is big- 

er than the critical values of the F -test 2.2371. For the RBF kernel, 

he value of F F is 2.8688, which is also bigger than the critical val-

es of the F -test 2.7763. Therefore, the null-hypothesis is rejected, 
12 
hich means that the performances of these algorithms are differ- 

nt. 

.4. Experimental results with different indefinite kernels 

Finally, we compare the performance of ITWSVM-DC with dif- 

erent indefinite kernels. Three indefinite kernels are selected for 

omparison [37] . 

• Gaussian combination kernel: 

K ( x, z ) = exp 

(
−γ1 ‖ 

x − z ‖ 

2 
)

+ exp 

(
−γ2 ‖ 

x − z ‖ 

2 
)
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Fig. 6. Comparisons of the decision boundary of different methods on the cryotherapy dataset. 

b

t

k

w

t

i

I

p

4

S

w

l

o

S

F

o

n  

Table 11 

The binary classification accuracy (mean ± standard deviation) and training time of 

ITWSVM-DC with various kernels. 

Datasets Gaussian combination Multiquadric Thin plate spline 

australian mean(%) 87.01 87.16 86.32 

±std(%) 0.74 0.67 0.71 

time(s) 4.94 5.31 5.86 

blood mean(%) 77.70 78.64 77.73 

±std(%) 1.26 1.41 1.61 

time(s) 5.11 5.40 14.37 

breast mean(%) 76.33 76.62 75.97 

±std(%) 1.72 2.64 1.88 

time(s) 1.01 1.11 1.23 

cryotherapy mean(%) 88.67 86.00 90.89 

±std(%) 4.15 4.45 3.64 

time(s) 0.48 0.50 1.10 

customers mean(%) 89.14 86.68 90.23 

±std(%) 2.61 1.61 1.73 

time(s) 2.03 2.26 3.49 

( continued on next page ) 
+ exp 

(
−γ3 ‖ 

x − z ‖ 

2 
)
, (64) 

• Multiquadric kernel: 

K ( x, z ) = 

√ 

γ ‖ 

x − z ‖ 

2 + c 2 , (65) 

• Thin plate spline kernel: 

K ( x, z ) = γ ‖ 

x − z ‖ 

2 p ln 

(
γ ‖ 

x − z ‖ 

2 
)
, (66) 

The kernel parameters in these indefinite kernels are selected 

y grid search from the set 
{

2 −6 , 2 −5 , · · · , 2 6 
}

. Table 11 illustrates 

he classification accuracy of ITWSVM-DC with different indefinite 

ernels on thirteen binary classification datasets. From Table 11 , 

e can demonstrate that there is no certain indefinite kernel func- 

ion which is superior to others in all cases. Experiments show that 

t is necessary for us to select the appropriate kernel function for 

TWSVM-DC to achieve optimal performance according to specific 

roblems. 

.5. Decision boundary and convergence 

We conduct the comparisons of the decision boundaries of 

VM, TWSVM, IKSVM-DC and ITWSVM-DC on artificial and real- 

orld datasets. The artificial dataset is produced by two cross 

ines with Gaussian noise, which has zero-mean and the variance 
13 
f 0.05. The cryotherapy dataset is a real-world dataset. The t- 

NE [38] method is used for visualizing the decision boundaries. 

igs. 5 and 6 illustrate the decision boundaries of different meth- 

ds on artificial and real-world datasets respectively with RBF ker- 

el. From Figs. 5 and 6 , we can find that compared with other algo-
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Fig. 7. The convergence of ITWSVM-DC on 6 datasets. 

Table 11 ( continued ) 

Datasets Gaussian combination Multiquadric Thin plate spline 

haberman mean(%) 73.59 74.12 74.12 

±std(%) 3.57 3.79 4.53 

time(s) 1.17 1.20 1.56 

heart mean(%) 84.52 83.70 84.30 

±std(%) 1.38 1.55 1.93 

time(s) 1.02 1.02 1.30 

liver mean(%) 64.86 65.55 68.96 

±std(%) 5.71 2.57 3.54 

time(s) 1.32 1.49 3.17 

pima mean(%) 76.64 76.93 77.73 

±std(%) 1.43 2.00 1.28 

time(s) 5.41 6.17 7.97 

planning mean(%) 71.98 72.97 71.43 

±std(%) 3.08 3.04 2.99 

time(s) 0.75 0.76 0.88 

voting mean(%) 94.93 94.70 95.62 

±std(%) 3.96 3.42 4.45 

time(s) 5.84 6.45 10.51 

wpbc mean(%) 76.97 76.57 77.98 

±std(%) 2.63 2.63 2.38 

time(s) 0.76 0.70 1.03 

diabetis mean(%) 76.61 78.41 77.47 

±std(%) 1.89 1.10 1.79 

time(s) 5.07 5.90 6.64 
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C

ithms, ITWSVM-DC can generate more reasonable decision bound- 

ries and distinguish instances of different classes better. 

In order to better illustrate the convergence of our algorithm, 

e design experiments to verify it. The experimental results on 6 

atasets (australian, breast, cryotherapy, customers, heart, pima) is 

hown in Fig. 7 . In Fig. 7 , ‖ d ( β) ‖ 2 = ‖ d ( βt+1 − βt ) ‖ 2 is the value

f the solution sequence βt during the iterations. From Fig. 7 , it is 

bviously that the value 
∥∥d( β) 

∥∥2 
gradually converges in few itera- 

ions on the 6 datasets. 
14 
. Conclusions 

In this paper, we propose a new algorithm named indefinite 

win support vector machine with difference of convex functions 

rogramming (ITWSVM-DC) which is the first time to employ in- 

efinite kernel to TWSVM. We directly focus on the primal prob- 

em of TWSVM instead of the dual form of TWSVM to avoid the ex- 

stence of dual gap and the loss caused by dual form. By modifying 

he objective function, a new regularized T WSVM (IT WSVM) comes 

nto being which can improve the generalization of TWSVM. By us- 

ng the Representer Theorem in RKKS, we reconstruct the ITWSVM 

nd provide theoretical support for the indefinite TWSVM. After 

nalyzing the convexity of the proposed ITWSVM, DC program- 

ing is introduced to solve the non-convex problem. A line search 

long the descent direction at each iteration is adopted to find the 

olution. Furthermore, experiments with sigmoid kernel have been 

erformed to prove the superiority of our algorithm with indefinite 

ernels. Radial Basis Function kernel is also applied to demonstrate 

he robustness of our algorithm. Extensive experiments demon- 

trate that ITWSVM-DC is a robust and prominent algorithm and 

an perform excellently in different situations. 
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